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Abstract. Fuels treatments and fire suppression operations during a fire are the two management influences on wildfire 
severity, yet their influence is rarely quantified in landscape-scale analyses. We leveraged a combination of datasets 
including custom canopy fuel layers and post-fire field data to analyse drivers of fire severity in a large wildfire in the 

southern Cascade Range, California, USA. We used a statistical model of tree basal area loss from the fire, factoring in 
weather, fuels and terrain to quantify the extent to which prescribed burning mitigated wildfire severity by simulating 
potential wildfire severity without prescribed fire and comparing that with modelled severity from areas burned with 

prescribed fire. Similarly, using a map of operations intensity, we calculated predicted fire severity under a scenario with 
no operations and used these predictions to quantify the influence of operations. We found that prescribed fires and 
operations reduced tree basal area loss from the wildfire by an average of 32% and 22% respectively, and that severity was 
reduced by 72% in areas with both prescribed fire and operations. Our approach could be applied to other wildfires and 

regions to better understand the effects of fuel treatments and fire suppression operations on wildfire severity. 
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Introduction 

Increasing incidence of large, high-severity fires in western US 
forests over the past four decades has provoked concerns over 
fire-initiated forest loss and altered successional pathways 

(Westerling 2016; Liang et al. 2017; Coop et al. 2020). Climate 
change has accelerated this increase in fire activity, but fuel 
accumulation and increased tree density due to a century or more 
of fire exclusion have also played a role by increasing fire hazard 

(i.e. potential fire behaviour independent of weather, Hardy 
2005) in lower to mid-montane forests of the western US 
(Brown et al. 2008; Scholl and Taylor 2010; Collins et al. 2011; 

Battaglia et al. 2018). 
From a forest and fire management perspective, wildfire 

severity can be influenced in two primary ways. The first way 

is to reduce fuels through fuel treatments such as prescribed fire 
and thinning (Agee and Skinner 2005). A dampening effect of 
recent (within 10 years) fuel treatments, including prescribed fire, 

on subsequent wildfire severity has been well documented over 
limited extents in field-based studies (Fulé et al. 2012; Safford 
et al. 2012; Kalies and Yocom Kent 2016), and further supported 
by modelling of potential fire behaviour (van Wagtendonk 1996; 

Schmidt et al. 2008; Stephens et al. 2009). These field-based 

studies have demonstrated that fuel treatments can increase forest 
resilience to wildfire (Stevens et al. 2014). Furthermore, model 
simulations suggest that implementing fuel treatments over a 

portion of the landscape reduces landscape-scale risk of high-
severity fire and therefore is vital to maintaining forest cover and 
carbon storage in forests adapted to frequent fire (Syphard et al. 
2011; Liang et al. 2018; McCauley et al. 2019). Yet the degree to 

which fuel treatments reduce wildfire severity is a key uncertainty 
in these simulations and this effect is difficult to quantify over 
broader extents owing to confounding influences of weather and 

terrain that also influence fire severity. In addition, much of the 
literature on fuel treatment effectiveness has focused on dry pine 
and mixed-conifer forests whereas mid to upper-montane forest 

between the dry mixed-conifer and subalpine zones has received 
comparatively little attention (Schoennagel et al. 2004; Kalies 
and Yocom Kent 2016). However, studies of repeated wildfires 

that include mid to upper-montane forests have shown a damp-
ening effect of past wildfires on reburn severity (Parks et al. 
2014a; Harvey et al. 2016; Stevens-Rumann et al. 2016), sug-
gesting that fuel treatments including wildfires managed for 
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resource benefit would likely reduce wildfire severity in these 
forests.Because climate change and fire exclusion maybedriving 
fire activity to increasingly higher elevations (Schwartz et al. 

2015), evaluating fuel treatment effectiveness in these more 
mesic forest types is crucial. 

One approach to assess the influence of fuel treatments is to 

build a statistical model of fire severity and to allow the strength 
and directionality of the fuel treatment effect to be assessed 
when other influences are taken into account (Finney et al. 2005; 

Wimberly et al. 2009; Harris and Taylor 2017; Lydersen et al. 
2017; Prichard et al. 2020). However, this approach does not 
estimate the magnitude of the treatment effect on fire severity, 
only the strength of its influence in relation to other factors. 

Moreover, even if treatments have only low–moderate influence 
across an entire fire, they may have high influence on fire 
severity where treatments were conducted (Povak et al. 2020). 

The secondway inwhich wildfire severity can be influenced is 
through suppression operations during a wildfire. This includes 
any  action used by fire crews  during a fire to control spread, such 

as ground application of water or chemical retardants, fire line 
construction, backfiring and mopping up hot spots. Though 
effects of operations are a key uncertainty in analyses of wildfire 

severity, they are rarely accounted for owing to the difficulty of 
assessing the timing and extent of particular operations (Graham 
2003; Birch et al. 2015; Estes et al. 2017). Prior work has stressed 
how firing operations (i.e. backfires or burn-outs) may increase 

fire severity, reduce the occurrence of low-severity forest patches 
that act as refugia, and therefore delay post-fire forest recovery 
(Backer et al. 2004; Driscoll et al. 2010; Stephens et al. 2013; 

Downing et al. 2019). However, operations could produce a wide 
range of fire effects depending on the conditions of fuels, terrain 
and weather when they are implemented. For example, Zhang 

et al. (2019) documented reduced risk of wildfire and increased 
growth in a ponderosa pine (Pinus ponderosa) plantation  burned  
in a backfiring operation during a wildfire, suggesting operations 
increased forest resilience. The range of conditions under which 

fire suppression operations might increase or decrease fire 
severity relative to not conducting the operations is important 
to assess but has rarely been investigated. In addition, fuel 

treatments are known to facilitate suppression operations (Agee 
et al. 2000; Moghaddas and Craggs 2007), yet work quantifying 
their interactive effect on wildfire severity is again sparse. 

In this study, we quantify and map the influence of prescribed 
fires and fire suppression operations on wildfire severity by 
developing a statistical model of wildfire severity, and then 

using the model to predict what fire severity would have been 
had prescribed fires and operations not occurred. Arkle et al. 
(2012) quantified prescribed fire effectiveness by developing a 
statistical model of wildfire severity outside treated areas and 

then using the model to predict wildfire severity within the 
treated areas, using a single set of vegetation and fuels variables. 
We extend this approach by modelling the severity of an entire 

wildfire, predicting fire severity using alternative sets of vari-
ables representing conditions in the absence of prescribed fires 
and operations, and then comparing the two sets of fire severity 

predictions. The statistical modelling framework that we use, in 
which the drivers of fire severity are evaluated at a pixel level 
using ensembles of classification or regression trees, is well 
established, spanning early efforts that highlighted the role of 

terrain (Holden et al. 2009; Dillon et al. 2011) to more recent 
studies that have considered a broader array of weather, fuel and 
other influences (Parks et al. 2018; Povak et al. 2020; Viedma 

et al. 2020). However, to our knowledge this statistical model-
ling approach has yet to be used to assess the influence of 
operations, or to quantify and map the influence of fuels 

treatments and operations on wildfire severity. 
To develop a comprehensive statistical model of fire severity, 

we leveraged unusually rich fuels and vegetation datasets in a 

location that experienced a 11 465-ha wildfire (Reading Fire) in 
Lassen Volcanic National Park (LAVO) in the southern Cascade 
Range, California, USA. A century of fire exclusion had led to 
greater tree density and shifts towards fire-intolerant tree species 

in this area, which increased fire hazard and set the stage for high-
severity wildfire (Fig. 1) (Taylor 2000; Bekker and Taylor 2010). 
However, the fire also burned over four recently conducted 

(,10 years prior) prescribed fires (Fig. 2). In addition, the fire 
was contained using widespread burn-out operations and other 
tactics (Lassen Volcanic National Park 2012). 

Our two research questions were: (1) how did past prescribed 
fires influence wildfire severity, and what was the magnitude of 
this effect? We expected prescribed fires conducted in the 

15 years before the wildfire to reduce fire severity, but that this 
effect might be somewhat dampened by the severe weather at 
the time of burning. (2) How did suppression operations during 
the fire influence fire severity? We hypothesised that operations 

might have moderated fire severity based on the generally lower 
severity observed near the margins of the fire where operations 
were reported to be more aggressive. 

Methods 

Study area 

The 2012 Reading Fire burned 6946 ha within LAVO and the 
remainder of the fire burned in the adjacent Lassen National 
Forest. The fire was ignited by lightning on 23 July 2012, and 

initially grew minimally under moderate conditions (Lassen 
Volcanic National Park 2012). However, the fire spread rapidly 
under severe weather (i.e. .90th percentile) beginning with an 

increase in wind speed on 6 August (Fig. 2) before being con-
tained on 22 August. The fire burned over four prescribed fires 
that had been conducted near the northern boundary of LAVO in 

2003, 2005 and 2006 (Fig. 3), and it burned through these fuel 
treatments largely during .90th percentile weather (see further 
discussion in Supplementary material). Fortunately, Pierce et al. 

(2012) created custom canopy fuel layers for this area by sur-
veying 223 field plots within LAVO in 2009–2010 and using 
statistical models to relate canopy fuel metrics to concurrent 
Landsat 5 imagery. The modelled relationships were then used 

by Pierce et al. (2012) to map canopy fuel using both 2003 and 
2009 Landsat imagery, allowing us to characterise fuels both 
pre- and post-treatment. These canopy fuel layers were found to 

outperform fuel maps from the national LANDFIRE database 
(Rollins 2009) in predicting fire severity (Pierce et al. 2012). 
The Reading Fire also burned over the 1984 Badger wildfire and 

portions of 1920 and 2009 wildfires (Fig. 3), the latter of which 
facilitated management efforts to limit fire spread on the eastern 
flank (Lassen Volcanic National Park 2012). We restricted our 
analysis to an area for which custom fuels and vegetation layers 
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Fig. 1. Repeat photographs of the same location within the Reading Fire perimeter (year of photograph at lower left), illustrating 20th-century 

increases in tree density in a Jeffrey pine–white fir stand that burned at high severity in 2012. 

were available, which included the entirety of the fire within 
LAVO as well as a small portion within the National Forest 
(7513 ha total, Fig. 3). 

Within the study area, the fire burned at elevations between 
1700 and 2300 m. The area has a Mediterranean climate and the 
winter snowpack commonly persists into May at middle eleva-

tions (Taylor 1990; Parker 1991). Mean daily temperatures at 
Manzanita Lake in LAVO (40.548N, 121.578W, 1783 m 
elevation) range from 0.08C in December to 17.48C in July 

and precipitation averages 1172 mm annually (based on 1998– 
2019 station data). Forest types within the fire perimeter 
included Jeffrey pine (Pinus jeffreyi Grev. & Balf.) and white 

fir (Abies concolor Gord. & Glend.) at lower elevations and 
xeric sites; red fir (Abies magnifica A. Murr.) in more mesic 
sites, commonly mixed with white fir at middle elevations and 
western white pine (Pinus monticola Dougl.) at higher eleva-

tions; and Sierra lodgepole pine (Pinus contorta var. murrayana 
[Grev. & Balf.] Engel.) in low-lying sites with cold air drainage 
or in disturbed areas (Parker 1991; Taylor 2000). The area 

within LAVO was never logged, and the portion of our study 
area on National Forest land had no recorded logging or 
fuel treatment history until the 2012 wildfire. Jeffrey pine and 

Jeffrey pine–white fir forests in the area burned frequently 
before Euro-American settlement (median point fire return 
intervals of 15–25 years), and 20th-century fire exclusion led 
to increased tree density and an accumulation of fuels in these 

forests (Taylor 2000; Bekker and Taylor 2010) (Fig. 1). Fir-
dominated or lodgepole pine-dominated stands tended to burn 
less frequently historically (median point fire return intervals of 

41–109 years) and consequently experienced less forest change 
due to fire exclusion though change was still evident in many 
stands (Taylor 2000; Taylor and Solem 2001). 

Fire severity 

We quantified the severity of the Reading Fire by calibrating a 

remote sensing index of fire severity, the Relative differenced 
Normalized Burn Ratio (RdNBR, Miller and Thode 2007) to the 
percentage mortality by tree basal area (‘BA loss’) from post-

fire field data. This calibration to fire effects observed on the 
ground is important to give ecological meaning to spectral 
indices (Kolden et al. 2015), and we selected BA loss for our 
analyses because much of our study area was densely forested 

and therefore a field-based fire severity metric focusing on trees 
was appropriate. From 9 to 23 July 2013, we surveyed fire 
severity at 39 field plots within the Reading Fire (Fig. 3). A 

stratified random sampling approach by RdNBR fire severity 
class using the thresholds of Miller and Thode (2007) was used 
to select plot locations before fieldwork to ensure representation 

of a range of fire severities, and we restricted plot locations to 
,500 m from trails for ease of access. Within circular 707-m2 

plots, we measured the diameter at breast height (DBH) of all 
live trees, snags and logs .10 cm DBH within the plots. We 



D Int. J. Wildland Fire L. B. Harris et al. 

A
re

a 
bu

rn
ed

 (
ha

) 
M

ax
. t

em
p.

 (
°C

) 
E

R
C

 
0.

1 
1 

10
 

10
0

10
00

 
26

28
30

32
56

 
60

 
64

 
68

 

0 
20

 
40

 
60

 
80

 
10

0 
10

 
15

 
20

 
25

 
1.

5 
2.

0 
2.

5 
3.

0 
3.

5 
B

as
al

 a
re

a 
lo

ss
 (

%
) 

M
in

. R
H

 (
%

) 
W

in
d 

sp
ee

d 
(m

 s
–1

) 

20
12

–0
7–

30

20
12

–0
7–

31

20
12

–0
8–

01

20
12

–0
8–

02

20
12

–0
8–

03

20
12

–0
8–

04

20
12

–0
8–

05

20
12

–0
8–

06

20
12

–0
8–

07

20
12

–0
8–

08

20
12

–0
8–

09

20
12

–0
8–

10

20
12

–0
8–

11

20
12

–0
8–

12

20
12

–0
8–

13

20
12

–0
8–

14

20
12

–0
8–

15

20
12

–0
8–

16

20
12

–0
8–

17

20
12

–0
8–

18

20
12

–0
8–

19

20
12

–0
8–

20
 

Fig. 2. Daily area burned, fire severity (mean � s.d. of tree basal area loss) and weather 
during the Reading Fire including the Energy Release Component (ERC), average wind 

speed, maximum temperature and minimum relative humidity (RH) from the Manzanita 

Lake weather station. 

used the tree diameters to calculate the proportion of tree basal 
area killed (BA loss) within the plots, excluding trees that 
appeared to have died before the fire. We developed linear 

regressions between Reading Fire RdNBR from the Monitoring 
Trends in Burn Severity program (MTBS, Eidenshink et al. 
2007) and tree BA loss. Predictions for outlying RdNBR values 

were truncated to the range of possible BA loss values (0– 
100%). Based on linear regression models, we determined the 
following relationship: � � 

BA loss ¼ 9:43 þ 0:101 � RdNBR R2 ¼ 0:72 

We also assessed the Composite Burn Index (CBI, Key and 
Benson 2006) in the same field plots and found that CBI and BA 

loss were strongly correlated (r ¼ 0.93, Pearson correlation), 
and that our model of fire severity (see Statistical modelling) 
was highly similar when using the CBI in place of BA loss as the 

response variable (see Supplementary material). 

Terrain 

To assess the influence of terrain on fire severity, we derived 

four variables from a 30-m digital elevation model: elevation, 
slope steepness, aspect and the topographic position index 
(TPI). Aspect was cosine-transformed into a continuous variable 

ranging from 0 (south-west) to 2 (north-east) (Beers et al. 1966). 

The TPI (Weiss 2001) is the mean elevation difference between 
the focal cell and surrounding cells, and was calculated using a 
600-m neighbourhood to identify mesoscale valley (negative 

values) and ridgeline (positive values) environments. 

Fire history 

Historical fire perimeters were downloaded from the California 
Department of Forestry and Fire Protection Fire and Resource 

Assessment Program (FRAP) (https://frap.fire.ca.gov/frap-
projects/fire-perimeters/, version 18–1, accessed 13 Feb 20). In 
addition, we added a perimeter from one prescribed fire from 

2003 (the Hole Fire) that was missing from the FRAP database 
(source: Lassen Volcanic National Park, see Fig. 2). BA loss was 
calculated for overlapping prior fires from 1984 to 2009 fol-

lowing the protocols used for the Reading Fire. Because no 
RdNBR layer was available from MTBS for the 2003 fire, we 
calculated RdNBR for this fire using Landsat 5 TM (Thematic 
Mapper) imagery from 23 July 2002 and 28 July 2004. A dNBR 

‘offset value’ of –22 was used to account for differences 
between the two images as assessed in unburned areas adjacent 
to the fire (Key and Benson 2006). Based on historical fire 

perimeters and fire severity, we calculated two categorical fire 
history variables: years since last burn (0–14, 15–29, $30 years, 
no prior fire), and prior fire severity (,25% BA loss, low; 25– 

75%, moderate; .75%, high). 

https://frap.fire.ca.gov/frap-projects/fire-perimeters/
https://frap.fire.ca.gov/frap-projects/fire-perimeters/
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Fig. 3. Daily progression of the 2012 Reading Fire with key dates labelled. Perimeters and years of prior 

prescribed fires and wildfires are also shown. Insets at top show the location of Lassen Volcanic National 

Park (LAVO) within California and the location of the Reading Fire within LAVO. Elevation contour lines 

are at 100-m intervals. 

Fire progression 

A daily fire progression map for the Reading Fire (Fig. 2) was  
compiled from perimeters from the National Interagency Fire 
Center server (https://ftp.nifc.gov/public/incident_specific_data/, 

accessed 10 March 2020). Although knowing whether areas 
burned during the day or at night would have been useful for 
assessing fire weather influences, we mapped fire progression at 

daily resolution because only one fire perimeter map was avail-
able for most days. Perimeters from before noon were assigned to 
the previous day because such perimeters are likely to primarily 
represent area burned from the previous day (Parks 2014), unless 

a perimeter from after 2000 hours was available from the previous 
day to suggest otherwise aswas the case for three perimeters dated 
13, 14 and 18 August. This fire progression map was used to 

match daily weather with daily area burned. 

Water balance 

The California Basin Characterisation Model (Flint et al. 2013) 

was used to quantify actual evapotranspiration (AET) and cli-
matic water deficit (CWD) for the 2012 water year (i.e. October 

2011–September 2012). AET correlates with moisture avail-
ability for plants, which influences fuel productivity and 
therefore fire behaviour (Stephenson 1998; Littell and Gwozdz 

2011; Parks et al. 2014b). CWD represents drought intensity, 
and may influence fire severity because high pre-fire water 
deficits make trees more susceptible to mortality from fire (van 

Mantgem et al. 2013b). 

Fuels 

To characterise canopy fuels, we considered four variables 
derived by Pierce et al. (2012): tree canopy cover; canopy bulk 
density (CBD), which measures the total quantity of canopy fuel 

available to a fire; canopy base height (CBH), or the distance 
from the forest floor to the lowest point on the crown; and 
canopy height. We subsequently removed CBD during the 

variable selection process because it was strongly correlated 
with canopy cover (Spearman rank correlation $ 0.75, see 
Statistical modelling). In addition, we made use of a map of 

surface fuel types for 2000 conditions used by Pierce et al. 
(2012) to represent spatial variation in surface fuels. The fuel 

https://ftp.nifc.gov/public/incident_specific_data/
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Table 1. Variables used in the statistical model of basal area loss from the 2012 wildfire 

Type Variable name Definitions (range and mean or categories and number of samples) 

Response Tree basal area loss (%) 0–100 (57) 

Fire history Prior fire severity No fire, 3920; low, 816; moderate, 361; high, 55 

Fire history Years since last burn ,15 years, 1155; 15–29 years, 186; 30–100 years, 231; no fire, 3580 

Fuels 1935 vegetation type Barren, 30; white pine, 350; herbaceous, 50; shrubland, 398; Jeffrey pine, 2627; 

white fir, 21; red fir, 585; lodgepole, 1076; riparian, 15 

Fuels 2004 vegetation type Barren, 96; riparian, 2; herbaceous, 67; shrubland, 87; Jeffrey pine, 236; white fir, 

727; red fir, 2877; lodgepole pine, 1060 

Fuels Canopy cover (%) 9.4–75.8 (49.1) 

Operations Operations intensity Low, 3749; moderate, 568; high, 835 

Terrain Transformed aspect (0, south-west; 2, north-east) 0.0–2.0 (1.1) 

Terrain Elevation (m) 1768–2338 (2012) 

Terrain Topographic position index (m) –74–137 (0) 

Water balance Actual evaporation (mm) 280–622 (373) 
�1Weather Average wind speed (m s ) 1.8–3.6 (2.6) 

Weather Energy release component 56–70 (68) 

model maps include seven of the original fuel models of 

Anderson (1982) (numbered in Table 1), and three additional 
timber litter (TL) fuel models of Scott and Burgan (2005). 

Although the surface fuel models serve as proxies for potential 

fire behaviour, particularly rate of spread, we also used vegetation 
type variables to indicate other aspects of fuel structure and 
flammability. To characterise vegetation types, we used data 

from the Vegetation Mapping Inventory Project of LAVO, in 
which vegetation types were manually interpreted from 2004 
aerial photography (https://irma.nps.gov/Datastore/Reference/ 

Profile/2244126). We condensed vegetation types from this 
map into the following classes: barren; herbaceous; shrublands; 
riparian; and forests dominated by: Jeffrey pine, white fir, red fir, 
aspen, lodgepole pine and western white pine. Non-vegetated 

areas (e.g. roads, developed areas, water, snow and ice) were 
excluded from the analysis. When available, maps of historical 
vegetation types may be useful in analyses of fire severity 

because they provide a more detailed picture of vegetation 
structure and composition (Harris and Taylor 2015). For exam-
ple, a stand that was Jeffrey pine-dominated in the early 20th 

century but transitioned to fir-dominated by the end of the century 
is likely to have high fire hazard due to a high density of small-
diameter firs. To characterise historical vegetation types, we used 
a 1935 vegetation type layer on file with LAVO and reclassified 

this layer to match the vegetation types used above (see Supple-
mentary material for a comparison of these vegetation type 
layers). The 1935 map was generated using quantitative data in 

field plots and topographic maps to map vegetation cover types. 

Operations 

Fire suppression operations are often noted as a key uncertainty 

in analyses of fire severity, but their effects on fire severity are 
difficult to quantify because information on when and where 
certain tactics were used is not commonly available (Graham 

2003; Birch et al. 2015; Estes et al. 2017). At the peak of the 
Reading Fire, resources assigned included more than 1200 
personnel, consisting of 31 hand crews, 85 engines, 5 helicopters 

and support staff (Lassen Volcanic National Park 2012). Based 
on archival geospatial data and Incident Action Plans, we 

estimate that ,111 km of fire line was constructed, including 

45 km of dozer lines, 42 km of existing roads and trails utilised 
(mostly unimproved dirt roads), and 14 km of hand line. We 
estimate that ,1100 ha of backfiring (National Wildfire Coordi-

nating Group terminology, https://www.nwcg.gov/glossary/a-z) 
occurred to control or moderate fire spread and intensity along 
with 3310 ha of burn-out to consume fuels between fire lines and 

the edge of the fire (note that many of these firing operations 
were to the north of our study area). Aerial firefighting resources 
played a significant role in supporting ground crews and 

knocking down hot spots and spot fires, especially after 8 
August, but it is impossible to estimate the exact numbers and 
locations of helicopter bucket drops and fixed-wing retardant 
drops from the available archival data. See Supplementary 

material for further description of suppression operations. 

In this study, we used a combination of documentary infor-

mation where available, and expert knowledge based on inter-

views with four fire operations specialists who worked on the 

Reading Fire (two Division Supervisors, an Operations 

Section Chief and a Decision Support Specialist), to classify 

polygons of fire operations intensity based on the aggregate of 

operational activities and their effectiveness in modifying fire 

activity in a given area. Documentary information included 

archival geospatial data from the National Interagency Fire 

Center (https://ftp.nifc.gov/public/incident_specific_data/), 

Incident Action Plans and the Reading Fire Review (Lassen 

Volcanic National Park 2012) as well as the interviews and 

additional photographs and notes. We produced a three-

category map of operations intensity (Fig. 4) as follows: 

Low: Fire suppression likely had minimal impacts on fire 
activity (e.g. rate of spread, time of burning, surface v. crown 

fire) in areas that burned (in some cases management may have 
prevented additional areas from burning). 
Moderate: Fire suppression efforts likely had moderate to high 
impact on overall fire activity (i.e. fire activity would have likely 

been different in the absence of suppression). 
High: Fire suppression was significant and was likely a strong 
influence on fire activity in most areas. 

https://irma.nps.gov/Datastore/Reference/Profile/2244126
https://irma.nps.gov/Datastore/Reference/Profile/2244126
https://www.nwcg.gov/glossary/a-z
https://ftp.nifc.gov/public/incident_specific_data/
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This map was generated independently of and before the 
analysis of fire severity, so that the classification and mapping of 
suppression operations would not be influenced by knowledge 

of observed patterns of fire severity or other inputs used in our 
analysis. 

Weather 

To determine how weather influenced fire severity, we obtained 
daily maximum temperature, minimum relative humidity and 
average wind speed at a height of 6.1 m from the Manzanita 

Lake weather station, which was ,7 km west of the Reading 
Fire and was representative of conditions within the fire 
perimeter. We also calculated the Energy Release Component 

(ERC), a fire weather index that quantifies potential fire inten-
sity based on large-fuel aridity (Bradshaw et al. 1983), using 
FireFamily Plus version 4.2 (Bradshaw and McCormick 2000). 

Statistical modelling 

To assess the relative influence of terrain, weather, fuels and fire 
history on fire severity, we created a random forest (RF) 

(Breiman 2001) model of BA loss. We built the RF model using 
the ‘randomForest’ R package using 2000 regression trees and 
the default value of n/3 variables considered at each node (Liaw 

and Wiener 2002). To quantify variable importance, we used the 
model improvement ratio (MIR), in which the most important 
variable is scaled to 1 and a variable with no effect on model 
accuracy is 0 (Murphy et al. 2010). Model accuracy was mea-

sured using the pseudo-r 2, which is analogous to r 2 but is cal-
culated from the ‘out-of-bag’ sample, meaning the portion of the 
dataset withheld when building each tree (Breiman 2001). 

Some of the variables considered were potentially redun-
dant. To address this problem of redundancy, we iteratively ran 
RF models, identified the variable pair with the highest 

Spearman rank correlation (rs), and removed the variable with 
lower variable importance. We continued this process until all 
pairs of predictors had rs , 0.75, and in doing so removed 

CBD, which was correlated with canopy cover (rs ¼ 0.95), and 
minimum relative humidity, which was correlated with ERC 
(rs ¼ –0.76). Finally, we assessed the shape of relationships 
between the predictors and fire severity using partial depen-

dence plots produced with the ‘pdp’ R package (Greenwell 
2017). Based on the partial dependence plots, we removed 
maximum temperature from the model because it exhibited a 

negative relationship with BA loss, suggesting that tempera-
ture was serving as an indicator of some other influence on fire 
severity. We also removed CWD from the model because this 

variable had a nonsensical relationship with fire severity (i.e. 
jagged lines on the partial dependence plot; see Supplementary 
material), and instead included the other water balance com-
ponent, AET. Finally, to further improve parsimony, we used 

steps one and two (thresholding and interpretation) of the 
variable selection procedure developed by Genuer et al. 
(2010) and implemented in the ‘VSURF’ R package (Genuer 

et al. 2015). Four variables were removed following this 
procedure (slope, surface fuel type, canopy height and CBH), 
resulting in 1% greater accuracy than if all 16 variables were 

included. The remaining 12 variables (Table 1) were  used  in  
final RF model. 

Because spatial autocorrelation due to close spacing between 
samples can affect model results (Legendre and Fortin 1989), we 
sampled pixels on a grid and tested spacings from 120 to 390 m 

following the methodology of Kane et al. (2015a). After 
examining a correlogram of Moran’s I values of model residuals 
(Moran 1950; Legendre and Fortin 1989), we selected the 120 m 

distance because it maximised sample size (n ¼ 5056 pixels) 
relative to longer distances and had relatively small Moran’s I 
values (#0.25). See Supplementary material for a full discus-

sion of spatial autocorrelation. 

Effect of prescribed fires and operations on wildfire severity 

To evaluate potential fire severity had prescribed fires not been 
conducted, we used the RF model to predict fire severity using a 

second set of predictors that omitted these fires and their 
influence on fuels (hereafter the ‘no prescribed fire’ scenario). 
For the fire history variables, the prescribed fires were omitted 

from the time since fire and previous fire severity layers. Canopy 
fuel layers from Pierce et al. (2012) representing 2003 rather 
than 2009 conditions were used to create fuel maps as if the 

prescribed fires had not been conducted. We used the two sets of 
fire severity predictions (i.e. predictions from the ‘prescribed 
fire’ and ‘no prescribed fire’ scenarios) to quantify treatment 

effects on fire severity within the prescribed fire footprints. We 
then used a similar approach to assess the influence of opera-
tions by using the model to predict fire severity with all values 
for the operations variable set to ‘low’ and compared predicted 

fire severity values in areas with moderate–high operations 
intensity (referred to as the ‘no operations’ scenario). Finally, 
we predicted fire severity assuming neither prescribed fires nor 

operations to assess the interactive effect of fuel treatments and 
operations. 

Results 

Model of fire severity 

The statistical model of BA loss had a pseudo-r 2 of 0.53, and 
maps of observed and predicted fire severity were visually 
similar except that the model predicted fewer very low (near 0% 

BA loss) and very high (near 100%) values (Fig. 5). The top 
three variables, which had similar importance to each other, 
were elevation, tree canopy cover and operations (Fig. 6). Fire 

severity responded negatively to elevation, positively to canopy 
cover and was lower in areas of moderate–high operations 
intensity. 

A second group of eight variables had moderate importance 
(MIR 0.53–0.76, Fig. 6). Consistent with our expectations, BA 
loss was positively related to ERC (fourth important variable) 
and wind speed (11th). Areas of shrubland in 2004 tended to 

burn at the highest severity, followed by fir and lodgepole pine 
forest. Vegetation type in 1935 and 2004 had similar effects 
except that areas of Jeffrey pine in 2004 burned at lower severity 

whereas areas of Jeffrey pine in 1935 burned at higher severity 
(Fig. 6). Notably, 73% of Jeffrey pine forest in 1935 was 
identified as white or red fir-dominant in 2004. Ridgetops 

burned more severely than valleys (TPI, fifth), areas with high 
AET burned more severely (sixth), north-eastern aspects burned 
more severely than south-western aspects (ninth). Finally, areas 
that burned ,15 years ago burned less severely (10th) although 

https://0.53�0.76
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121.5°W 

12–21 Aug : Increased resource 
availablity facilitated extensive fire 
line construction (including 
bulldozers), extensive aerial 
retardants, direct and indirect firing 
operations, direct attack of hot spots 
by engines, and mop-up. 

40.6°N 

10–12 Aug : Aerial 
attack along the 
western flank to slow 
spread toward 
developed areas. 

40.5°N 

6–7 Aug : Wind-driven fire 
spread northward. Hand line 

29 Jul. –3 Aug :constructed along the 
Operations focused onwestern flank but was 
improving lines alongabandoned as fire spread 
the park highway, spotoutpaced the progress. Very 
fire and hazardlimited aerial suppression. 
mitigation. 

121.4°W 

Operations intensity 
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Moderate 
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Along flanks of 
Prospect Peak, 
some aerial attack 
to keep fire from 
flaring up. 

8–12 Aug : Fire 
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wilderness areas. 

13–18 Aug : Hand 
line construction 
utilising the trail 

4–5 Aug : Engine and network within 
hand crews cooled hot designated 
spots along the highway wilderness. 
to try to hold the south 
and west of the park 
highway. 

Fig. 4. Map of the intensity of fire suppression operations in the 2012 Reading Fire including descriptions of key time 

periods and operations. This map was generated based on interviews with four operations specialists on the Reading Fire 

and the personal experience of one of the authors (C. A. Farris). Past prescribed fires are shaded red, the brown line is the 

northern boundary of Lassen Volcanic National Park and the heavy grey line is the park highway. 

areas burned .15 years prior had similar fire severity to those 

with no recorded fire (Fig. 6). Prior fire severity did not exert a 
strong influence (least important variable in the model). Nota-
bly, the prescribed fires had burned at predominantly low 

severity (79% of area had ,25% BA loss) and therefore 
variability in prior fire severity was relatively low. 

Influence of past fires and operations 

Prescribed fire reduced BA loss by 32% on aggregate according 
to fire severity predictions in the ‘no prescribed fire’ scenario, 
although this effect was variable spatially and within vegetation 

types (Table 2, Fig. 5; see also Fig. S1, Supplementary material). 
Prescribed fire reduced predicted BA loss across all vegetation 
types although the effect was largest in Jeffrey pine forest (53% 
reduction) and smaller in fir and lodgepole pine forest (24–33% 

reduction, Table 2). 
In areas with moderate–high operations intensity, operations 

reduced fire severity by 22% on aggregate according to fire 

severity predictions from the ‘no operations’ scenario (Table 3). 

As with prescribed fires, the effect of operations varied spatially 
and within vegetation types (Table 3, Fig. 5). On aggregate, 
operations reduced fire severity across all vegetation types 

(Table 3) but had a weak effect in white fir forest (6% reduction), 
a strong effect in Jeffrey pine forest (59% reduction) and 
intermediate effects in red fir and lodgepole pine forest. Fire 

severity was reduced by 72% in areas with both prescribed fires 
and moderate–high operations intensity (area of 410 ha), from 
52 � 12% to 14 � 9% BA loss (Fig. 5). 

Discussion 

Influences on wildfire severity 

Wildfires in the western US are increasingly burning under 
severe weather because fires burning under moderate conditions 

are typically contained or suppressed, because fuel aridity is 
increasing and because the occurrence of severe fire weather is 
becoming more likely with climate change (Skinner and Chang 
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Observed Predicted 

No prescribed fire and operations Treatment and operations effect 
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o 2013 field plots 
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Prescribed fires 

Low operations intensity 

Basal area loss Effect on severity 
0% –100% 

25% –50% 

50% 0% 

75% +50% 

100% +100% 

Fig. 5. Observed fire severity (tree basal area loss) from the Reading Fire, predicted fire severity under 

observed conditions and in the scenario assuming no prescribed fire or operations, and the percentage 

difference between the two predictions, i.e. the treatment and operations effect. Areas beyond (within) 

the black line experienced moderate–high (low) intensity of fire suppression operations. Locations of the 

field plots (n ¼ 39) used to calibrate tree basal area loss are also shown. 

1996; Agee and Skinner 2005; Collins 2014; North et al. 2015; 
Abatzoglou and Williams 2016). Weather was severe during 
much of the 2012 Reading Fire as evidenced by the .90th 
percentile ERC values after 8 August when much of the fire 

growth occurred. Productive forests with more abundant canopy 
fuel are structurally susceptible to high-severity fire, and com-
bined with the drought conditions at the time of the Reading 

Fire, may explain the positive relationship that we found 
between canopy cover and fire severity. Povak et al. (2020) also 
found a positive relationship between tree cover and fire severity 

in California’s Sierra Nevada, although research in California’s 
Klamath Mountains has shown the opposite because low tree 
cover areas tended to have high shrub cover whereas areas of 

high tree cover had cooler understories with less ladder fuel 
(Odion et al. 2004; Grabinski et al. 2017). We also found fire 
severity was moderated in valley bottom locations (cooler, 
moister micro-climates) as evidenced by the lower severity we 

observed in herbaceous vegetation (largely wet meadows), 
riparian zones and areas of low TPI (i.e. valleys). These loca-
tions tend to have higher live fuel moistures than surrounding 

terrain (Van de Water and North 2010; Holden and Jolly 2011) 
and therefore lower fire severity (Bradstock et al. 2010; Harris 
and Taylor 2015; Kane et al. 2015a; Taylor et al. 2020), 

although reduced air flow in broad valleys could in some cases 
cause increased fire severity if fires burn more slowly. Different 
studies have found different relationships between elevation and 
fire severity depending on the region, elevation range and 

characteristic vegetation types (Weatherspoon and Skinner 
1995; Parks et al. 2014a; Harris and Taylor 2017). In our case, a 
negative relationship between elevation and fire severity may be 

due to cooler and moister conditions at high elevations, or to the 
dominance of fire-intolerant lodgepole pine in low-lying basins 
(Harris et al. 2020). 

We expected that Jeffrey pine would experience lower 
mortality from fire than firs or especially lodgepole pine owing 
to differences in bark thickness among species (Stevens et al. 

2020), higher CBH and lower CBD in Jeffrey pine stands than fir 
or lodgepole pine stands (Pierce et al. 2012), and a positive 
effect of leaf length on fire severity via effects on litter density 
(Schwilk and Caprio 2011). Tree survival was indeed greater for 

more fire-resistant Jeffrey pine forest than for other forest types 
according to our statistical model, and our field data support this 
finding at the level of individual trees: considering all trees in the 

combined field plot data, Jeffrey pines experienced 31% BA loss 
whereas white fir, red fir and lodgepole pine experienced 57, 51 
and 59% BA loss respectively. Although the influence of 1935 
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Fig. 6. Partial dependence plots showing the marginal effect of each predictor on tree basal area loss from the 2012 

fire (model pseudo-r2 0.53). Variable importance is shown below each variable name. See Table 1 for further details on 

variables and variable classes. 

and 2004 vegetation types on fire severity was highly similar, 
there was one key difference: fire severity was low in areas of 

Jeffrey pine in 2004, but high in areas that were Jeffrey pine in 
1935. Fire exclusion in yellow pine forests (i.e. Jeffrey pine and 
Pinus ponderosa) tends to favour ingrowth of shade-tolerant 
species with lower fire resistance, which increases fire hazard 

(Dolanc et al. 2014; Harris and Taylor 2015; Safford and 
Stevens 2017), and the vegetation type layers for the Reading 
Fire area suggest such a 20th-century shift towards shade-

tolerant species. Therefore, areas of Jeffrey pine forest in 1935 
were likely to contain small to medium-diameter firs, which 
likely led to increased fire severity, as illustrated in Fig. 1. 

Influence of past fires 

Prior fire severity was less important than time since last fire in 

our analysis, which makes sense given that most of the area with 
a recorded fire history had burned fewer than 10 years before the 
2012 wildfire and that the prescribed fires had burned at pre-
dominantly low severity. According to prior work, a moderating 

effect of past fire on subsequent wildfire severity is likely to 

dominate if the interval between fires is less than 10 years as was 
the case for most of the prior fires in the Reading Fire footprint, 

but as the interval between fires increases, the relationship 
between prior and subsequent fire severity tends to strengthen 
such that a self-reinforcing effect of prior fire severity plays a 
greater role (Parks et al. 2014a; Harvey et al. 2016). 

We found that prescribed fires conducted in the 10 years 
before the Reading Fire caused on average a 32% decrease in 
tree BA loss. Previous work suggests that recent fuel treatments 

(particularly within the past 10 years) are still effective at 
reducing fire severity under severe weather conditions, although 
much of that previous work focuses on stands that were 

mechanically thinned first rather than receiving only prescribed 
fire as was the case in our study area (Ritchie et al. 2007; Safford 
et al. 2012; Kalies and Yocom Kent 2016; Krofcheck et al. 2017; 

Lydersen et al. 2017). Modelling and remote sensing studies 
suggest that burn-only fuel treatments tend to reduce wildfire 
severity but not as strongly as thin and burn treatments (Finney 
et al. 2005; Stephens et al. 2009; Fulé et al. 2012; Yocom Kent 

et al. 2015). This is consistent with the fact that first-entry 
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Table 2. Effect of prescribed fires on wildfire severity 

Fire severity (tree basal area loss � s.d.) by vegetation type within prescribed fire perimeters, as predicted by the statistical model with and 

without prescribed fire 

Type With prior fire Without fire Treatment effectA Area (ha) 

Barren 

Herbaceous 

Jeffrey pine 

White fir 

Red fir 

Lodgepole pine 

TotalB 

25 � 12% 

25 � 11% 

17 � 18% 

49 � 22% 

37 � 18% 

45 � 15% 

38 � 21% 

31 � 12% 

44 � 7% 

36 � 14% 

65 � 15% 

54 � 21% 

66 � 9% 

56 � 19% 

�6 � 7% (�19%) 

�19 � 11% (�43%) 

�19 � 9% (�53%) 

�15 � 19% (�24%) 

�18 � 14% (�33%) 

�21 � 16% (�32%) 

�18 � 15% (�32%) 

29 

44 

212 

303 

559 

427 

1576 

AMean and s.d. of difference between model predictions without and with prescribed fire, with proportional change in parentheses. 
BTotal includes shrub and riparian types, not shown as separate rows because they covered only 1 ha each within footprints of prescribed fires. 

Table 3. Effect of fire suppression operations on wildfire severity 

Fire severity (tree basal area loss � s.d.) by vegetation type within areas of moderate–high operations intensity, as predicted by the statistical 

model with and without operations 

Type Operations No operations Operations effectA Area (ha) 

Barren 24 � 10% 37 � 9% �13 � 7% (-36%) 54 

Herbaceous 31 � 11% 37 � 8% �6 � 6% (-16%) 24 

Shrub 61 � 11% 70 � 6% �9 � 10% (-12%) 25 

Jeffrey pine 14 � 13% 36 � 12% �21 � 7% (-59%) 236 

White fir 61 � 21% 65 � 11% �4 � 16% (-6%) 684 

Red fir 39 � 19% 54 � 18% �15 � 12% (-28%) 930 

Lodgepole pine 32 � 12% 60 � 13% �28 � 11% (-46%) 107 

TotalB 43 � 24% 55 � 18% �12 � 15% (-22%) 2064 

AProportional change in mean fire severity between the model predictions with and without operations. 
BTotal includes riparian areas, not shown as a separate row because they covered only 2 ha within areas of moderate–high operations intensity. 

prescribed burns following a century of fire exclusion are often 
designed to be low intensity. We note, however, that from the 

limited field-based evidence available, recent burn-only treat-
ments may reduce tree mortality from wildfire by 50% or more 
in dry pine or mixed-conifer forests (Wagle and Eakle 1979; 
Choromanska and DeLuca 2001; Fites et al. 2007), which is in 

line with the 51% reduction in BA loss we calculated within 
Jeffrey pine forest. The Reading Fire burned primarily in mid-
montane forests dominated by red and white fir and lodgepole 

pine, which are less fire-resistant than Jeffrey pine or ponderosa 
pine, which are the forest dominants where many fuel treatments 
are implemented in the western US. Species with lower fire 

resistance may benefit less from treatment (Prichard et al. 2010; 
Safford et al. 2012), in part because reductions in stand density 
and ladder fuels may be insufficient to protect trees with thinner 
bark and lower CBHs from mortality during wildfires burning 

under severe conditions. 

Influence of operations 

Previous assessments of the effects of fire suppression opera-
tions on wildfire severity have tended to focus on the negative 
effects of high-intensity burn-outs (Backer et al. 2004; Driscoll 

et al. 2010; Stephens et al. 2013; Downing et al. 2019). How-
ever, using our approach of predicting fire severity under 

‘operations’ and ‘no operations’ scenarios, we found that fire 
severity was reduced by 22% overall in areas of moderate–high 

operations intensity, with even higher reductions in fire-
resistant forest types. BA loss was reduced by 72% in areas 
with both prescribed fires and moderate–high operations 
intensity, which is consistent with the idea that fuel treatments 

facilitate suppression operations (Agee et al. 2000; Moghaddas 
and Craggs 2007). 

Operations had little dampening effect on fire severity in 

white fir forest even though operations reduced fire severity by 
27% or more across the other forest types. Small white firs 
(,50 cm DBH) are more susceptible to mortality from fire than 

small yellow pines, owing to traits such as thinner bark (van 
Mantgem et al. 2013a). Twentieth-century fire exclusion is 
associated with white fir establishment leading to increased fire 
hazard in the southern Cascade Range (Bekker and Taylor 2010; 

Taylor and Solem 2001; Skinner and Taylor 2018). Field data 
from Pierce et al. (2012) in LAVO support this narrative, 
indicating that white fir forest had the highest CBD and the 

lowest CBH of any forest type. In addition, 76% of shrub fields 
in 1935 were classified as fir-dominated forest in 2004, suggest-
ing 20th-century conversion of shrub fields to dense fir forest 

with high fire hazard, much of which may have been restored 
back to shrub fields by the Reading Fire. In summary, forest that 
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was white fir-dominated before the Reading Fire may have been 
higher-density and more fuel-loaded than the other forest types 
and experienced less benefit from operations as a result because 

it was predisposed to burn at high severity under a wider range of 
conditions. 

Operations could mitigate fire severity if they cause areas to 

burn outside peak burn periods. A key example is firing opera-
tions conducted at night when temperatures are lower and 
relative humidity is higher. Although reconstructing the exact 

timing and geography of particular operations is generally not 
feasible, anecdotally both of these scenarios occurred during the 
2012 wildfire: fire spread was delayed to some fuel-rich areas 
until wind speeds were lower and relative humidity was higher, 

and firing operations near the margins of the fire appeared to 
reduce fire severity. In addition, both suppression operations 
and fuel treatments may reduce landscape-scale fire severity by 

influencing spatial patterns of fire spread, for example by 
breaking up the flaming front and increasing the area burned 
by flanking fire as opposed to heading fire (Finney 2001). 

Although our methodology does not directly account for these 
spatial dynamics, they are reflected in observed patterns of fire 
severity and therefore may contribute to our estimates of 

operations and fuel treatment influences. Our example with 
the Reading Fire illustrates that fire suppression tactics do not 
necessarily lead to higher-severity fire. In fact, our results 
suggest the opposite and demonstrate a need for more complete 

and quantitative analyses of the effects of operations on fire 
severity given variation in fuels, weather, terrain and tactics. 

Limitations 

Although our analysis offers the advantage of rich and detailed 
place-specific datasets, it has the drawback of being a single fire 
that burned a limited area. Given the small fire size and lack of 

replication in this study, further research is necessary to assess 
the extent to which our results apply outside our study area. Our 
statistical model predicted spatial patterns of fire severity rea-

sonably well, but it could not account for a substantial portion of 
variability in fire severity (pseudo-r2 0.53). Predicting pixel-
level fire severity is notably challenging; our accuracy is higher 

than that of some comparable studies in western US forests that 
used a continuous response variable (e.g. BA loss or RdNBR) 
(Thompson and Spies 2009; Birch et al. 2015; Harris and Taylor 
2015; Estes et al. 2017) but is lower than that of several others 

(Kane et al. 2015a, 2015b; Taylor et al. 2020). Viedma et al. 
(2020) achieved notably high model accuracy by combining 
sub-daily fire progression with hourly weather, suggesting that 

fire progression data may be a key limitation in our study and 
demonstrating the accuracy that might be achievable in the 
future if sub-daily fire progression data become more readily 

available. In particular, suppression operations may influence 
the time of day at which particular areas burn and therefore fire 
severity, yet we were only able to estimate this effect indirectly 

through our map of operations. Other weather influences that we 
were not able to capture in our model include terrain effects on 
wind (Sharples 2009) as well as plume-driven fire behaviour 
(Lydersen et al. 2014). 

Our estimates of prescribed fire and operations effects on fire 
severity are subject to considerable uncertainty due to the 

limited extent of the study and the modest accuracy of our 
statistical model. The root-mean-square error from the RF 
model is 22% BA loss, which is greater than most of the effect 

sizes that we estimated for individual vegetation types (�4– 
28%), and unexplained variability in field-measured BA loss as 
predicted by RdNBR adds another layer of uncertainty. Ulti-

mately, the accuracy of our estimates depends on the extent to 
which the statistical model captures the key drivers of fire 
severity, and improving the characterisation of fire severity 

drivers would result in more accurate estimates of prescribed 
fire and operations effects (e.g. improving the characterisation 
of weather as discussed above). Moreover, our methodology is 
spatially implicit rather than explicit and does not account for 

the influence of fuel treatments and operations on the direction 
and rate of fire spread, or the landscape-scale reduction in fire 
severity that may occur beyond treated areas due to modified fire 

behaviour (Syphard et al. 2011; Arkle et al. 2012; Cochrane 
et al. 2012). 

Conclusion 

Detailed case studies are an effective way to assess relative 

influences on fire severity, and particularly to evaluate the 
aspects of wildfire severity that may be influenced through 
management: fuels and fire history through prescribed fire, and 
timing and conditions of burning through fire suppression tac-

tics. We found that past fires reduced wildfire severity but that 
their effect varied by forest type, which suggests a need to better 
quantify prescribed fire influence within more mesic mid-

montane forest types that have been the subject of compara-
tively little fuel treatment research (Schoennagel et al. 2004; 
Kalies and Yocom Kent 2016). Our methodology of comparing 

fuel treatment effectiveness using a statistical model of wildfire 
severity and sets of ‘treatment’ and ‘no treatment’ vegetation 
and fuels variables could be applied to other fires and regions in 
different forest types and weather, which could help managers to 

prioritise fuel treatments. We also found that operations during 
the fire tended to reduce fire severity, and further assessments of 
the influence of operations are needed because quantitative 

information on their effects is sparse. Finally, we found that 
reductions in fire severity were particularly strong in areas with 
both fuel treatments and operations, suggesting the need for 

more quantitative work assessing the interaction between fuel 
treatments and fire suppression operations. 
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