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a b s t r a c t

Although historical observations date back to the 1800’s, there is little information on sea turtle
occupancy within Biscayne National Park (BNP). The park is located along the Florida reef tract and is
dominated by the Gulfstream, which acts as a corridor for many marine animals. Here we used satellite
telemetry to determine areas of use in BNP for two species of imperiled sea turtles, loggerhead (Caretta
caretta) and green (Chelonia mydas) turtles. We included data for turtles tagged between 2009–2021
at sites both within park waters and in five locations outside the park boundary; individuals were
captured both in the water and on land. We tagged 60 individuals (female, n = 48; male, n = 3;
immature, n = 9); loggerheads (n = 33) ranged in size from 66.2 to 109.9 cm CCL (curved carapace
length) and green turtles (n = 27) ranged in size from 39.1 to 111.9 cm CCL. We used behavioral
switching state-space modeling (SSM) to obtain daily predicted positions for each turtle, classified
turtle behavior within the park as either foraging, migration, or both foraging and migration, and
summarized high-use areas for each species across all months of the year. Turtles used park waters
year-round, with concentrated use of deeper waters during seasonal migrations. Across all 60 turtles,
21 spent their tracking time foraging within BNP boundaries and 30 used the park as part of their
migratory pathway; five turtles used the park for both foraging and migration, and the remaining
four had SSM points very close to the park. Loggerhead migration occurred from February through
November, whereas green turtle migration was concentrated in August. Both turtle species exhibited
high overlap (i.e., usage) with seagrass habitat. These findings are relevant as managers consider
strategies to minimize anthropogenic impacts to resident and migratory sea turtles using park waters.

Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Protected areas provide a solution to conserving biodiver-
ity and improving population trajectories for declining species.
rotected areas (e.g., national parks, wilderness and marine pro-
ected areas) often have a higher biodiversity and abundance
ompared to unprotected areas (Gray et al., 2016). However,
his safeguard is dependent upon animals’ use of protected ar-
as (Grüss et al., 2011) and is most effective where human-
ominated land use is minimized (Gray et al., 2016). Where
arine parks and protected areas are adjacent to highly devel-
ped urban areas, fisheries and human activity may still occur
ithin the park boundaries and impact marine resources (Ault

∗ Corresponding author.
E-mail address: kristen_hart@usgs.gov (K.M. Hart).
ttps://doi.org/10.1016/j.rsma.2023.103098
352-4855/Published by Elsevier B.V. This is an open access article under the CC BY
et al., 2001). Therefore, to successfully manage and conserve
endangered or threatened species, it is critical to understand the
distribution, movement behavior, and habitat interactions species
have with the environment (Jeffers and Godley, 2016).

Marine species conservation has evolved over the past few
decades to include satellite tracking technology, which has in-
creased our ability to understand movement behaviors and high-
use areas of various species (Block, 2005; Zbinden et al., 2007;
Graham et al., 2012). Tracking patterns of migratory species,
like tuna, sharks, billfish, and sea turtles can reveal migratory
pathways and hotspots used for foraging, breeding, spawning,
nesting, or overwintering (Block et al., 2001; Godley et al., 2008;
Doherty et al., 2017). For example, a tracking study on leatherback
turtles (Dermochelys coriacea) nesting in Mayumba National Park
found that turtles spent an average of 62% of the tracking duration

in unprotected waters outside the park (Witt et al., 2008). Other

license (http://creativecommons.org/licenses/by/4.0/).
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tudies looking at global green turtle (Chelonia mydas) move-
ent found that marine protected areas (MPAs) were positively
orrelated with foraging grounds for this species (Scott et al.,
012), a finding underscored in the Dry Tortugas where 82%
f green turtles foraged within the MPAs (Hart et al., 2013).
imilarly, throughout the Florida Keys National Marine Sanctuary,
ea turtles were more likely to use multi-use protected areas
han unprotected areas (Roberts et al., 2021). Multi-use protected
reas allow for a range of resource use, for example recreational
r commercial fishing typical of urbanized regions. In heavily ur-
anized areas of southern California, some green turtles use both
estored and highly developed habitat, possibly benefitting from
ome human-implemented structures within developed habitats
Crear et al., 2017). These studies on sea turtle movement and be-
avior demonstrate the benefits of satellite telemetry to quantify
abitat use of protected areas within marine regions. Results that
ummarize telemetry data can thus inform conservation policy
nd management strategies (Hays et al., 2019).
Biscayne National Park is located in southeastern Florida,

outh of Miami (Fig. 1). The park is adjacent to the Florida Keys
ational Marine Sanctuary, and proximal to Everglades National
ark. It also lies adjacent to the Florida Straits and the Gulf
tream; the Florida Current moves north following the Florida
eys and the Florida Straits (Gyory et al., 2006). These marine
reas are used by migrating sea turtles (see Arendt et al., 2012;
oley et al., 2014; Evans et al., 2019; Iverson et al., 2020), but
se of areas specifically within Biscayne National Park is not
ocumented. Despite Biscayne National Park’s protected area
tatus, boating, diving, and fishing are allowed, and there is a high
evel of recreational vessel usage within the bay (Jurowski et al.,
995). An aerial survey of Biscayne National Park found mean
aily vessel counts varied between 362 and 417 in the spring and
ummer of 2003, and between 243 and 366 in the fall and winter
f 2004 (Ault et al., 2008). In nearby Everglades National Park,
otorboating in the shallow waters of Florida Bay was related to
large degree of seagrass scarring, especially in areas of high boat
sage (Hallac et al., 2012). Though such studies have not been
onducted in Biscayne National Park, it is reasonable to suggest
imilar instances occur because of the similarities in water depth
nd high levels of boating in the bay. Concomitant with boating
ctivity is risk of boat strikes to large marine animals. In a study
n injuries of nesting female loggerheads (Caretta caretta) on
outheastern Florida beaches, 24% of turtles had at least one
njury, and of these, 75% were caused by boat strikes (Ataman
t al., 2021).
Two species of sea turtles are commonly found in Biscayne

ay, loggerhead turtles and green turtles. Occurrence records for
hese species date back to fisheries harvests in the 1800s (Smith,
896). Green turtles are currently critically endangered globally
Mortimer and Donnelly, 2008), and loggerheads are listed as
lobally vulnerable (Casale and Tucker, 2017). All species are
rotected under the Unites States Endangered Species Act, with
oggerhead and green turtles classified as threatened in the North
tlantic Distinct Population Segment (NMFS and USFWS, 1991,
008, 2011; Conant et al., 2009; Seminoff et al., 2015).
To date, there have been no studies on sea turtle habitat use

ithin Biscayne National Park. Here, we used satellite telemetry
o determine high-use areas and movement behavior of two
pecies of sea turtles captured both inside and outside the park.
ur objectives were to determine spatio-temporal habitat use by
urtles within park boundaries.

. Materials and methods

Study Area
Biscayne National Park exists within Biscayne Bay. Biscayne

ay is a subtropical bay with shallow waters ranging from about
2

Fig. 1. Sea turtle tagging areas, and turtle capture locations from the Biscayne
National Park (BNP) tagging area. A. Tagging areas are represented as stars and
include: BNP, Florida (n = 20); Broward County, Florida (BRCO, n = 31); Dry
ortugas National Park, Florida (DRTO, n = 5); Everglades National Park, Florida
ENP, n = 2); Florida Keys National Marine Sanctuary, Florida (FKNMS, n = 1);
ape Hatteras National Seashore, North Carolina (NC, n = 1). B. Capture locations
or loggerhead turtles (Caretta caretta) and green turtles (Chelonia mydas) within
NP. * All males were captured within FKNMS and BNP.

to 18 m, and a seafloor of carbonate sand and several species
f seagrass (Zawada and Brock, 2009). There is a high density
f urban and agricultural development adjacent to Biscayne Bay,
ith stormwater that carries chemicals, sediments, and nutri-
nts into the bay (Browder et al., 2005). The Turkey Point Nu-
lear Power Plant site adjacent to Biscayne Bay is occupied by
closed-loop cooling canal system whereby artificially heated

ondenser cooling water is discharged into the system (Gaby
t al., 1985). Most of the freshwater discharge into the bay occurs
hrough controlled canals, which are used for flood water control
nd municipal water supply management (Wang et al., 2003). A
omprehensive study on the water quality in the bay indicated
igh concentrations of ammonium were present in the south-
rn portion. High ammonium concentration was correlated with
ecreased abundance of Thalassia testudinum (Caccia and Boyer,
005), a seagrass which represents the primary food of green
urtles (Chelonia mydas) in the Atlantic Ocean (Williams, 1988;
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Table 1
Capture locations, species, and sex of loggerhead (Caretta caretta) and green (Chelonia mydas) turtles satellite-tagged between 2009
to 2021within proximity to and within Biscayne National Park, FL, USA. See Hart et al. (2023) for more details.
Capture site Caretta caretta Chelonia mydas

Female Male Unknown Female Male Unknown

Biscayne National Park, FL 9a 2a 4a 0 0 5a

Broward County beaches, FL 11 0 0 20 0 0
Dry Tortugas National Park, FLb 3b 0 0 2 0 0
Everglades National Park, FL 2 0 0 0 0 0
Florida Keys National Marine Sanctuary, FL 0 1a 0 0 0 0
Cape Hatteras National Seashore, NC 1 0 0 0 0 0

aDenotes in-water captures, the remaining turtles were intercepted on the nesting beach.
bIncludes four loggerhead turtles that used waters close to park, but never entered the park.
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Moran and Bjorndal, 2007; Gulick et al., 2021). The area west of
Elliot Key is primarily between 0 and −3 m bathymetry, while
he area east of Elliot Key reaches up to −18 m bathymetry in the
arthest eastern corners of the park, although most of the eastern
rea is <−10 m (ETOPO1 Bedrock cell-registered bathymetry;
mante and Eakins, 2009).
Turtle Capture and Workup
We used methods to capture turtles including in-water meth-

ds (dip-netting, rodeo/turtle jumping; see Ehrhart and Ogren,
999) and capture of adult females on beaches during nesting
easons (see Hart et al., 2013). For a detailed description of
orphometric measurements taken as part of in-water captures
ee Fujisaki et al. (2016) and for land-based captures see Hart
t al. (2013). Capture sites included Biscayne, Dry Tortugas, and
verglades National Parks, Broward County beaches, locations
ithin the Florida Keys National Marine Sanctuary, and on land
t Cape Hatteras National Seashore, North Carolina (Fig. 1).
Satellite Tracking
We outfitted turtles with Argos platform terminal transmitters

PTTs; SPOT and MK10 SPLASH tags; Wildlife Computers, Red-
ond, WA) following established protocols (NMFS SEFSC, 2008)
nd methods outlined in Hart et al. (2021). For all tags, daily
ransmissions were limited to 250 and optimized for times of
atellite passes in the area. Fastloc MK10 SPLASH tags were pro-
rammed to obtain up to 4 Fastloc GPS locations, with a maxi-
um of 10 attempts.
Switching State-Space Modeling
Following Hart et al. (2013) we analyzed data from Argos

ocation classes (LC: 3, 2, 1, 0, A, B), but lowest quality LC Z points
for invalid locations) and points inland were removed. Argos
ssigns accuracy estimates of <100 m for GPS locations, <250 m
or LC 3, 250 to <500 m for LC 2, 500 to <1500 m for LC 1, and
1500 m for LC 0 (CLS, 2016). We applied a Bayesian hierarchical
witching state-space model (SSM) to the satellite-tracking data
o estimate the location and behavioral mode for each turtle. We
it the model using the ‘hDCRWS’ model specification (hierar-
hical first difference correlated random walk switching model)
n the R package bsam (Jonsen et al., 2005; Jonsen, 2016; Jon-
en et al., 2017; R Core Team, 2021) and ran JAGS using the R
ackage rjags (Plummer, 2022) to run the Markov chain Monte
arlo (MCMC) algorithm. We ran the SSM using a time step of
4 h (1 point per day). We ran two independent parallel MCMC
hains, applied adaptive sampling for the first 3500 iterations,
nd discarded an additional 3,500 samples as burn-in. We drew
0,000 samples from the posterior distribution and thinned by 5
o reduce within-chain autocorrelation, which resulted in 2000
amples from the posterior distribution for inference. The hierar-
hical SSM accounted for location error, and estimated movement
arameters jointly across individuals to enhance behavioral mode
valuation. Each SSM location was categorized into one of two
ehavioral modes: ‘‘area-restricted searching’’ (e.g., foraging) or
‘transiting’’ (e.g., migration; Jonsen et al., 2007, 2013), the former
escribed locations with comparatively short step lengths and
3

numerous turns (tortuous movement) and the latter described
locations with comparatively long step lengths and very little
turning (straighter movement).

Turtle Use of Biscayne National Park
We overlaid SSM tracks for each individual with the Bis-

cayne National Park boundary in ArcGIS 10.8.1 (ESRI, 2020) to
determine marine turtle use of the park. For each species, we
determined the number of tracking days per grid cell (2 x 2 km
rid cell size) within Biscayne National Park using the R packages
aster (Hijmans, 2021) and rgdal (Bivand et al., 2021). This grid
ell selection of 2 x 2 km was used to incorporate the greatest
rror estimate for raw satellite tracking data points (CLS, 2016).
e tallied the number of SSM points (each representing one

racking day) for each turtle in each grid cell and summed the
otal number of tracking days in each grid cell for all turtles,
y species, for all months of the year, and also according to the
emale non-breeding (1 Oct–31 March) and breeding (1 April–30
ept) seasonal time delineations. We also calculated the propor-
ion of SSM tracking days spent in Biscayne National Park and
ompared it to the total SSM tracking days for each turtle. We de-
ermined the SSM behavioral mode(s) for each turtle during their
racking time in Biscayne National Park: area-restricted searching
ARS, or foraging); transiting (migration); both foraging/ARS and
igration.
Additionally, we evaluated sea turtle use of seagrass habitat in

iscayne National Park. For turtles with foraging/ARS behavior in
iscayne National Park, we determined the core use area using
0% Kernel Density Estimation (KDE; Worton, 1995; Keating and
herry, 2009) following methods in Hart et al. (2020) using the
package adehabitatHR (Calenge, 2006). After calculating the

entroid (geometric center) of each core use area, we determined
f the centroid overlapped with seagrass habitat (FWC, 2020) in
rcGIS 10.8.1 (ESRI, 2020). We also calculated the percentage of
RS (foraging) SSM points and transiting (migration) SSM points
n Biscayne National Park that overlapped with seagrass habitat
n ArGIS 10.8.1 (ESRI, 2020).

Finally, we evaluated sea turtle use of current zones of pro-
ection within Biscayne National Park, including the no trawl
one (where roller frame trawls are prohibited from operation),
oral Reef Protection Areas (CRPA; all traps are prohibited, and all
obster harvest is prohibited), the trap-free zone near Biscayne
ational Park headquarters, and the Biscayne Bay-Card Sound
piny Lobster Sanctuary (where taking of lobster is prohibited;
WC, 2023).

. Results

Turtles
Between 2009 to 2021, we satellite-tracked a total of 60 sea

urtles (n = 33 loggerhead turtles, n = 27 green turtles) captured
cross six sampling locations. Forty-eight turtles were female, 3
ere male, and 9 were immature (Table 1). Captures by sites were
s follows: five locations in Florida including: Biscayne National
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ark (n = 20); Broward County beaches (n = 31); Dry Tortugas
National Park (n = 5); Everglades National Park (n = 2); Florida
Keys National Marine Sanctuary (n = 1), and one location in
North Carolina: Cape Hatteras National Seashore (n = 1, Fig. 1).
Of the 60 turtles, 21 were in-water captures, whereas 39 were
captured on nesting beaches outside of Biscayne National Park
(Table 1). Across all turtles tagged, curved carapace length (CCL)
measurements varied from 39.1 to 111.9 cm, with 20% (n =

2) classified as sub-adults and 80% classified as adults (n =

8; Prince et al., 2012). Nesting turtle sizes varied from 87.1
o 111.9 cm CCL, whereas size from in-water captures varied
rom 39.1 to 99.5 cm CCL. Loggerhead turtles varied from 66.2
o 109.9 cm CCL with 21% (n = 7) classified as sub-adults and
9% classified as adults (n = 26). Green turtles varied from 39.1

to 111.9 cm with 19% (n = 5) classified as sub-adults and 81%
classified as adults (n = 22; Hart et al., 2023).

Satellite Tracking
Over the course of the study period, we tracked loggerhead

and green turtles for a cumulative total of 11,523 and 4,160
days respectively. Individual tracking durations varied from 56 to
1,187 days (mean 349, SD ± 238 days) for loggerheads and from
22 to 333 days (mean 154, SD ± 89 days) for green turtles (Hart
t al., 2023).
Switching State-Space Modeling
Switching state-space modeling was performed on 60 turtles.

our turtles were excluded from analyses (all females) because
lthough some satellite points were recoded within Biscayne
ational Park, SSM movements were not assigned within park
oundaries. Of the 56 turtles that remained, 21 turtles used the
ark for foraging (behavior was ARS) while 30 used the park
or migration (behavior was transiting), and five used the park
or both foraging and migration; Fig. 2. For example, one turtle
T46, adult female loggerhead) displayed both foraging (ARS) and
igration (transiting) behaviors within the park over the course
f 11 months; T46 spent about 10 months in ARS mode inside
f the park, then exited the park at the beginning of August,
igrating about 300 km north, only to return 20 days later, mi-
rate south through (and out of) the park over the course of two
ays (see Fig. 2). Of the three males tagged, all were loggerheads
nd one (T33) displayed migration behavior within the park, one
isplayed foraging behavior within the park (T49) the other one
T48) displayed both foraging and migration behavior within the
ark. All of the nine immature turtles displayed foraging behav-
or within the park. By species, 12 loggerheads used Biscayne
abitats for foraging, 16 used the park for migration, and three
sed the park for both foraging and migration. Nine green turtles
sed Biscayne habitats for foraging, 14 used parts of the park for
igration, and 2 used the park for both foraging and migration.
Turtle use of Biscayne National Park
Satellite-tracked loggerhead turtles were within Biscayne Na-

ional Park a total of 2,843 days, with individual turtles spending
rom 1 to 381 days within the park (mean 92, SD ± 116 SSM
ays). Satellite-tracked green turtles were within the park a total
f 1,010 days, with individual turtles spending from 1 to 246
ays there (mean 72, SD ± SSM days; Fig. 3). The primary use

area for loggerhead turtles in this study was along the western
half of the park, with >90% of the tracking days between the
mainland and Elliott Key (Fig. 3). However, loggerhead turtles
also used areas east of Elliott Key and other sites throughout
the park (Fig. 3). Green turtle tracking days were concentrated
primarily in the southern half of the park (>80% of tracking days;
Fig. 3), especially in areas east of Elliott Key, with fewer tracking
days in the western half of the park. Within the park, core use
area centroids (50% KDE) for turtles classified as ARS (foraging
behavior), primarily overlapped with seagrass habitat (23 out of

24 centroids). In total, 3,627 out of 3,802 (95%) ARS (i.e., foraging) t

4

SSM points overlapped with seagrass beds (Fig. 4). For individuals
classified as transiting (i.e., migrators), 38 out of 51 (75%) SSM
points overlapped with seagrass (Fig. 4). Turtles with transiting
points in the park had one to three ‘‘transiting’’ SSM points within
park boundaries (Fig. 2).

Temporal Movement
ARS foraging behavior was exhibited by loggerhead turtles

within the park boundaries during all months of the year, whereas
ARS foraging behavior of green turtles was limited to February
through August (Fig. 2). Turtles that migrated through Biscayne
National Park did so between March through August and in
November and January (Fig. 2). Twenty turtles in the study
spent much of their tracking time (>50%) inside park boundaries.
Many turtles remained within the park for a variable amount of
their tracking time (i.e., 25%–50%, n = 2; <25%, n = 34). The
remaining four turtles spent little time within park boundaries,
and displayed only 1–4 satellite data points near park margins
in August or September, resulting in no SSM points within the
park (i.e., single satellite point within park boundaries, n = 2;
traveled through park with a single satellite point in the park, n =

; migrated along the outer eastern boundary, with four satellite
oints in the park, n = 1).
Location of high-use grid cells varied over time and by species.

oggerheads in both breeding and non-breeding seasons primar-
ly used the western park boundary along the coastline (Fig. 3).
reen turtles primarily used the area east of Elliott Key, especially
uring the non-breeding season (Fig. 3). For each species, their
patial use of grids cells shifted temporally, and the cumulative
umber of occupied grid cells (cells with at least one tracking
ay) was highest in Biscayne National Park during the breeding
ime period. All transiting (migration) SSM points were generally
ocated on the eastern side of Biscayne National Park and most
f the ARS (foraging) core use area centroids were located on the
estern side of the park (Fig. 4). Lastly, high-use grid cells for
oth species overlapped with various zones of protection within
iscayne National Park over all months (see Supplemental Fig. 1).

. Discussion

Our results provide the first information on sea turtle move-
ent within Biscayne National Park, a shallow subtropical bay off

he coast of southeast Florida. Turtles in this study were tagged at
ultiple sites across southern Florida, and from one site in North
arolina, representing a variety of genetically distinct subpopula-
ions of two imperiled species, all of which use Biscayne National
ark. We describe temporal variation in high-use areas within
he park and present data on the size range of turtle captures.
his is the first study to document year-round occupancy by both
reen and loggerhead turtles, and our data show that Biscayne
ational Park represents a previously unrecognized foraging area,
hat may also be important for turtle development given habitat
se by several immature turtles. Finally, we suggest that Biscayne
ational Park provides important migratory pathways for turtles
uring both breeding and non-breeding periods.
Our findings indicate that Biscayne National Park likely acts as

n important segment of the migratory pathway for both Gulf and
tlantic turtles migrating to or from the Florida Keys (see Hart
t al., 2023). Further, the park appears to provide an important
rea for adult males as well as nesting females post-breeding;
oth males and females showed migration and foraging behavior
ithin the park. As with Arendt et al. (2012), we found that
igratory male loggerhead turtles used a north-south corridor
long the east side of the park, representing an area inshore of the
ontinental shelf (Fig. 4). Corridors such as these may represent
mechanism for males to locate females (e.g., Arendt et al.,

012). Other studies in Florida have likewise identified impor-
ant corridors. For example, Evans et al. (2019) conducted an on
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Fig. 2. Summary of behavioral mode classification within Biscayne National Park (BNP) for each turtle, by species over time, from switching state-space modeling
tracking days. Migration behavior corresponds to transiting behavior and ARS (area-restricted searching) corresponds to foraging behavior. Five turtles showed both
behaviors within BNP (Chelonia mydas: T11, T21; Caretta caretta: T34, T46, and T48). The horizontal green line is included to distinguish between species. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
optimized hot spot analysis for loggerheads tagged north of our
study site at Archie Carr National Wildlife Refuge (ACNWR), on
the Atlantic coast of Florida. Loggerheads tagged within ACNWR
used a corridor along the southeast coast of Florida, (Evans et al.,
2019) and this area represents a significant migration zone that
likely connects with the area adjacent to Biscayne National Park.
This use of the southeast coast was also previously documented
from loggerheads originally tagged in Melbourne, FL (Foley et al.,
5

2013) and loggerheads using the straits as a migratory pathway
to residence areas in the Bahamas from Dry Tortugas National
Park (DRTO; Hart et al., 2015). Finally, a post-nesting female
green turtle from DRTO was tracked, to locations within the
Florida Keys National Marine Sanctuary, just south of Biscayne
National Park (Hart et al., 2013). Taken together, these studies
demonstrate important coastal migration routes in Florida, and
we add Biscayne National Park to this network.
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Fig. 3. The number of tracking days per 2 x 2 km grid cell in Biscayne National Park (BNP), Florida for A. Caretta caretta, and B. Chelonia mydas. The top panels
how the tracking days for each species over all months of the year, and the bottom panels show the tracking days for each species for periods of non-breeding (1
ct–31 March) and breeding (1 April–30 September) time, based on female nesting seasons.
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Green turtles in our study showed concentrated tracking days
n the eastern and southeastern portion of the park whereas
oggerheads primarily showed concentrated tracking days in the
estern portion of the park (Fig. 3). Adult turtles used deeper
ortions of the park on the eastern side when migrating both
orthward and southward, and as a stopover site during migra-
ion (Fig. 4). Green turtles with shorter track durations showed
igh-use grid cells biased towards capture locations. Green and
oggerhead turtles are known to show site fidelity to foraging
reas (Broderick et al., 2007), and the five tagged in Biscayne Na-
ional Park exhibited high site fidelity with minimal post-release
ovement indicating residency and that they remain in areas
ith seagrass. Further, both species used areas that overlapped
ith management zones of protection within the park and some
sed grid cells proximal to the protection zones (e.g., no trawl
ones or areas where lobster harvest is prohibited; see Supple-
ental Fig. 1). Future work to target, capture, and satellite-tag

urtles within protection zones of Biscayne National Park could
elp to assess specifically if turtles are using them, and to what
egree, throughout the year.
6

. Conclusion

We demonstrate that distinct subpopulations of two imperiled
arine turtle species use Biscayne National Park year-round,
nd these individuals are from multiple locations within and
utside of Florida. Our study of tracked loggerhead and green
urtles establishes the park as an important foraging ground
nd a component of a migratory corridor for both species, and
s thus of conservation concern. We found that certain areas
f the park represent high-use areas for both turtle species,
nd this may inform decision-making regarding critical habitat
esignations and park-specific protection zones (see Supplemen-
al Fig. 1). Future work to incorporate standardized surveys to
haracterize variation in turtle density and abundance through-
ut Biscayne National Park, along with finer-scale resolution on
abitat-use patterns in managed zones of the park is planned,
nd these studies may provide valuable information for resource
anagers.
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r

Fig. 4. Kernel density ARS (area-restricted searching) centroids (50% KDE’s)
epresenting the core areas used by loggerhead (Caretta caretta) and green
(Chelonia mydas) turtles while in Biscayne National Park (BNP), plotted with
migration switching state-space modeling (SSM) points, and seagrass habitat.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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