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Abstract

Understanding human use of public lands is essential for management of natural and cultural

resources. However, compiling consistently reliable visitation data across large spatial and tem-

poral scales and across different land managing entities is challenging. Cellular device locations

have been demonstrated as a source to map human activity patterns and may offer a viable

solution to overcome some of the challenges that traditional on-the-ground visitation counts

face on public lands. Yet, large-scale applicability of human mobility data derived from cell

phone device locations for estimating visitation counts to public lands remains unclear. This

study aims to address this knowledge gap by examining the efficacy and limitations of using

commercially available cellular data to estimate visitation to public lands. We used the United

States’ National Park Service’s (NPS) 2018 and 2019 monthly visitor use counts as a ground-

truth and developed visitation models using cellular device location-derived monthly visitor

counts as a predictor variable. Other covariates, including park unit type, porousness, and park

setting (i.e., urban vs. non-urban, iconic vs. local), were included in the model to examine the

impact of park attributes on the relationship between NPS and cell phone-derived counts. We

applied Pearson’s correlation and generalized linear mixed model with adjustment of month

and accounting for potential clustering by the individual park units to evaluate the reliability of

using cell data to estimate visitation counts. Of the 38 parks in our study, 20 parks had a correla-

tion of greater than 0.8 between monthly NPS and cell data counts and 8 parks had a correla-

tion of less than 0.5. Regression modeling showed that the cell data could explain a great

amount of the variability (conditional R-squared = 0.96) of NPS counts. However, these relation-

ships varied across parks, with better associations generally observed for iconic parks. While

our study increased our confidence in using cell phone data to estimate visitation, we also

became aware of some of the limitations and challenges which we present in the Discussion.
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Introduction

Visiting natural areas contributes to people’s health and wellbeing [1–3]. The availability,

access and quality of natural spaces are important to people [4–6]. As such, quantifying and

understanding the use of these resources informs efforts to protect and improve environmen-

tal quality and recreational opportunities. Accurate estimates of visitation across large geo-

graphic scales, management entities (e.g., national parks, national forests, state and local

parks), and time are critical to park managers and surrounding communities to inform park

planning efforts, including protecting resources and improving visitor safety [7], understand-

ing environmental and economic benefits [8–10], and projecting how visitation may change

over time based on changing environmental conditions such as climate effects [11]. However,

quantifying the level of use and profile of the visitors of a resource is surprisingly and persis-

tently hard to obtain.

Traditionally, quantifying visitation to natural areas has been achieved through various

methods tailored to geography, management needs and budget. These include entrance

receipts, traffic and trail counters, spot counts and aerial imagery [12, 13]. This is challenging,

however, because protected and natural areas vary considerably in size, number of unmoni-

tored entry points, proximity to urban areas, and other attributes. The range of characteristics

of recreation units in the National Park System lead to the use of a variety of visitor counting

methods [14]. At National Park units in the United States (U.S.), visitation counts are collected

using traffic counters, trail counters, bus counts, on-site observations, ferry and aircraft counts,

tickets, fixed-estimation (i.e., assumes a fixed number of visitors per day, week, or month), and

estimation based on other locations within a park. These counting methods are often resource

intensive. In addition, most of the parks use a combination of at least two methods. There are

also variations within each method. For instance, parks that utilize traffic counters usually

apply a constant for each vehicle (i.e., Person-Per-Vehicle, PPV), and this constant varies by

park, location, and even season.

A recently-developed line of research aimed at scaling up the ability to estimate visitation

across space and time is combining traditional methods with novel data sources and technol-

ogy [15–18]. Social media have been used as one alternative source for estimating visitation

[19]. Social media platforms, such as Flickr, Strava, Instagram, Twitter, and Facebook, often

include geotagged locations along with posted photos or texts [16, 20–23]. These sources of

information support potentially lower-cost and scalable methods of data collection.

Social media have been used to collect visitor use information in several studies. Fisher

et al. [24] found that geotagged Flickr photos combined with trip reports on hiking forums

correlated highly (ranging between 55% and 95%) with trail counter data in the National For-

est System across the U.S. Similarly, Wilkins et al. [25] used data from geotagged Flickr photos

taken in national parks to evaluate the effects of weather conditions on park recreation num-

bers. Social media data also offer an opportunity to collect a wealth and depth of information

that would be hard to obtain without in-depth survey efforts, including visitors’ spatial pat-

terns and activities [26–29], values and perceptions [30], landscape preferences [20, 31], as well

as equity of park access [32]. Despite the promise of using social media for visitor counts, there

are still limitations. Social media data are collected passively, and therefore the availability of

the data greatly depends not only on the popularity but also the policies of the platforms [16,

33]. A study [16] comparing the usability of three social media platforms (i.e., Instagram, Twit-

ter, and Flickr) for visitor monitoring in parks in Finland and South Africa reported that social

media data generally performed better in parks with more visitations, whereas social media

data were found to be under- or over-estimated in less visited parks. In addition, the differ-

ences in the performance of the social media platforms were observed in these two countries;
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Instagram had the best correlations with the official statistics in Finland, whereas Flickr per-

formed the best in South Africa. There is also a risk of discontinued access to social media

data, such as when Instagram terminated open access to their API and only offered access pri-

marily for commercial purposes. Furthermore, the visitation data collected through social

media can be biased by user demographics, which were found mostly to be women, aged 18 to

29, and residing in urban areas in most of the social media platforms [34, 35].

Cellular device location data (cell data hereafter) may offer a viable alternative that over-

comes some of the challenges of social media data. Modern cell phones are equipped with

Global Positioning Systems (GPS), which allows a device to record its location and share that

location with smartphone applications. Cell data were widely used to understand human

mobility patterns for informing public health actions during COVID-19 [e.g., 36, 37]. Before

COVID-19, Fisher et al. [38] applied cell data to estimate visitation to outdoor recreation sites

in South Korea and compared visitation using cell data and social media with visitation counts

based on traditional survey methods. Visitor counts based on cell data were found to be com-

parable to the on-site counts [38]. Similar observations were found in later studies for a nature

reserve in California [39] and for beaches in New England [40]. Cell data also have been

applied to estimate change in recreation to coastal areas in response to changes in environ-

mental conditions, such as bacterial-induced beach closures [41]. Like many other sources of

big data (e.g., vehicle GPS, metro card, bank card), cell data can not only help understand

human mobility patterns but also social, cultural, and economic values for better land manage-

ment and city development [42, 43]. However, most of the existing studies using cell data to

estimate visitation are applied in one site or sites with relatively similar geographic characteris-

tics. Applying cell data across a large geographic area likely with great variations in settings

(e.g., urbanicity, recognition) remains under explored.

The information coming from crowdsourced data on people’s movement and choices

around public lands provides new opportunities and new instruments to measure and under-

stand the benefits of ecosystem services [19, 44–46]. The data also provide the ability for study-

ing human behavior and perceptions of the environment, monitoring the environment, and

supporting environmental planning and management [18]. While the opportunities are vast,

examinations of the accuracy, feasibility, and limitations of applying these cell datasets across a

wide range of types of public lands and for specific needs are prudent before these new data

sources become integrated and accepted into management and policy analysis.

To understand the feasibility of cell data for quantifying visitation information and to

address the research gap on the application of cell data across a large spatial scale, we examined

the use of commercially available cell data for estimating visitation to public lands. We used

the National Park Service’s (NPS) visitor use statistics as a ‘ground-truth’ for the cell data and

we provide an example application of the scalability of visitation models based on cell data to

many parks across the United States and in a variety of geographic and social settings. In this

paper, we discuss the potential as well as the limitations we found in application to the NPS vis-

itor use statistics as well as more generally for application to unmonitored public lands.

Materials and methods

Visitation data

The NPS Social Science Program coordinates visitation statistics for almost 400 park units.

Though the time window of visitation data varies by park, the data are available at the monthly

resolution from 1979 to the present calendar year for most parks. Counting visitors often

requires a high degree of expertise in social and statistical science as well as in-depth knowl-

edge of a particular park to tailor an approach for data collection and for adjusting raw counts
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[13]. To ensure the consistency and reliability of data, the program staff work with individual

parks to develop procedures for data collection that best fit to each park unit. This effort also

includes detailed documentation on any potential factors that could have impacts on monthly

visitation counts. All the information is publicly accessible through the NPS Stats database

(https://irma.nps.gov/STATS/).

We obtained the park boundaries from the DataStore at the NPS website (https://irma.nps.

gov/DataStore/) and downloaded monthly estimates of recreational visits, excluding workers

or pass-through residents, for the top 50 most visited parks in years 2018 and 2019, excluding

National Parkways (e.g., Blue Ridge Parkway). We excluded parkways because our data pro-

vider identified a visit based on the estimated dwell time of a device of more than five minutes.

For parkways it is likely that non-park visitors (e.g., pass-through drivers) would also be identi-

fied as park visitors when sitting in traffic. We inspected the validity of the monthly records

using the comments for each month provided by the NPS park which flagged potential prob-

lematic records due to data collection issues (e.g., impaired counters, power outages, staffing

limitations, maintenance work, and government shutdowns). We excluded any park for which

we were left with fewer than 10 monthly values after removing flagged records likely to impact

monthly park visitation counts. We also removed Stonewall National Monument because its

high visitation was driven by a single event (i.e., World Pride event in June 2019) and was

closed for half of the time in years 2018 and 2019. We also removed Golden Gate National

Recreation Area after realizing the cell data were likely capturing non-visitor drivers and the

NPS data were not, given the road network contained within the park boundary. After remov-

ing these flagged values and parks, we were left with a total of 38 parks (Fig 1) with 786

monthly visitation records. Total visitation at these 38 parks accounts for around 43.1% and

42.6% visitation at all the NPS units in 2018 and 2019, respectively.

Using the official park boundaries [47], we purchased the cell data from Airsage Inc. repre-

senting visitation to those areas, specifically using their Target Location Analytics (TLA) prod-

uct. This provider creates population-level estimates derived from around a third of the U.S.

population [40 for more details]. For each park unit, the data consist of hourly, daily, and

monthly estimates of visitation based on Airsage’s algorithm that expands their sample of

devices to the total population. We do not have access to the device-level information, but

rather aggregated by time-window and park unit (point of interest [POI] in Airsage’s terminol-

ogy). In addition to visitation by time, the dataset includes visitor origin information consist-

ing of the count of unique visitors by month to each POI by Census block group (CBG).

The location data come from smartphone applications and their users who choose to opt-in

to location sharing on location-based services. These device-level locations, derived from GPS

data, are processed by Airsage to create visits based on the behavior of the device. According

to the provider, the datasets represent information derived from the locations of over 120 mil-

lion devices each month, or about a third of the U.S. population.

The home and work location of each device is defined by its behavior during the month.

Home is defined to be the census block group where each device is most frequently located

between the hours of 9PM and 6AM. Work is defined as where each device is most frequently

located between the hours of 8AM and 4PM. Any other device location is defined as an activity

point. The data we used are for activity points (non-work, non-home) within the geographies

of the selected parks.

The Airsage TLA data came with two general file formats. One of these contains the hourly

and daily visitation to each POI for each month. These are referred to as the POI summary

files. We used these files to examine the relationship to NPS counts by summing the daily visits

to each park for each month form the POI summary file. For our purposes, each POI corre-

sponds to one NPS unit. The second, at a monthly resolution, the “HOME” file summarizes
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the count of visitors by home CBG of origin to each POI. We used this file to calculate the

travel distance between each home CBG and each park for further classification in this analysis

(described in Park settings section).

A summary of the data sources and statistics of total visitation used in this analysis are

described in S1 Table.

Park attributes

Since parks use various counting methods and their geographic and physical settings differ

widely, we hypothesized three park attributes that might explain differences in the relationship

between the cell data and the NPS recreation visit estimates. These attributes included park

types, park settings, and porousness.

Park type. The NPS park type is an official designation. The selected 38 parks included

the following types: national park (N = 16), national recreation area (N = 2), national memorial

(N = 8), national monument (N = 2), national seashore (N = 3), national historical park

(N = 5), national lakeshore (N = 1), and ‘other’ (N = 1). Since only one unit is designated as a

national lakeshore, we combined it with national seashore units. Rock Creek Park was the only

park in the ‘Other’ category.

Fig 1. Distribution of the selected park units. The four-letter code for each park can be found in Table 1. The coordinates of NPS locations were obtained

from the NPS Data Store (https://irma.nps.gov/DataStore/) for public access with a proprietary/copyright designation of “No Restriction - The information is

neither copyrighted nor has any other use restrictions related to it being intellectual property. For that reason, this information may be distributed to the NPS

and public” and plotted using leaflet package in R 4.2.2. Base map tiles are from OpenStreetMap and OpenStreetMap Foundation. This map contains

information from OpenStreetMap and OpenStreetMap Foundation, which is made available under the Open Database License, CC BY-SA (https://www.

openstreetmap.org/copyright).

https://doi.org/10.1371/journal.pone.0289922.g001
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Park setting. We hypothesized that the interactions between park distance from the pop-

ulation center (i.e., urban or non-urban) and recognition from non-local communities (i.e.,

iconic or local) of a park might play a role in the relationship between cell data counts and

NPS counts. Urban and non-urban settings may provide different opportunities for recrea-

tional activities (e.g., accessibility, type of recreation, carrying capacity) have different visita-

tion profiles, and use different counting methods. We identified urban versus non-urban

parks using the NPS definition of population centers for “Urban Area Park” [48], which is

defined as having more than 75% of total area located within an “Urbanized Area” defined by

the 2010 Census Urban and Rural Classification and Urban Area Criteria (Census Urban Area

hereafter). We calculated the proportion of park area within the Census Urban Area by over-

laying the polygons of selected parks and the Census Urban Area.

In addition to the differences by proximity to urban area, we theorized that parks that are

well-known beyond the local area, such as Yosemite National Park and the Lincoln National

Memorial, may employ different counting methods and may even receive more resources

devoted to NPS efforts to count visitation compared to parks that are mostly visited by local

communities, such as Rock Creek Park. We classified parks into iconic or local type respec-

tively for those recognized by non-local visitors and those mostly known by local communities

using the proportion of the local visitors. We calculated Euclidean distance from the centroid

of the POI (i.e., parks) to home CBGs and defined any pair of distance within 50 miles as local

commuting areas based on the definition of local visitor used in the U.S. Forest Service

National Visitor Use Monitoring program [49]. Parks with a proportion greater than 30% of

the visitors coming from the local commuting areas were defined as “local” type (Fig 2). How-

ever, this criterion likely caused a false ‘local’ classification for parks close to highly populated

cities, where a high percentage of local residents may visit nearby parks often. We revised

these parks (i.e., Olympic National Park, Statue of Liberty National Monument, Thomas Jeffer-

son Memorial, and World War II Memorial) to iconic parks.

We created four groups based on the interactions between Urban/Non-Urban and Iconic/

Local to represent four types of parks with the main characteristics being:

• Urban & Iconic: has international name-recognition and/or is frequently visited as part of a

trip to an urban destination; Many of the Washington D.C. memorials fit into this category.

• Urban & Local: has less name-recognition and is visited primarily by local residents in an

urban setting; Rock Creek Park in Washington D.C. fits in this category.

• Non-Urban & Iconic: has international name-recognition and/or is usually a main destina-

tion for a vacation that is far from populated areas; Yosemite and Yellowstone National Park

fit in this category.

• Non-Urban & Local: has less name-recognition and is visited primarily by local communi-

ties in a remote setting; Many of the historic parks and seashores fit into this category.

Porousness. Porousness refers to the potential park entry points, including official and

unofficial publicly accessible entrances. We theorized that porousness would impact the

method used for the on-the-ground data collection and accuracy of the NPS visitor counts,

because adding entry points makes it more difficult to count all visitors. Entry points to a park

are usually via automobile roads and foot traffic trails, although some parks (e.g., the Lincoln

Memorial) have almost continuously porous boundaries. We considered the intersections of

park boundaries with roads and trails as potential entry points and obtained these intersections

by overlapping the road and trail segments that are identified with public access in the Nav-

TEQ Streets database [50] with the official park boundaries. We further removed points within

PLOS ONE Using cellular device location data to estimate visitation to public lands

PLOS ONE | https://doi.org/10.1371/journal.pone.0289922 November 9, 2023 6 / 19

https://doi.org/10.1371/journal.pone.0289922


10m of an adjacent point since they likely indicate the same entrance. We considered that

parks with less than or equal to three total intersections as low porousness. The number of

intersections of roads and trails with park boundaries ranged from 0 for the Statue of Liberty

National Monument, which is on an island, to 113 in the Delaware Water Gap National Recre-

ation Area. Five parks (Korean War Veterans Memorial, Lincoln Memorial, Mount Rushmore

National Memorial, Vietnam Veterans National Memorial, and Statue of Liberty National

Monument) have less than or equal to 3 intersections.

For parks with greater than three intersections, we used intersection density (i.e., total num-

ber of intersections divided by total area of the park) to classify parks into low and high

porousness. We considered that porousness for small and large park units may function differ-

ently. Most of the small park units are in populated cities, where more trails, roads, and side-

walks can intersect the park unit, and which usually have small viewshed areas. In contrast, the

intersections of roads and trails with boundaries in big parks are often difficult to capture from

one observation point. Therefore, we defined low and high levels of porousness for small (total

area� 1 square kilometer) and large parks using the respective median values of the intersec-

tion density as the thresholds.

Thirteen parks are smaller than 1 square kilometer, with a median value of intersection

density is 100 entry points per square kilometer. Among these 13 parks, 8 units are classified as

low porousness and 5 are classified as high porousness. For large parks (25 units), a total of 14

Fig 2. Categories of travel distance between origins and destinations for identifying iconic or local parks. A park with greater than 30% of the visitors

travelled within 50 miles is identified as local type, otherwise iconic type. Some exceptions are applied (Revised from Local to Iconic).

https://doi.org/10.1371/journal.pone.0289922.g002
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and 11 units each are classified as low and high levels of porousness, respectively, after taking

the median value of intersection density (0.04 entry points per square kilometer) into account.

A total of four porousness levels, Small-Low, Small-High, Large-Low, and Large-High, were

used as park attributes for analysis.

Statistical approach

To understand the associations between the NPS’ visitation data and the cell data, we tested

bivariate and multivariate relationships. We applied Pearson’s correlations to examine the

bivariate relationships between NPS counts and cell data counts. We also attempted to observe

whether there were similarities in correlations by groupings of parks described in Park attri-

butes (e.g., park type, park setting, and porousness).

We used a panel regression model to examine multivariate relationships between NPS

counts and cell data counts. We then stratified the analysis by park setting and porousness but

not park type, due to the available data points in each grouping. We applied a mixed-effects

model to account for potential clustering by NPS unit, and specified it to incorporate random

effects across parks, to produce a model that may be appropriate to generalize to a park outside

of this sample of parks, as opposed to using park-level fixed effects. Using a random effect

specification, we estimated the following model:

log ðYitÞ ¼ bclog ðCellitÞ þ bmMþmi þ eit

where,

Yit - Monthly visitation count from NPS data for park i and month t
Cellit - Cell data count for park i and month t
M - Vector of month

μi - Between park error term – the random effect

eit - Within park error term

We included month as a variable to investigate how these relationships vary by month. We

hypothesized that the NPS count methods within parks may vary by month due to staffing and

different seasonal use and that the cell data may perform differently based on months due to

the sample size and/or types of users.

We specified a log-log relationship between the cell data and the NPS counts to account for

the differences in the scales of visitation among parks. The coefficients on the cell data counts

can be interpreted as a given percent change in the cell data count (the regressor) resulting in a

β% change in the NPS counts (response variable). In the case of the month variables, the NPS

count changes by 100*exp(βm−1)% for a given month. While marginal R-squared values con-

sider fixed effects only, the multivariate relationships were primarily evaluated by conditional

R-squared values, which take both fixed and random effects into account.

Results

Comparing mean monthly visitation for 2018 and 2019 by park type (Fig 3), we found NPS vis-

itation counts to be generally lower than the raw cell data counts, except for National Memori-

als and National Monuments, where the NPS counts were higher. National Seashores/

Lakeshores, National Monuments, and National Parks show peaks of visitation in summer

(June, July, and August) in both NPS and cell data, whereas National Memorials have higher

visitation in spring (March, April, and May). The greatest differences between the NPS and

cell visitation counts occurred for National Recreation Areas, with a mean difference of

-2,598,096 (standard deviation [sd] = 977,138) visits when using NPS data as the base. Visitor
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counts for National Seashores/Lakeshores were most closely aligned between NPS and cell visi-

tation counts (mean difference = -21,060, sd = 96,372). Cell visitation counts and NPS counts

appeared to be closely aligned for some individual parks (e.g., Yellowstone, Arches, Acadia,

Grand Teton; S1 Fig), aligned in the winter months but biased during summer for other parks

(e.g., Rocky Mountain, Glacier), and biased throughout the year for national recreation areas

and national historic parks.

Bivariate relationships

Bivariate relationships showed that 20 parks had a high correlation (> 0.8) and 8 parks had a

low correlation (< 0.5) between monthly Cell data and NPS counts (Table 1). Fig 4 presents

observed correlations by various groupings, summarizing the range of correlations. Correla-

tions by park type showed that National Memorials and National Parks tended to have better

correlations between NPS counts and cell data, with a respective mean correlation of 0.86

(sd = 0.07) and 0.82 (sd = 0.20). However, correlations were low for National Recreation Areas

(0.26, sd = 0.10) and Other – Rock Creek Park (-0.16).

When grouping by urban location and iconic status, higher correlations were observed for

iconic parks than for local parks, with mean correlations of 0.84 (sd = 0.06), 0.91 (sd = 0.09),

0.39 (sd = 0.33), and 0.53 (sd = 0.21) for Urban & Iconic, Non-Urban & Iconic, Urban &

Local, and Non-Urban & Local, respectively.

Grouped by park size and porousness, we found that large parks with low porosity generally

had higher correlations, with a mean correlation of 0.88 (sd = 0.17), whereas large parks with

high porosity had lower correlations (mean = 0.53, sd = 0.30). NPS counts and cell data were

Fig 3. Average monthly visitation using NPS counts and cell data by park type for years 2018 and 2019.

https://doi.org/10.1371/journal.pone.0289922.g003
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Table 1. Park attributes.

NPS

Code

Park Name Park Type Number of

Records

Population Center and

Recognition Level

Porousness Level Pearson’s

Correlation

BOST Boston National Historical Park National Historical

Park

23 Urban & Local Small Park - Low

Porosity

0.730

COLO Colonial National Historical Park National Historical

Park

23 Non-Urban & Local Large Park - High

Porosity

0.542

INDE Independence National Historical

Park

National Historical

Park

24 Urban & Local Small Park - High

Porosity

0.743

SAFR San Francisco Maritime National

Historical Park

National Historical

Park

24 Non-Urban & Local Small Park - Low

Porosity

0.496

VAFO Valley Forge National Historical

Park

National Historical

Park

17 Urban & Local Large Park - High

Porosity

0.221

FRDE Franklin Delano Roosevelt

Memorial

National Memorial 20 Urban & Iconic Small Park - High

Porosity

0.928

KOWA Korean War Veterans Memorial National Memorial 20 Urban & Iconic Small Park - Low

Porosity

0.852

LINC Lincoln Memorial National Memorial 21 Urban & Iconic Small Park - Low

Porosity

0.792

MLKM Martin Luther King, Jr., Memorial National Memorial 20 Urban & Iconic Small Park - High

Porosity

0.859

MORU Mount Rushmore National

Memorial

National Memorial 24 Non-Urban & Iconic Large Park - Low

Porosity

0.988

JEFM Thomas Jefferson Memorial National Memorial 20 Urban & Iconic Small Park - Low

Porosity

0.897

VIVE Vietnam Veterans Memorial National Memorial 20 Urban & Iconic Small Park - Low

Porosity

0.785

WWII World War II Memorial National Memorial 20 Urban & Iconic Small Park - High

Porosity

0.817

CACL Castle Clinton National Monument National Monument 24 Urban & Local Small Park - High

Porosity

0.621

STLI Statue Of Liberty National

Monument

National Monument 24 Urban & Iconic Small Park - Low

Porosity

0.750

ACAD Acadia National Park National Park 13 Non-Urban & Iconic Large Park - High

Porosity

0.975

ARCH Arches National Park National Park 22 Non-Urban & Iconic Large Park - Low

Porosity

0.876

BRCA Bryce Canyon National Park National Park 21 Non-Urban & Iconic Large Park - High

Porosity

0.917

CUVA Cuyahoga Valley National Park National Park 22 Non-Urban & Local Large Park - High

Porosity

0.527

JEFF Gateway Arch National Park National Park 21 Urban & Local Small Park - Low

Porosity

0.387

GLAC Glacier National Park National Park 23 Non-Urban & Iconic Large Park - Low

Porosity

0.996

GRCA Grand Canyon National Park National Park 16 Non-Urban & Iconic Large Park - Low

Porosity

0.752

GRSM Grand Teton National Park National Park 13 Non-Urban & Iconic Large Park - Low

Porosity

0.973

GRTE Great Smoky Mountains National

Park

National Park 24 Non-Urban & Iconic Large Park - High

Porosity

0.679

INDU Indiana Dunes National Park National Park 23 Non-Urban & Local Large Park - High

Porosity

0.468

JOTR Joshua Tree National Park National Park 10 Non-Urban & Iconic Large Park - Low

Porosity

0.867

(Continued)
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generally correlated well for small parks, with mean correlations of 0.71 (sd = 0.17) and 0.79

(sd = 0.11) for low and high porousness, respectively.

Regression

Across all parks, a 1% increase in the cell data counts corresponded to a 0.86% increase in the

NPS counts (Table 2) and the model fitted well in terms of the conditional R-squared value

(0.96). However, this relationship between cell data and NPS counts varied from 0.3% to 1.0%

across our stratifications, with only the urban and local grouping not having a statistically sig-

nificant relationship. Looking across stratifications, the non-urban and iconic group and the

large and low porousness had cell data coefficients close to 1. All the stratified models fitted

well, with conditional R-squared values in the 90% range. The model performance evaluated

by the plot of NPS counts versus predicted values (transformed back to levels from logs)

showed that the distribution was close to the one-to-one line (Fig 5).

There seemed to be a consistent pattern in the relationship between the cell data and NPS

counts by month (S2–S4 Tables). The monthly coefficients implied that an increase in cell data

counts would correspond to a smaller increase in NPS counts for winter months compared to

the month of July (reference) and other months in summer. In other words, it took more cell

data counts to correspond to a similar NPS count in the winter than in the summer in consis-

tent seasonal pattern.

Discussion

Collecting visitation information across large spatial and time scales in a consistent manner is

challenging [14, 51]. While cellular location data have been applied to track human mobility

Table 1. (Continued)

NPS

Code

Park Name Park Type Number of

Records

Population Center and

Recognition Level

Porousness Level Pearson’s

Correlation

OLYM Olympic National Park National Park 22 Non-Urban & Iconic Large Park - Low

Porosity

0.902

ROMO Rocky Mountain National Park National Park 17 Non-Urban & Iconic Large Park - Low

Porosity

0.989

YELL Yellowstone National Park National Park 22 Non-Urban & Iconic Large Park - Low

Porosity

0.986

YOSE Yosemite National Park National Park 23 Non-Urban & Iconic Large Park - Low

Porosity

0.885

ZION Zion National Park National Park 20 Non-Urban & Iconic Large Park - Low

Porosity

0.946

CHAT Chattahoochee River National

Recreation Area

National Recreation

Area

24 Urban & Local Large Park - High

Porosity

0.192

DEWA Delaware Water Gap National

Recreation Area

National Recreation

Area

23 Non-Urban & Local Large Park - High

Porosity

0.335

ASIS Assateague Island National

Seashore

National Seashore/

Lakeshore

24 Non-Urban & Iconic Large Park - Low

Porosity

0.898

CAHA Canaveral National Seashore National Seashore/

Lakeshore

23 Non-Urban & Local Large Park - Low

Porosity

0.367

CANA Cape Hatteras National Seashore National Seashore/

Lakeshore

20 Non-Urban & Iconic Large Park - High

Porosity

0.853

SLBE Sleeping Bear Dunes National

Lakeshore

National Seashore/

Lakeshore

24 Non-Urban & Local Large Park - High

Porosity

0.966

ROCR Rock Creek Park Park (Other) 12 Urban & Local Large Park - High

Porosity

-0.157

https://doi.org/10.1371/journal.pone.0289922.t001
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patterns during the COVID-19 pandemic [36, 37, 52], the use of cell phone data to understand

how many people visit recreational resources is increasing but mostly has been limited to a sin-

gle geographic region and setting [38–41, 53, 54]. This study shows that the cell data product

can predict NPS counts gathered from broad geographic areas well, as shown by bivariate cor-

relations and regression modeling. This supports the feasibility of using these products to

Fig 4. Correlations between cell and NPS data grouped by park type, population center/recognition, and park size

and porousness. Lines extends to 5th and 95th percentiles.

https://doi.org/10.1371/journal.pone.0289922.g004

Table 2. Regression results. CIs stands for Confidence Intervals.

Model Coefficient of Cell data 95% CIs p Number of NPS Units Number of Records Marginal/ Conditional R-squared value

All Parks 0.863 0.809, 0.917 <0.001 38 786 0.555 / 0.964

Stratification by Population Center and Recognition Level

Urban & Iconic 0.330 0.255, 0.405 <0.001 8 165 0.721 / 0.954

Urban & Local 0.058 -0.129, 0.245 0.561 7 145 0.507 / 0.820

Non-Urban & Iconic 1.011 0.940, 1.081 <0.001 16 314 0.880 / 0.959

Non-Urban & Local 0.913 0.725, 1.101 <0.001 7 162 0.659 / 0.934

Stratification by Park Size and Porousness

Large & Low 1.024 0.943, 1.106 <0.001 14 280 0.853 / 0.937

Large & High 0.883 0.748, 1.018 <0.001 11 225 0.600 / 0.949

Small & Low 0.285 0.142, 0.427 <0.001 8 173 0.396 / 0.911

Small & High 0.402 0.305, 0.500 <0.001 5 108 0.743 / 0.954

https://doi.org/10.1371/journal.pone.0289922.t002
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complement on-the-ground methods for estimating park visitation, similar to recent findings

by others [38, 39, 53, 54]. However, we found the strength and magnitude of the relationship

between NPS counts and cell data varied by the groupings we used and time of year, which

poses questions related to using cell data products but also highlights potential issues and

improvement needs of the current NPS visitor quantification system. Below we discuss limita-

tions of using cell data for park visitation analysis and limitations of this study, as well as future

research directions.

The relationship between on-the-ground counts and cell data is strong for many parks and

weak for others. This relationship could vary for many reasons including unknown issues with

the cell phone data. However, our analysis may imply that the accuracy of NPS counts varies

depending on park attributes (e.g., park type, porousness, urbanicity, level of recognition,

counting method, etc.) or could even vary across individual parks within these categories. For

instance, corresponding to previous studies [14, 38, 39], we found proximity of population

center, recognition from non-local communities, and porousness of a park affected the corre-

lations between on-the-ground counts and cell data. We investigated the potential variations

in the relationships between NPS and cell data counts by park attributes we felt were important

and for which we could compile data. We were not able to find data for all attributes we would

have liked to examine. For example, we would have liked to include park access transportation

mode (e.g., walking, private vehicle, bus, biking, horseback, ferry, etc.), but the NPS does not

collect these data. Park access mode is somewhat reflected by the NPS counting methods.

However, we found that most of the parks use a combination of counting methods and do not

provide visitor counts by each counting method. On-the-ground counting data collections are

usually complex (e.g., a combination of traffic counter with various adjustments for person-

Fig 5. Model performance evaluated by NPS counts versus predicted values from the models for all parks combined (a), and stratification by population center

and recognition from non-local community (b to e) and by size and porousness level (f to i).

https://doi.org/10.1371/journal.pone.0289922.g005
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per-vehicle at different entrances and/or seasons, cars in the camping sites, and assuming a

constant number per bus).

The variations in the relationships between NPS and cell data counts may also be due to

physical factors leading to inaccurate extrapolation from the available source of visitation rec-

ords that are being used by NPS (e.g., Person-Per-Vehicle, which assumes number of people

per car) that have not been revisited for several years, or differences in how the NPS count

methods are applied based on variations in the type of use by month. If we assume the visita-

tion counts collected by cell data are consistent across parks, cell data may be used to investi-

gate visitor quantification methods and harmonize the visitor quantification methods across

parks or months. For example, we found consistent differences by month in the relationship

between cell data and NPS counts which may indicate variations in the accuracy of NPS visita-

tion counting methods by season (see supplementary material, S2–S4 Tables). However, the

differences in the relationships could also be due to variation in how the cell data performs in

the winter months when there may be a lower number of visitors.

Although it is promising that, for many parks (i.e., 20 parks had a correlation > 0.8), the

relationship between the NPS and cell data counts is strong in our analysis, we cannot disen-

tangle whether the NPS or the cell data counts are closer to the true visitation value for any

given park in this study. Both sources of visitation information have potential biases and inac-

curacies. Though we used the official park boundaries defined by the NPS, it is possible that

there are discrepancies between the real spatial extent used by the NPS for counts versus those

we used as POI to obtain visitation using the cell phone devices. While we understand many of

the limitations of on-the-ground count methods, less is understood about the limitations of

the cell phone data. One potential source of variation, for example, is that the NPS counts are

designed to measure park visitation versus people who are using the roads merely to get from

point A to point B or people who are employed or delivering goods within the park. Although

the cell phone data only included devices that spent more than five minutes at any location

within the park boundary, we likely captured a significant number of employees and people

using park roads for transportation rather than for visiting a park. The representativeness of

the cell phone device sample, or the likelihood visitors having their devices turned on and an

application providing location data while in the park could also contribute to accuracy issues.

Further research using ground-truth data is needed to disentangle these mechanisms.

The commercial cell data location industry is varied as to their products, customers and

intended uses. Their data compilation and processing techniques are generally not transparent

to their buyers and can change over time, even during a study period. The specific apps used

for the locational information and the algorithms applied have been treated as protected busi-

ness information. Ground-truthing is often not built into data provider processes, or the

ground-truth and model fitting was conducted with similar metrics, like vehicle traffic, but not

a direct comparison to metrics of interest like foot traffic, or more specific metrics like unique

daily visits. Data users need to be aware of these aspects that can impact data quality. For

example, the stability of device location samples used by a cell data provider, sourced from a

collection of smartphone applications, could change over the period of a study leading to

changes in algorithms and potential changes in data quality. Our approach has been to verify

against contemporaneous on-the-ground visitation counts for the timeframes of interest in

our studies.

The practical result of this conundrum is that cell data, at this point, may be a useful tool

for enhancing existing visitation quantification programs but cannot replace the on-the-

ground methods entirely. It could, for example, be used to fill in or impute visitation esti-

mates for missing months or for parks where counts were halted due to broken equipment

or staffing issues. We found and removed from the dataset many of the months flagged by
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the NPS as being inaccurate for various reasons. At the expense of some accuracy, cell data

may also allow for a scaled back on-the-ground sampling scheme in parks where cell data

performs well and where the stability of that relationship could be repeatedly tested over

time. It may also be useful to capture use in areas of a park where on-the-ground counts are

impractical, such as on remote Bureau of Land Management lands where counts are not

conducted, or on city parks with many entrances and lack of resources for surveys. In addi-

tion, information related to visitors’ experiences still require detailed surveys, which cell

data alone will not be able to provide.

For natural lands and parks without any estimates of visitation–the vast majority–cell data

may provide an acceptable estimate of visitation when used in conjunction with a model built

from relationships to observed visitation series. Once the cell data are calibrated against data

from parks that do have an existing on-the-ground sampling program, such as the NPS, esti-

mates of the level of visitation with ranges of uncertainty could be created for unmonitored

sites. Creating and testing a more general and transferrable function using cell data to predict

visitation for monitored and unmonitored park lands is left for future work, but the descriptive

model results using the NPS visitation program provided by this paper are promising.

Conclusions

Understanding human use of parks and other protected areas is important for managers to

evaluate social, economic, ecological, and environmental values. Crowd-sourced data offer an

alternative approach to the challenge of collecting visitation counts consistently across large

scales of geography and time via traditional ground counting methods. While cell data are an

exciting addition and a potential scale-multiplier (i.e., 1 cell data count equals to x on-the-

ground count) for on-the-ground visitation quantification methods, it is not a replacement.

Finding opportunities to calibrate and validate these new sources of data on human behavior

and movement is still needed for practitioners to have confidence and defendable methods to

supplement their current visitor quantification programs. For places without estimates of visi-

tation, a cell data model calibrated to a known visitor use monitoring program may provide

information on the use of natural lands using a scalable and repeatable instrument.
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