Twentieth Century Building Materials: 1900-1950
As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally-owned public lands and natural and cultural resources. This includes fostering wise use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department also promotes the goals of the Take Pride in America campaign by encouraging stewardship and citizen responsibility for public lands and promoting citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration.

U.S. Department of the Interior
National Park Service
Cultural Resources
Preservation Assistance

The Legacy Resource Management Program was established by the Congress of the United States in 1991 to provide the Department of Defense with an opportunity to enhance the management of stewardship resources on over 25 million acres of land under DoD jurisdiction.

Legacy allows DoD to determine how to better integrate the conservation of irreplaceable biological, cultural, and geophysical resources with the dynamic requirements of military missions. To achieve this goal, DoD gives high priority to inventorying, protecting, and restoring biological, cultural, and geophysical resources in a comprehensive, cost-effective manner, in partnership with Federal, State, and local agencies, and private groups.

Legacy activities help to ensure that DoD personnel better understand the need for protection and conservation of natural and cultural resources, and that the management of these resources will be fully integrated with, and support, DoD mission activities and the public interest. Through the combined efforts of the DoD components, Legacy seeks to achieve its legislative purposes with cooperation, industry, and creativity, to make the DoD the Federal environmental leader.

Cover photo: The Motohome -- the result of a collaboration between architect Robert W. McLaughlin, Jr., and promoter Foster Gunnison -- was a prefabricated house framed in steel and clad with modular wall panels composed of fiber insulating boards faced on each side with asbestos cement. A mechanical core, the "moto-unit" gave the house its name and made it different from other steel-frame, prefabricated houses of the period. Approximately 150 Motohomes were built between 1934 and 1936. Photo: F.S. Lincoln.
Twentieth Century Building Materials: 1900-1950

An Annotated Bibliography

Compiled by:

George M. Bleekman III
Ann Girard
Karin Link
Donald Peting
Anne Seaton
Jonathan Smith
Lisa Teresi-Burcham
Richa Wilson

U.S. Department of the Interior
National Park Service
Preservation Assistance Division
Washington, D.C.

1993
Acknowledgements

This Reading List is one of five annotated reading lists on the subject of preservation technology which were developed and made possible by funding through a joint project of The National Council for Preservation Education, the National Park Service, and the Legacy Resource Management Program, sponsored by the Department of Defense. The University of Oregon Associated Students of Historic Preservation are graduate students in the Historic Preservation, Architecture and Urban Planning Programs at the University of Oregon. They were awarded a stipend to develop this Reading List, which was prepared with the assistance and technical guidance of Donald Petting, Associate Dean, and Acting Director, Program in Historic Preservation, University of Oregon.

Joan Janicki, an architect and graduate student in Historic Preservation at the University of Georgia, prepared the Reading List for publication by providing technical and editorial review, as well as bibliographic, archival and photographic research. Anne Grimmer, Preservation Assistance Division, National Park Service, served as general editor of the Reading List.

Reading lists have been published by the National Park Service, Preservation Assistance Division, since 1975. Most are selected bibliographies rather than a comprehensive overview of a particular subject. Some of the reading lists are annotated. Comments or suggestions for additions to the Reading List should be sent to: Preservation Assistance Division, National Park Service, P.O. Box 37127, Washington, D.C. 20013-7127.

This publication is not copyrighted and may be reproduced without penalty. Normal procedures for credit to the authors and the National Park Service are appreciated.
Table of Contents

Acknowledgements ... ii

Introduction ... 1

General Building Materials: Background Information .. 2
- Historical Information ... 2
- Primary Sources and Early Investigations 2
- Recent Publications .. 5

Classifications of Materials ... 9
- Wood ... 9
- Masonry .. 10
 - Brick .. 11
 - Clay Tile ... 11
 - Hollow Clay Tile .. 12
 - Terra Cotta .. 13
 - Concrete Block .. 15
 - Gypsum Masonry ... 16
 - Cast Stone ... 16
 - Simulated Stone .. 16
 - Related Information ... 17
- Concrete ... 18
 - Cast-In-Place ... 19
 - Precast ... 21
 - Prestressed .. 21
 - Related Information ... 22
- Metals ... 24
 - Ferrous Metal Alloys ... 24
 - Non-Ferrous Metal Alloys ... 26
 - Related Information ... 28
- Glass .. 30
 - Decorative Glass ... 30
 - Glass Block ... 30
 - Structural Glass ... 32
 - Related Information ... 33
- Plastics, Rubber, and Asphalt ... 33
 - Composites and Laminates ... 36
 - Wallboard, Stucco, and Plaster .. 37
 - Wall Coverings and Coatings .. 39
 - Resilient Flooring .. 41

Construction Systems .. 43
- Concrete Systems ... 43
- Guastavino Vaulting ... 43
- Prefabrication Systems .. 44
- Steel Systems .. 46
<table>
<thead>
<tr>
<th>Additional Resources</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centers of Research</td>
<td>48</td>
</tr>
<tr>
<td>Periodicals</td>
<td>48</td>
</tr>
<tr>
<td>Preservation Organizations</td>
<td>49</td>
</tr>
<tr>
<td>Professional and Trade Organizations</td>
<td>49</td>
</tr>
<tr>
<td>Government Agencies</td>
<td>52</td>
</tr>
</tbody>
</table>
Introduction

The purpose of this bibliography is to provide information on building materials introduced or significantly developed during the first half of the twentieth century. The material fabric of twentieth-century buildings is often complicated or very interdependent in composition. Therefore, it is imperative that reading lists such as this be compiled and disseminated as means to insure the continued evaluation and proper maintenance of early twentieth century architecture.

The extraordinary, and often violent, economic and political changes from 1900 to 1950 produced marked changes in the way Americans lived. The invention of new materials resulted in new patterns and techniques in American building practices. Because of an expanding industrial output, as well as rising building costs, it became necessary to replace traditional materials and building conventions with new materials and practices. A readily seen example is gypsum wallboard, a material that significantly replaced the labor-intensive practice of lath and plaster by 1950.

Entries in this Reading List were assembled from books, periodicals, government documents, and preservation-related publications. Architectural journals were especially useful in providing an understanding of the development and availability of particular materials. Many architectural journals from the first half of the century not only had technology columns, but also provided information on new products each month. For example, Architectural Forum featured "Building Reporter" while Architectural Record had "Better Building Products." Pencil Points ran "Products Progress" which became "Products" and "Materials and Methods" when the journal changed its name to Progressive Architecture. Advertisements are also a significant source of information. While advertisers' claims are always suspect, many took measures to provide the reader with abundant information about their product through sample specifications, descriptions of available sizes or colors, photographs, and/or drawings.

The bibliography is organized into four major sections. The first, General Building Materials, provides sources that cover all (or many) building materials. Citations for specific materials are located under Classifications of Materials. This section is divided into the major types of materials (e.g. wood, masonry, concrete), some of which are further subdivided. The third section, Construction Systems, includes entries that focus on the assembly or construction of new materials. Finally, the section titled Additional Resources is intended to guide the reader to other organizations or research centers for further information.
General Building Materials: Background Information

Historical Information

This book surveys building technology and materials of the first half of the twentieth century. It is particularly valuable for locating dates, names of people, and specific buildings relevant to the development of new materials and construction systems.

The first half of this book provides a history of materials development from the Industrial Revolution through the first half of the twentieth century. Exceptional illustrations are provided.

Section Five of this book presents concise information on a wide range of building materials supplemented with ample illustrations and photographs. Particular attention is given to wood, concrete, iron, and steel. Section Six discusses tools, techniques, joints, and fixings for particular materials. Other sections cover stylistic periods, building types, structural design and environmental systems.

Primary Sources and Early Investigations

The product of a symposium, this brief article covers the development of building materials such as metals, concrete, wood, glass and plastics. It provides an overview of progress from the last decade of the nineteenth century to the first forty decades of the twentieth century.

This extensive article summarizes the changes in American architecture during World War II. The development of building materials, construction methods, and building types such as military and industrial structures, schools, hospitals, and houses are discussed.

This popular reference book of its time deals with the identification, characteristics, details, and problems associated with wood construction with both sawn and re-manufactured wood materials. It also covers a variety of plastics and both natural and artificial fabrics. This relatively early description of the chemistry of plastics and resins includes information on their manufacture and properties.

Emerson, David B. "Floors and Flooring Materials," Parts I and II. *Pencil Points.* Vol. 14, Nos. 1 and 2 (January and February 1933), pp. 55-58; 101-104

Emerson describes the composition, uses, and qualities of various flooring materials in this article, including examples of installations of wood floors, cork tile, rubber tile, mastic, asphalt tile, linoleum, burnt clay tile, terrazzo, mosaic tile, marble, soapstone, slate, flagstone, and magnesite.

This article presents a brief history of roofing materials and applications. Topics include the comparatively recent development of concrete tile used over theaters and industrial buildings.

A reprint of the 1949 second edition, this handbook is a compilation of "Data Sheets" produced by the author and printed in *Pencil Points* from 1932 to 1942. Each page provides line drawings and/or text on a particular subject. In addition to properties of and construction details for materials, Graf covers such items as furnishings, architectural systems, log cabins, elevators, and design data for building types.

Known as "the architects' bible," this book provides design data, definitions, charts, dimensions, and extensive line drawings for everything from building materials to sitework to environmental systems. It was first published in 1932 and was followed by subsequent editions in 1936, 1941, 1951, 1956, 1970, 1981, and 1988. New to the eighth edition is a section on historic preservation that includes information on materials, structural systems, the Classical orders, the Historic American Buildings Survey, and interiors.

This article gives an overview of price trends during and immediately after World War I and assesses the situation after World War II. After discussing the effect of the relative unavailability of lumber, bricks, insulation board, lath, and soil pipe, Kellog makes predictions about the supply and demand for particular building materials during the post-war period.

The result of a survey of materials and equipment manufacturers, this article addresses aspects of product design and development, including competition, the public attitude, labor, building codes, uses, and innovations. Charts describe advances in materials and equipment. Trade names, a list of manufacturers, photographs, and drawings of new products are included.

The increased ability to manipulate building materials and control specific properties are cited as reasons for the current trend in materials development. This trend -- the integration of structural, insulating, and surfacing requirements into a single system -- has led to the development of products such as Masonite, Vinylite panels, and Solex glass.

After a brief introduction to craftsmanship, this book covers eight sections, each on a different material: metal, paint, stone and marble, tile, rubber, and cork, which were not available during World War II.
brick, wood, plaster, and glass. Each section includes a brief history of the material's use, gives a profile of one craftsman, and gives restoration guidelines. There is also an extensive list of sources of associations, artisans and suppliers.

The article cautions readers not to be overly impressed with the wealth of materials marketed in post World War II America. Savage critiques many new materials, including plastics, light-gauge metals, tempered glass, Portland cement, improvements in precast blocks, and prefabricated houses, giving a brief explanation of their strengths and weaknesses.

This book is divided into chapters that discuss the history, composition, and properties of timber, iron and steel, non-ferrous metals, alloys, stone, clay, lime and cement, reinforced concrete, asphalt, asbestos, glass and paint.

Spurr, H. V. "Structural Progress." Architectural Forum. Vol. 60, No. 6 (June 1934), pp. 405-422.

This guide illustrates, with photographs and detail drawings, the structural and finish materials available in 1934. Materials such as Formica, Micarta, Flexboard, prefabricated laminated wood arches, gypsum plank, and synthetic stone are included.

Sweet's Catalog. Published annually by McGraw-Hill Information Systems Company.

The Sweet's Catalogs are a compilation of product information by American building suppliers. The first catalog was published by Clinton W. Sweet, owner of The Architectural Record, in 1906 and was entitled Sweet's Indexed Catalogue of Building Construction. Reprints of the catalogs dating from 1906 to 1949 are available on microfiche and are available at The Library of Congress. Columbia University's Avery Library has microfiche for the years 1909 through 1949.

Aluminum alloys, plastics, lightweight concrete, and steel house chassis are discussed in this article. Line drawings of building components such as aluminum roofing sheets, precast concrete slabs, and pressed sheet steel flooring accompany the text.

This book covers a wide variety of building materials from building stone to concrete aggregates to non-ferrous metals and their alloys. It looks at the structural properties and manufacture of these various materials.

Recent Publications

This guidebook is a compilation of selected entries from the first four editions of Architectural Graphic Standards printed between 1932 and 1951. Entries were chosen by the editors for their value in the restoration, renovation, or rehabilitation of historic buildings. Sections on building materials include information on masonry, metals,
carpentry, thermal and moisture protection, glass, and finishes.

Entries in this compact encyclopedia describe some 14,000 materials. The 70-page index is particularly helpful because it includes common and trade names as well as chemical names.

Special kitchen countertop finishes, including monel metal, carrara glass, enameled metal, plastic laminates and soapstone are discussed along with their advantages and disadvantages. A list of current suppliers is provided for some materials.

Each entry of this encyclopedia has the following subheadings: Physical and Chemical Properties, Types and Uses, Application, Condensed Checklist, Conditions Favorable, Conditions Unfavorable, History and Manufacture. Although some trade names are provided in the index, they are only given for the more commonly known products.

New products such as prismatic glass, aluminum, stainless steel, pigmented structural glass, tinted and mirrored glass, glass block, and neon were utilized for 1920s and 1930s storefronts. Determining the physical condition, appropriate treatments, and replacement procedures for deteriorating examples of these materials is the focus of this well-documented brief.

This book focuses on 12 unique designs for American houses that were consciously created and publicized as being prototypes for the future. Some of the designs discussed here include a variety of concrete houses, Orson Fowler's octagon, Buckminster Fuller's Dymaxion house, Frank Lloyd Wright's Usonian House, and prefabricated houses such as Motohomes, and Lustron houses.

This book concisely presents information on corrosion and corrosion protection of a wide range of materials including hydraulic mortar, concrete, ceramic building materials, glass, stone, gypsum, metals, timber, and plastics. It is organized in a format that is easily referenced.

This encyclopedia is a collection of articles grouped into eight categories including General Building Materials, Glass, Polymers, Plastics and Composites, Metals, and Wood. Extensive bibliographies are provided with each article.

While this brief emphasizes the potentially destructive effects of aluminum and vinyl siding on the integrity of historic buildings, it is nonetheless valuable for its information on the manufacture, installation, durability, cost, and energy efficiency of these mid-twentieth century cladding products.

The hazards of various historic materials and the products used in restorations are discussed. Topics include paint stripping, paint application, demolition, wood repair and preservation, and construction. A list of sources for safety equipment is also provided.

The author explores a variety of materials that are likely to be found in an old house kitchen and makes recommendations for each material’s maintenance. Wood floors, wood cabinets, wood trim, wood counters, linoleum, tile, stone, porcelain, enameled metal, copper and brass, chrome and other plate, plastic laminates and glass are all covered.

After a brief history of floor coverings and a survey of techniques, floorcovering examples are given along with their names, descriptions, date of origin, fiber content, etc. The 1900 to 1930 section includes wood, brick, tile and resilient flooring, matting, rag, list and handmade rugs, braided and hooked rugs, flatwoven and pile carpeting, and oriental rugs. A list of suppliers is provided.

The author thoroughly covers the common problems associated with renovating doors and windows and makes recommendations about materials and repair. Chapters outline support systems, finishes, metal and wood materials, sliding glass doors, curtain walls and glazing. Important information on manufacturers, standards setting bodies, government agencies, trade associations, books and periodicals is also included.

Chapters of this book address the major material categories (concrete, clay products, timber, metals, and plastics) in terms of weathering and performance. Reasons for various types of deterioration or failure are provided, along with recommendations for treatment. Each chapter is supplemented by ample illustrations and a bibliography.

Zenitherm, Absorbege, and Cushocel, which were found in the New Jersey State House Annex, are investigated. Zenitherm is a cast imitation stone product. Absorbege is a paper mache material and Cushocel a carpet pad. Descriptions of the three materials are given based on examination of remaining materials including laboratory tests, and research conducted in historic documents such as Sweets Catalogs.

The entries in this five-volume set provide extensive information on all topics related to architecture. Although most of the information for building materials pertains to current applications, a historical background is usually included. A bibliography at the end of each entry and an index are also provided.

Intended as a guide for the investigation and evaluation of building materials in existing buildings, this book discusses applications, problems, and diagnostic methods. The concise descriptions, photographs, drawings and references to other publications provide vital information pertaining to the preservation, rehabilitation, or restoration of the built environment.
Classifications of Materials

Wood

While wood construction is not unique to the twentieth century, the staggering amount of innovation in its use is a hallmark of the age. Advancements in glues and connectors during the first half of this century led to major changes. As in previous eras, wood remained the staple of residential construction, but as technology increased, this traditional product took on new shapes and characteristics. Laminated timbers provided strength and versatility never before realized. Plywood production was improved, facilitating the introduction of new building components such as plywood box beams and prefabricated panels. The following entries provide information and insight regarding some of these recent aspects of wood building products.

The wonders and versatility of plywood are revealed in Bienert's discussion of this laminated product. He discusses recent developments that improved production and explains the incredible strength of plywood as well as its varied uses. The article includes photographs, and details of interior and exterior plywood construction.

This is a short but detailed explanation of wood preservatives of the time. The article provides general considerations regarding wood preservatives and explains the differences between repellents, preservatives, water-repellant preservatives, and sealers.

This valuable article provides insight into the massive changes that took place in twentieth century wood construction. The resulting increase in research brought the development of box-beams, glue-laminated timbers and related products. These technological advances, and a growing aversion among architects to a machine aesthetic, helped wood remain an important building material to the present.

This book describes many of the applications of lamination that arose in the early twentieth century. It deals with strengths of laminates and sandwich structural elements, adhesives, plywood, plastic, and metal laminates.

Dietz, Albert G. "Glued Timbers Tailored to Fit." *Architectural Record.* Vol. 106, No. 6 (December 1949), pp. 139-141.

Patented in Weimar, Germany in 1904, glue-laminated members became versatile and widely used in the United States. Through photographs of buildings and an explanation of production techniques, the article explains uses for this product.

This is a listing of many of the printed materials available to architects, engineers, and builders in the 1940s.

Dietz discusses design based on stress-graded wood improvements in wood glue, the use of connectors, glue-laminated members, and the special considerations involved in the use of those members. The article includes a bibliography.

This article provides information on the strength of plywood and the qualities of plywood that surpass solid wood. It provides advice for concrete construction with details on both structural and finish work.

This short article explains some of the advances in wood technology which were spurred on by World War II. Improved methods of lamination and plywood technology are discussed, along with timber connectors and the grading and seasoning of lumber.

This article explains the American Lumber and Treating Company's minalith process, by which phosphate, sulphate and boron chemicals were used to fireproof plywood. This short entry hails the new process and gives details for its use.

The author, the president of the United States Plywood Corporation, describes the future of plywood in the building industry in postwar America. Products such as wall and floor panels, molded one-piece closets, and columns and tubes are discussed, as well as the important role that plywood would play in prefabricated buildings. Included are many diagrams showing joints and connections, as well as many photographs. Production methods and resin compositions are also given.

This discussion of trends in wood processing of the previous twenty-five years looks at plywood, super-pressed plywood, laminated beams, and veneers of other types of materials and addresses the use of chemicals to resist bacteria, water, and fire. The article also reviews the revival of wood in structural applications, the development of timber connectors, plywood panels, and plank flooring.

Masonry

Although masonry products such as brick, terra cotta, concrete, tile and simulated stone were developed prior to the twentieth century, after 1900 these products went through many technological advances in terms of manufacturing processes that resulted in the availability of many product types. Terra cotta, for example, is an ancient building material, but between 1910 and 1930 the material dominated public and commercial architecture. During this time many specifications and methods of attachment were developed, as well as advancements made in polychrome terra cotta.

Nearly every building constructed between 1900 and 1950 contains some type of masonry, and it is important for the restorer/researcher to know how it was used in terms of twentieth century building practices. This section is divided into several types of masonry: Brick, Clay Tile, Hollow Clay Tile, Terra Cotta, Concrete Block, Gypsum Masonry, Cast Stone and Simulated Stone. These are followed by sources of Related Information.
Brick

"5000 Years to Make a Double Brick." *California Arts and Architecture*. Vol. 57, No. 6 (June 1940), p. 44.

A new brick produced by Gladding, McBean & Company in Northern California is described. This double brick consists of two 2-1/2" x 8-3/8" x 3-1/4" bricks.

This article describes a new process to make strong, inexpensive floors by laying one course of brick with metal lath, resulting in a dramatically strong floor able to withstand heavy loading. It includes photographs and specifications, complete with load charts.

This article discusses Insul-Cla-Blok, an insulated clay block product made of clay and sawdust. Included are diagrams and comparisons of heat transfer values to other wall systems.

The article describes the development of a new type of wall construction using clay block, which is more watertight, stronger, and cheaper than concrete block. The Dubl-Wall and the Pittsburgh Wall are explained. Specifications, dimensions, and building procedures are included along with illustrations and photographs.

The article focuses on the use of Insul-Cla-Blok, a clay block developed for wartime production furnaces, as used in residential and cold storage applications. Specifications are given for the low-cost insulation of homes. Ample detailed drawings and comparisons to conventional masonry walls are also provided.

This article describes the resurgence of the use of reinforced brick masonry since 1922. It explains reinforced brick masonry in terms of its uses, advantages, design and materials. The Groutlock brick, designed to bond to the mortar, is also explained.

Efforts by the United States clay industry to introduce lighter and stronger clay block are discussed. Included are descriptions and specifications for the Brick-tile and the Dubrick, which is a block closed on five sides and open on one for tighter units and easier handling. Industry standards in clay block units are described.

Clay Tile

Bridgman, C. T. "Over 1,000,000 Square Feet of Tile Floor Installed in Midwest." *Brick and Clay Record*. Vol. 91, No. 1 (July 1937), pp. 34-36.

A new fire-resistant, low-cost clay tile floor system is described. Included are specifications, photographs, and notes about the flooring system used on numerous WPA and PWA buildings built in South Dakota, Nebraska, Minnesota, and Iowa.

A new flooring system made of 16-inch clay tile is discussed. The tile is an integral part of the system and is load bearing. Installation procedures and photographs accompany the article.

This article describes the Natco Speedwall tile and the Natco Junior Speedwall tile, as manufactured by the National Fire-proofing Company. This tile is a clay unit to be used in the rapid erection of walls in residential applications.

This article describes Tilecrete, a fireproof, beveled, 16-inch tile set on lightweight steel trusses and covered with concrete. It includes specifications, photographs, and construction methods.

This article discusses the use of brick or clay tile spans between structural steel beams in floor systems. Also covered is flat tile architecture and the conditions survey approach for determining the use of this system. The authors address such issues as structural capacity, how masonry and steel work together, testing deflection, and strain.

Hollow Clay Tile

This practical construction guide was the first book on the subject of hollow tile construction. It provides guidelines, rules, and tables for masons, along with drawings and photographs, explaining the different types of hollow tile and construction techniques.

This article examines a cottage in Tacoma, Washington, built entirely of hollow clay tile. The use of hollow clay tile in residential construction is presented as an innovative and cost-efficient way to build sanitary and moisture-proof houses.

This book is an intensive discussion of structural tile, beginning with the history of clay tile, and covering properties, design, construction, and details. It contains detailed drawings, specifications, and many brand names such as Joistile, Kalex, Tilecrete, and Natcoflor. Detailed discussions are supplemented with descriptions and installation procedures.

This book traces the development of structural tile from its invention in 1875 to 1946. It provides clear explanations and diagrams of different types of tile and their uses in walls, foundations, details, floors and roofs. The book includes an index and construction specifications.

Kalex reinforced tile panels are described. These structural clay tiles range in lengths from six to nine feet and are used for roofing and flooring. The article includes photographs and construction and structural specifications.

This book describes different types of hollow tile and explains the advantages, limitations, and applications of each. It also includes manufacturers' recommendations for wall, arch and lintel design in hollow tile construction. Photographs provide examples of houses built using the fireproof material.

Terra Cotta

In this article, the second part of a three-part series, the author explores the advantages of twentieth century terra cotta as a lightweight, low-cost, fireproof material. While the other two parts focus primarily on design issues, this part concentrates on terra cotta as a modern twentieth century building material.

Croly writes a comprehensive overview of early twentieth century conventions in glazed and colored terra cotta and their manufacture. After the turn of the century, new production methods, a greater selection of colors, and modern techniques of fixing the terra cotta to the building were developed. These aspects are discussed in the article and documented with many photos.

Daniels discusses the transition from architectural terra cotta to ceramic veneer. While still made of the same material, ceramic veneer was machine made and mass produced. Illustrations are included.

By the end of the 1930s, most terra cotta manufacturers were making ceramic veneer, a faster and cheaper method of terra cotta production. The manufacture and popularity of this machine-made product are discussed, as well as methods of attachment. Illustrations are included.

Morrow discusses the modernization of terra cotta, from a hand-packed, hand-fired product, to a machine-made, mass-produced product. Ceramic veneer is covered, as well as other "modern" clay products, in terms of modern production and design.

and flashing), transportation, storage, erection and anchoring. A detailed glossary of terracotta terms is also included.

In the first part, Putnam discusses early twentieth century terracotta in terms of manufacture and application. He describes shrinkage, color variances, tolerances, anchors and hangers, and proper drainage and ventilation practices.

Part II focuses on terracotta column and cornice construction, including detailed descriptions of proper connections and joints.

Part III discusses the marriage of terracotta and concrete. Concrete frameworks covered with a terracotta cladding, with both metal and mortar connections, are included, as well as recipes for both concrete backing and mortar for the setting and bedding of the terracotta. Specification drawings and photographs are included in all of the articles.

This in-depth dissertation includes sections on definitions, history, manufacturers' processes, deterioration, inspection, testing and evaluation, restoration and repair, and a bibliography.

Thrall writes a comprehensive three-part article on early twentieth century techniques for the application of terracotta. Because of better manufacturing and application methods developed in the early twentieth century, the terracotta pieces were larger than previously used. Thrall describes in detail these new larger pieces and new types of fasteners used to affix them to the building. Also included are photographs of buildings using terracotta, as well as many construction drawings.

Tiller discusses the four types of manufactured terracotta available after the mid-nineteenth century with special emphasis on ceramic veneer (developed during the 1930s) and glazed architectural units (predominant during the first third of the twentieth century). His examination details the material's composition and its structural anchoring system, as well as identifies deterioration problems such as crazing, spalling, mortar and metal anchoring failure, and material fatigue. He also outlines techniques for inspection, maintenance, repair and replacement of damaged or lost terracotta units.

The author describes the evolution of terracotta standards as well as the critical numbers needed to specify new terracotta or substitute materials. Tindall notes that there are no standard specifications for the replacement of terracotta work, and the article is aimed at helping restorers prepare their own project specification. Numerous tables and diagrams are included.

This detailed article describes architectural terra cotta, both ornamental and structural. Each step in the manufacture and installation of terra cotta is described, including the responsibilities of the worker in each step. Detailed drawings and specifications are included.

Four methods of applying colored glazes are described, with the most attention given to painting with soluble metallic salts. Mediums, experimental solutions, and firing processes are explained, along with the proportional measurements of mineral elements used to create the colors blue, green, and pink. The article concludes by mentioning the vitreous skin "K" colors and methods used by the Denver Terra Cotta Company.

Concrete Block

Ornamental concrete block, also called decorative or cast block and imitation or artificial stone, was promoted in the 1910s by the Sears Roebuck Company as a cheap, quick, and practical building material. The height of its use occurred in the late 1800s until about the 1930s. This article provides photographs of the various faces available during that period as well as a description of the blockmaking process.

Gillespie traces the history of the imitation concrete block from 1870 to 1920. Rock-face and stone-face block are discussed, as well as the Jarvis and Wizard concrete block machines. Production methods and the various imitation rock faces available are included, along with photos and illustrations.

This article describes a new product by the National Facade Corporation. Concrete blocks are cast with facade material such as brick, limestone, terra cotta, marble, granite, sandstone, or glass block, creating a single-unit masonry block with both the exterior wall surface and its backing. A diagram of a corner detail with different types of facade blocks is included.

This is a collection of papers written for a competition held by *Cement Age* and *Engineering News*, covering the manufacture of concrete blocks.
and use of concrete block. The papers discuss topics ranging from materials and manufacturing machinery to production methods and block design. Illustrations are also included.

"Selection and Use of Concrete Block." *Pencil Points.* Vol. 26, No. 12 (December 1945), pp. 87-91.

This discussion of using concrete block in an architecturally aesthetic manner addresses its various properties such as texture, color, and size. Specifications of various blocks are given, along with photographs and detailed drawings. Case study buildings are also shown.

Due to its low cost and ease of production, Rock-faced concrete block became very popular in the early twentieth century. With period advertisements and photographs of buildings constructed of this material, the article chronicles its early history.

Gypsum Masonry

This article discusses the newest product from the gypsum industry: gypsum hollow tiles. Manufacturing descriptions, specifications, and applications are included.

"Low Cost Construction." *California Arts and Architecture.* Vol. 57, No. 10 (November 1940), p. 34.

Of particular interest in this article about several Los Angeles buildings are the descriptions of a structural gypsum floor, gypsum tile partitions, and a roof constructed of steel beams and structural gypsum.

This article presents the use of precast gypsum units as a new building material for walls, both exterior and interior, and for floors. Specifications and details are included.

Cast Stone

Walker relays improvements in the manufacturing and use of cast stone. By treating it as a concrete product, many of the problems associated with cast stone can be eliminated. Finishes, manufacturing processes, seasoning and curing are also discussed. Illustrations are included.

Warner, who was the president of the Onondaga Litholite Company, discusses the low cost and other advantages of using cast stone, and gives a detailed description of the manufacturing process.

Simulated Stone

Formstone, patented in 1937, was a system of lath and mortar that was rolled with a stone
pattern and sprayed with mica chips or marble dust. The author addresses the methods and problems that may be encountered in removing this material, which was also known as Permastone, Dixie Stone, and Fieldstone.

Prudon traces the history and manufacture of simulated and cast stone, including specifications and improvements in the technology of these products as they moved into the twentieth century. Manufacturers such as the Pacific Stone and Concrete Company are discussed. Photographs are included.

Roman Stone, an artificial stone produced by the Roman Stone Company of Canada, is the focus of Ritchie’s article, along with a discussion of other manufactured simulated stone in Canada and the United States. Illustrations are included.

The development of Rostone, an artificial stone made of particles of shale, lime and stone, was a result of the research of several inventors, including H.C. Ross. The manufacture, chemical composition, and use are several of the issues addressed in this article.

The art of artificial marble, first practiced by Florentine monks around the fifteenth century, allowed the production of large monolithic pieces in the 1930s that would otherwise have been difficult to produce in real marble. The modern process of making artificial marble from a mixture of superfine Keene’s cement and mineral colorings is described in detail.

Related Information

In the first of this two-part article, Emerson describes brick and terra cotta. This comprehensive article begins with the history of these materials and then describes modern production methods. Product specifications are discussed, from roman brick to polychrome terra cotta and terra cotta hollow block.

Roman Stone, an artificial stone produced by the Roman Stone Company of Canada, is the focus of Ritchie’s article, along with a discussion of other manufactured simulated stone in Canada and the United States. Illustrations are included.

The development of Rostone, an artificial stone made of particles of shale, lime and stone, was a result of the research of several inventors, including H.C. Ross. The manufacture, chemical composition, and use are several of the issues addressed in this article.

The art of artificial marble, first practiced by Florentine monks around the fifteenth century, allowed the production of large monolithic pieces in the 1930s that would otherwise have been difficult to produce in real marble. The modern process of making artificial marble from a mixture of superfine Keene’s cement and mineral colorings is described in detail.

Related Information

In the first of this two-part article, Emerson describes brick and terra cotta. This comprehensive article begins with the history of these materials and then describes modern production methods. Product specifications are discussed, from roman brick to polychrome terra cotta and terra cotta hollow block.

Roman Stone, an artificial stone produced by the Roman Stone Company of Canada, is the focus of Ritchie’s article, along with a discussion of other manufactured simulated stone in Canada and the United States. Illustrations are included.

The development of Rostone, an artificial stone made of particles of shale, lime and stone, was a result of the research of several inventors, including H.C. Ross. The manufacture, chemical composition, and use are several of the issues addressed in this article.

The art of artificial marble, first practiced by Florentine monks around the fifteenth century,

Industry standards in products such as reinforced brick and clay block, tile, glazed products and face brick are discussed. Products listed include the Pittsburgh Wall and Du-Brick. Data by the Common Brick Manufacturer’s Association and the Structural Clay Tile Association is also provided.

A number of new clay products and systems, including various methods for tying brick veneer, precast tile beams, interlocking brick, and hollow wall construction are discussed. Brand names include Tilecrete, Farren Wall, Claycraft Hollow Unit, Speedwall Tile, Dek-Tile, Fabrick, Munlock Dry Wall, Speedtile, and Kalex Tile.

This explains unit masonry products including: Bricon tile, Handi-Grip tile, Tex-Dri Wall, Acoustile, speed tile, flashing tile block, Korok tile, precast beams, Belden Brick, Dek-Tile, utility block and interlocking Nail Tile. Numerous photographs and construction details are provided.

This article covers ten "new" clay tile and block products used in residential construction. Products such as modular masonry, roman tile, ceramic veneer, precast lintels, and unglazed terra cotta are listed, complete with manufacturers’ names, photographs, and construction details of each product.

This practical guide to methods of masonry construction provides insight into masonry building practices up to the mid-twentieth century. It includes diagrams for details and construction methods. A well-documented glossary, index and bibliography are also included.

Concrete

When considering the enormous changes in the material environment, the most significant innovations that can be regarded as products of this time period came largely in concrete construction. New societal demands arising from mechanical inventions, technical developments, building code requirements, and changes in taste as well as material wants, led to construction for which concrete was ideally suited. The result is that from 1900 to 1950, and beyond, the quantity of concrete used in all construction expanded far more rapidly than that of all other building materials. The European inventions of prestressing and ferroconcrete thin shells gave the designers and builders the means of exploiting the flexibility in form and solid rigidity of concrete in structures.

Comparatively, the United States lagged behind Europe in technological development, largely because the ruling corporate economic institutions of business and labor resisted change and exploration. Hence, it was early in this century before American literature began promoting and providing technical assistance on emerging concrete systems.

This section is divided into three principle parts based on construction methodology or systems introduced during the twentieth century. These sections are Cast-In-Place, Precast, and Prestressed with Related Information as a fourth. The two sections, Concrete Masonry and Cast Stone, located under the main heading of Masonry, should be referenced for additional citations regarding concrete products.
One of the first examples of the International Style in the United States, the Lovell House, 1929, Los Angeles, Richard Neutra, architect, was constructed from a steel frame and sprayed with gunite, a thin concrete shot from pneumatic hoses, and an early 20th century exterior finish. Photo: Marvin Rand, HABS Collection.

Cast-in-place

The author addresses concerns about the design and finishing of concrete. He discusses textures produced by formwork, washing, or bushhammering and the treatment of pour joints with particular attention given to civil engineering structures.

This is a paper co-authored by Oregon State highway engineer, C. B. McCullough, whose remaining depression-era concrete highway bridges are now on the National Register. The Freyssinet method of arch construction had not been attempted in this country until introduced in the construction of the Rogue River bridge in Oregon in 1932. The method is described in detail.

This early account was intended to familiarize designers with concrete as a modern material. After explaining the structural concepts of reinforced concrete, the author reviews applications, fireproofing qualities, wood formwork, and aggregates.

The author argues that concrete is an economical building material and proposes several approaches to finishing. He discusses methods of constructing cast-in-place ornament including pneumatically placed Gunite.

Newlon, Howard, Jr., editor. *A Selection of Historic American Papers on Concrete, 1876-1926.* Publication SP-52. Detroit, MI: American Concrete Institute, 1976.

This collection of important papers starts with a reprint of "A Brief History of Lime, Cement, Concrete and Reinforced Concrete," written by Jasper O. Draffin. Part II outlines the development of concrete as a building material through a series of landmark papers by the following pioneers in cement and concrete: Thaddeus Hyatt, William Evans Ward, Arthur Newell Talbot, Arthur Russell Lord, C. A. P. Turner, Ernest Leslie Ransome, and Duff Andrew Abrams. A concise biography precedes each individual paper.

The author, an advocate of reinforced concrete, relies on many photographs and drawings to illustrate the potential of this building material. Chapter One covers formwork (metal, composition) and methods of placement, while Chapter Two discusses surface treatment, aggregate, and color. Tracery, parabolic arches, and architectural design are presented in following chapters.

A summary of the history and development of concrete from a global perspective, this book traces the history, technological development and design potentials of concrete and its influence on the built environment of the first half of the twentieth century. It is particularly well suited to describe the range of concrete systems and construction methodologies to the preservationist who has no architectural background. Of importance are chapters three and four, which deal with "Progress in Materials and Methods" and "Technical Design Innovations" respectively. The text is fully illustrated and there is an extensive bibliography.

The first part of this treatise, which was reprinted in *A Selection of Historic American Papers on Concrete, 1876-1926* (see above), discusses the history of reinforced concrete with a focus on patents. In Part Two, Ransome writes a "Personal Reminiscence" while Saurbrey contributes "Basic Patents and a Short Survey of the Early History of the Art."

This informative historical survey of concrete and steel gives a contemporary view of the comparative advantages and disadvantages of these two prominent structural materials. The companion article following, "The Evolution of Design in Steel and Concrete," by Walter Goldsmith, is a very specific technical history in a volume of *Architectural Review* devoted totally to concrete and steel.

This textbook focuses on the structural design of concrete and its reinforcement. Chapter topics include Anchorage, Embedment, Anchor Bolts, Reinforced Concrete Columns, and Retaining Walls.

This volume, written by the American who pioneered (along with Maillart) the twentieth century development of the flat slab system, focuses on Turner's patented flat slab system reinforced in two orthogonal directions. The reprint gives descriptions of the various systems in common usage.

Concrete flooring's various uses are discussed and exhibited through photographs in this article. Staining, painting, and integral coloring of concrete floors is included, as well as a discussion on terrazzo floors. A table with commercial names of colors for use in cement with the ratio of color to cement is also included.

Precast

This four-part volume thoroughly covers the twentieth century developments in the field of precast concrete. Included in the text are: design methodology, the processes of production, transportation and erection, along with treatment of units and the joinery between members. The last part is a survey of structures erected from precast members or a combination of such members with cast-in-place concrete.

This is a summary of the materials and methods used in making most types of precast concrete with a significant emphasis upon the manufacture of cast stone ornamentation and detailing. The text is generously supported with details and illustrations.

This article is important for the method of manufacture and uses of an early form of precast lightweight concrete, used in American housing. While this type of heat treated or autoclaved aerated concrete is commonplace in Europe, it has been minimally used in the United States. There are photographs and details amplifying the text.

Prestressed

This is a highly regarded early volume on prestressed concrete design that was intended to comprehensively cover the accumulated information on this relatively new subject. The first section is focused on the history, development, and fundamental concepts of prestressed concrete. The second part covers the design of prestressed concrete structures, and the third section addresses the design problems. Though technical, it offers the reader an informative text on prestressed concrete issues.

This is a short history of prestressed concrete. The article concludes with information about buildings in the United States that were under construction or being designed at the time. The Guggenheim Museum by Frank Lloyd Wright is among them.

This technical article describes issues related to prestressed concrete and is complete with comparative diagrams and loading charts. It relates a summary of developments in an emerging system.

Nasser, George D., editor. *Reflections on the Beginnings of Prestressed Concrete in America*. Chicago, IL: Prestressed Concrete Institute, 1981. Reprinted from the *Journal of the Prestressed Concrete Institute*. Vol. 23, No. 3 (May/June 1978) and successive issues through Vol. 25, No. 3 (May/June, 1980).

This series of papers illustrates the early history of prestressed and precast concrete in North America. Part One, by Charles C. Zollman, traces the events that led to the construction of Walnut Lane Bridge in Pennsylvania, the first major linear prestressed concrete structure in the United States. Additional articles describe innovators in prestressed concrete. The text finishes with a chronology called "Milestones of Events and Developments in North American Prestressed Concrete Industry."

A concise history of prestressed concrete is presented in this article as well as present and future applications in the United States. It is well illustrated with works by Magnel and Freyssinet.

Related Information

This article describes the characteristics and production of fireproof shingles and panels made of Portland cement with asbestos fibers used as a binder. The panels were used as ceilings, partitions, and wainscoting.

The rehabilitation of the historic Oakland Auditorium c. 1916 for life-safety requirements of California's seismic code is the focus of this article. An analysis of the concrete's condition, the seismic resistance and structural modifications are included. A program for strengthening seismic deficiencies and arresting the deterioration of concrete is provided.

Of particular interest to the preservationist are Chapter Six, "Maintenance and Repair Strategies" and Chapter Seven, "Materials and Processes for Repair." Chapter Eight provides case studies. A thorough list of references is provided after each chapter.

Both reinforced and unreinforced concrete systems are discussed in terms of deterioration,
examination, and repair. Structural design defects, spalling, document review, and deflection repair are presented. Especially helpful are photographs used to illustrate the step-by-step repair procedure for a 1941 reinforced concrete industrial building.

This article traces the history and reports the progress that was made in the twenty years following the first use of "high-early" strength Portland cement in the 1927 Moffat tunnel project. It has charts comparing "high-early" to ordinary concrete, as well as contemporary uses.

The major developments in the history of concrete construction in the United States are related in this article. As a historical survey, it is well researched and includes photographs of 18 prominent concrete buildings.

As one of the most comprehensive annotated bibliographies on the history, development and manufacture of concrete, this book has a wealth of information on early twentieth century research and reporting on precasting, prestressing, and evolving concrete chemistry. Many of the 413 alphabetically organized entries are very important to early standardization of the concrete industry during this century. The work contains a comprehensive index.

This early work provides a comprehensive review of the Portland cement industry including manufacturers, development, and promoters. The four appendices provide useful historical information regarding the industry and manufacturers.

This article reports on post-war research on lightweight aggregates. Available aggregates are classified into four groups: volcanic (perlite, pumice); nicaceous mineral (vermiculite); clay and shale (Airox, Rocklite); and by-products (slag, cinders).

Sabnis, Gajanan, editor. Rehabilitation, Renovation, and Preservation of Concrete and Masonry Structures. Detroit, MI: American Concrete Institute, 1985.

This volume presents papers from three symposia held in 1981 and 1982 and sponsored by the Technical Activities Committee of the American Concrete Institute. Many of the papers are devoted to early twentieth century building rehabilitation case studies. The first two papers, "Essential Steps in Adaptation of Old Buildings" and "Non-Destructive Evaluation in Rehabilitation and Preservation of Concrete and Masonry Materials," are especially useful.
Wiedyke, Robert G., and Mary K. Hurd.
American Concrete Institute: A 55 Year Index 1905-1959. Detroit, MI: American Concrete Institute, 1960.

This comprehensive index of all the papers published in the *Proceedings* of the American Concrete Institute facilitates research on a wide variety of topics relating to concrete. Synopses are provided for volumes 26-55 of *Proceedings* which corresponds to the first volumes of the *Journal of the American Concrete Institute*.

Metals

The period between 1900 and 1950 was a time of rapid development in the metallurgy and structural theory. With the increased technology resulting from industrialization, alloys such as monel metal and stainless steel were developed and utilized for structural and ornamental applications. Although aluminum was developed in 1897, it was not until the early 1930s that it was viewed as a building material.

In addition to new alloys, new construction systems evolved with the advancement of the technology of metal. Conventional construction systems such as reinforced masonry and wood frame gave way to steel frame systems which allowed the evolution of the skyscraper.

This section is divided into Ferrous Metal Alloys (those containing iron in some form), Non-Ferrous Metal Alloys (those not containing iron), and Related Information for sources covering many types of metals.

Ferrous Metal Alloys

This article discusses the use of steel in housing. It provides a series of guidelines which include those for floor and wall construction, finishes, built-in equipment, radiant heating, adaptability, and light-gauge construction.

Vermiculite plaster used with steel is the subject of this article. This combination results in a better fire rating, lighter weight, comparable tensile strength, and lower cost.

By the 1930s, aluminum was in wide use for exterior, weather-resistant architectural elements, such as this exterior lantern outside the U.S. Custom House, Philadelphia, PA. Ritter and Shay, architects, Edward Ardolino, sculptor. *Photo:* Esther Mipaas.

The majority of this book covers the use of cast iron prior to the turn of the twentieth century. However, the last section discusses, in a fairly indepth manner, the use of cast iron between 1900 and 1945 from the decorative (grilles) to the utilitarian (fuse box covers).

Grinter discusses connections, timber construction, tension and compression members, beams, girders, combined stress and flexure, stress and stability. The designs of plate girders, industrial roofs, low-truss highway bridges, office buildings, tall buildings and continuous beams are also reviewed.

Described as "the first radical departure in structural steel design since the introduction, about 20 years ago, of the rolled broad flange beam and column sections," the new composite section is reviewed in this article. It discusses structural integrity as well as implications on heavy steel construction.

This book explores stainless steel and the new construction system of the curtain wall. It discusses design issues and examines specific buildings that utilize curtain wall systems.

This article encompasses a wide range of topics, including the types of stainless steel, curtain walls, mechanical properties, fabrication, cleaning, exterior and interior trim, roof drainage, and insect screening.

This concise article on the preservation and maintenance of metals provides information on methods of preventing deterioration and repairing damage.

"Steel." *Architectural Record.* Vol. 87, No. 4 (April 1940), pp. 73-80.

This is the sixth in a series of articles on trends in building materials. It is an extensive review of steel and its structural properties, design possibilities, and range of application.

Column beam construction and the Portal Truss are two systems of rigid frame design.
discussed in this article. Designed by
engineers in Chicago and Cleveland, these
systems employ shallower, lighter beams with
longer expanses and are welded rather than
riveted.

Wood, B. L. "Research Report: Construction With
30, No. 3 (March 1949), pp. 74-78.

A brief history of steel in building
construction, from the skyscraper to the single-
family dwelling, is provided. The focus is on
light gauge steel and its advantages in design,
fire safety, strength, quality, and design
specifications.

Non-Ferrous Metal Alloys

Architectural Aluminum. Pittsburgh, PA:
Aluminum Company of America, 1929.

This trade catalog focuses on the use of
aluminum in architecture, from the capping
of the Washington Monument to the finial
at the top of the Standard Oil building, in
order to show the range of capabilities
aluminum has as a building material. The
end of the catalog cites new uses for
aluminum in building including rigid
conduit for floodlight systems, "top-down"
shingles, and complete roofing systems.

Coulter, Lane, and Maurice Dixon, Jr. *New
Mexican Tinwork, 1840-1940.* Albuquerque:
University of New Mexico Press, 1990.

This book delves into the tools, materials,
processes, functional uses, methods for dating,
and craftsmanship of Spanish New Mexican
tinsmithing. Illustrated with color plates and
black and white photographs, it provides
insight into this lost art form. A glossary of
terms and an appendix of hispanic tinsmiths are
also included.

Howard-White, F. B. *Nickel, An Historical
Review.* Princeton, NJ: Van Nostrand Press,
1963.

This book traces the development of the nickel
metal industry. It is fairly specific about the
nature of some of its alloys including Monel
and nickel silver.

McMullen, A.L. *Architectural Metalwork in
Copper and Its Alloys.* London, England:
Copper Development Association, 1963.

This is an informative source on copper and its
many alloys. Not only does it discuss the
properties of the various alloys but it also looks
at the issues of construction, finishes and
maintenance. The text is well supported by
photographs and architectural drawings.

Moore, R. L. "How and When to Use Aluminum
Alloys." *Engineering News-Record.* Vol. 135,
No. 16 (October 18, 1945), pp. 518-524.

R. L. Moore explains war-time performance
tests on aluminum that show its importance as
a building material. His article includes
descriptions of aluminum and its alloys and it
provides tables regarding properties, forms,
and characteristics. He discusses available
types, shapes, joints, connectors and finishes
and supplies photos of experimental products
and test results.

This book is a source of specific examples of aluminum architecture. It contains photographs accompanied by brief discussions as well as indexes of architects, architecture, and aluminum products.

One of the more thorough resources on Monel Metal, this trade catalog covers Monel from its structural, chemical and material properties to its color, feel, texture, weathering, finish and design. Examples of its varied use are provided and supported by photographs and detail drawings.

This monograph is a review of properties, production, and uses of nickel and its ferrous and nonferrous alloys. In addition to providing a list of trademarks and owners, it discusses the history of nickel as well as its recovery, production, consumption, uses, and the location of nickel ore. The publication provides a wealth of technical and chemical information.

Described as an engineering reference book, the second volume in this set is a comprehensive guide to aluminum. Its physical and mechanical properties, production and fabrication, joints and connections, potential and limitations, structural design, architectural design and detail, environmental control systems and use are all discussed. Included are charts and line drawings, as well as an index containing conversion tables, specifications, and designations.

——. "Aluminum as a Structural Material." *Progressive Architecture*. Vol. 29, Nos. 9 and 10 (September and October 1948), pp. 77-84; 89-92.

This two-part article looks in depth at the application of aluminum as a structural material. The first part concentrates on aluminum and its alloys and on material properties, forming, fabrication and economics.
The second part examines shapes and connections when used structurally, citing examples of existing structures.

This paper discusses the composition of aluminum and bronze, their manufacture, uses, application techniques, and characteristics. A brief description of microchemical analysis is given as well as a list of buildings where these metallic finishes were used.

This article provides statistics on the structural properties of Monel metal and gives examples of its first applications such as propellers for the U.S.S. Dakota, sheet metal roofing for the Pennsylvania Railroad Terminal, and even golf clubs. Most of the cited examples attest to its superior performance in comparison with German silver and steel.

This catalog accompanied a National Building Museum exhibit on the 100 years of the Sheet Metal Industry in America. It gives a broad overview of sheet metal applications, and a history of its production. Included are paintings, photographs, and a bibliography.

Ferrous and non-ferrous alloys and their properties and applications are discussed in this article. This includes iron, bronze, copper, German silver, Monel metal, aluminum, yellow (Muntz) metal, tool-proof steel, and chrome-nickel steel.

This book charts the use of metal as a building material in America. The history of copper, nickel, iron, aluminum and their respective alloys is discussed as well as the processes of deterioration and preservation. Also included is an extensive bibliography.

Related Information

This historic overview of all metals covers development and application from the earliest use to the date of publication.

This brief is valuable for its discussion of 1920s and 1930s metals such as chrome, nickel alloys, aluminum, and stainless steel. Suggested methods for cleaning, including
glass bead peening, crushed walnut shell pressure cleaning, and fine sand blasting, are examined for their potential in removing paint and corrosion from very plain to highly articulated metal features.

This article suggests substitute materials, primarily stone and structural glass, for materials in short supply due to World War II. It is followed by time-saving standards which provide construction details for stone and glass.

The housing shortage following World War II prompted the Lustron Corporation to begin manufacturing a prefabricated house made of porcelain enameled steel panels. This article highlights the historical significance of these houses. It includes drawings and photographs of floor plans and various details along with suggestions for the preservation of Lustron Homes.

This catalog contains detail drawings, photographs, dimensions, and prices of the entire line of architectural sheet metal from the company of Broschart & Braun.

This book consists of photographs of buildings that feature architectural iron and bronze work. Each building is identified and the architect is noted. The book also contains a listing of other buildings across the nation that have iron and bronze detailing.

A general description of metals used for interior and exterior applications is given.
Repair, replacement and maintenance recommendations are provided for iron, copper (and its alloys, including monel), aluminum, and metal leaf.

This concise guide to metals is organized in an outline form with the following headings: General Requirements, Materials, Gages, and Treatments.

Thermal performance and operational problems associated with World War II era steel casement windows resulted in a search for sympathetic substitute windows for this 1947 public housing project in New York’s Lower East Side. The selection of the new aluminum windows of a similar casement-hopper design, their specifications and methods of installation as well as the recycling of the original steel windows is discussed.

Glass

Although glass is an ancient building material, it has enjoyed extensive development in the twentieth century. Shatterproof, x-ray proof, wired, decorative, and opaque glass are only a few examples that were introduced and promoted under a variety of trade names. Two types, Structural Glass and Glass Block, were exploited for their capabilities as load-bearing materials. These, along with Decorative Glass, serve as the subheadings in this category.

Decorative Glass

The author discusses modern approaches to stained glass. These include the use of machine-made commercial glass (chipped, rippled, pressed-lens, etched and ground) and designs that require minimal divisions.

An analysis of modern stained glass history, this essay begins with the work of the Berlin expressionists (in particular the Glass Pavilion of 1914). Other significant architects discussed in connection with the use of stained glass include Auguste Perret, Charles Rennie Mackintosh, Frank Lloyd Wright, Henry Van de Velde, and Peter Behrens. The contribution of the Bauhaus school is also noted.

Glass Block

This short article details the development of Gladstone, a load-bearing glass unit made by bonding Vitrolite with Haydite, as manufactured by the Libbey-Owens-Ford Glass Company. This article notes that many buildings under construction in Detroit were using the product. It includes a photograph and cross-section of a Gladstone slab.

This article discusses design possibilities for glass block, tiles and relief panels.
Applications using these products are discussed, and several photographs showing contemporary designs are included.

"Demountable Glass Block Partitions for Stores, Offices, Homes." *American Builder*. Vol. 64, No. 11 (November 1942), p. 44.

This article describes a war-time method of building internal glass block walls without the use of metal or mortar by using prefabricated wood strips and wedges as produced by the Insulux Division of the Owens-Illinois Glass Company.

The Luxfer Glass Prism tile unit and its application in roof and wall construction is discussed. The diamond or modeled surface of this product is compared with flat glass. Included are photographs of Luxfer Glass in buildings in Germany.

This article describes the Revere System, a new method for using prefabricated and
interlocking metal members for glass block construction. Installation procedures are explained and a diagram of the product is shown.

This article explains glass block in terms of three categories: residential, institutional/commercial, and industrial. It ends with a paragraph on new products. Explanations are given regarding directional glass block, diffusing blocks, and a new system for demountable glass block wall systems. Diagrams and many photographs are included.

"Vacu-lite Glass Blocks." *American Builder.* Vol. 62, No. 6 (June 1940), p. 84.

A new patented form of insulated glass roof and ceiling construction using Alglas aluminum frames and Vacu-lite partial-vacuum glass blocks is announced. The description of the product includes specifications and small illustrations.

Structural Glass

Popular with the Art Deco, Streamline, and Moderne designs of the 1920s and 1930s, pigmented structural glass (commonly known by the trade names Carrara, Sani Onyx, Rox, and Vitrolite) emerged in the first decade of the twentieth century as a substitute for marble. This brief discusses the aesthetic appeal, technical composition, application methods, deterioration processes, maintenance, repair, and replacement strategies for this material and its panel system of construction.

Works No. 6 of the Pittsburgh Glass Company goes through a complex process to produce Carrara glass and Herculite. The plant and the production process are described in this article and brief references to applications of these materials are included.

In this article, the author proposes the use of glass as a load-bearing material. He examines uses where glass is treated not as a surfacing material but as a structural component capable of carrying compressive and tensile loads.

Yorke provides standard sizes, physical descriptions, and properties for structural glass, with particular attention given to Vitrolite and Carrara Glass. A chart of colors includes the Munsell notation and decade of availability. After discussing the three types of failure, recommendations are made for replacement and repair.
Related Information

The three types of deterioration (decolorization, scratching and etching, and breakage) are described in this article. Recommendations for treatment and a list of reproduction glass suppliers are provided.

A layer of very fine glass thread called Vetroflex is fixed between two layers of glass to form Thermolux. This article describes the make-up of Thermolux as well as its thermal, diffusive, and sound-insulating qualities.

Emerson, David B. "Glass and Glazing," Parts I and II. *Pencil Points.* Vol. 12, Nos. 9 and 10 (September and October 1931), pp. 713-716; 789-791.

This first part of this article traces the general history of glass, focusing on the more recently developed types such as plate, obscured, wire, ultraviolet transmission, x-ray proof, and shatterproof glass. The second part addresses prism glass, mirrors, setting of glass and appropriate materials and sizes of frames.

The properties, applications, and forms of recently developed glass products are examined. The types of glass available (e.g. Lustraglass, Pyrex, Herculite) are listed by trade name and manufacturer.

Extensive histories of all types of glass are provided in this thorough book. Numerous black and white photographs, line drawings, and an extensive bibliography are included.

Explaining advances in twentieth century glass production, this article distinguishes older types of blown glass from more recent types such as plate glass, wire glass, hollow glass bricks, and early fiberglass. In addition to clarifying the attributes of these materials, the article provides insight into the overwhelming effect that World War II had on building technology.

Plastics, Rubber, and Asphalt

Asphalt was first used thousands of years ago, but it has enjoyed widespread use in the twentieth century. While it is generally thought of as a paving material, it has been commonly utilized in other applications such as roofing and flooring. Another material that has seen further scientific developments is rubber. Since the patent for vulcanization was received in 1844, the manufacturing processes advanced significantly. The shortage of natural rubber during World War II led to the further development of synthetic rubber which was first produced in the late nineteenth century.

Plastic is another material that was also researched and developed extensively as a result of the two World Wars. Advancements in plastics technology affected many building materials. These include flooring, walls, roofing, waterproofing, paint, and adhesives, as well as electrical and mechanical equipment. While there are many types of plastics, they can be classified into two major categories: thermoplastics (can be reheated and remolded) and thermo-setting plastics (can only be molded once).
The following entries address these three materials which played a significant role in the first half of this century.

This thorough handbook provides information regarding various aspects of asphalt. It defines terminology, specifications, paving equipment, construction requirements, various applications, and erosion control. The book also includes lists of Asphalt Institute offices and member companies.

This brief article discusses the development of Bakelite phenol-laminated resinoids and their applications in furniture and interior design.

This group of charts was collected to inform designers about types of plastics, their applications, trade names and manufacturers. They also include information regarding chemical composition and the physical and chemical properties of plastics.

A plastic block designed by Alden B. Dow is presented in this article. The 12" x 12" x 1/8" units can be transparent, translucent, or opaque and offer extensive building opportunities.

The authors list and describe new uses for rubber in building applications. Products such as sound insulation, wall panels, coverings, rubber flooring and rubber-coated sheet metal are discussed. Also included is a description of Ebonite, a hard rubber wall panel. Construction details are provided for the products discussed.

Alden Dow envisioned houses made almost completely of plastic. He invented the plastic block described in this article, which was to be an integral part of plastic construction.

This book is the result of a conference conducted by the Building Research Institute in October of 1954. It discusses the plastics industry, and the standards, codes and present and future uses of plastics. "Surfacing and Decorative Uses of Plastics in Building," by Plastics editor Hiram McCann, evaluates vinyl flooring (e.g. Corlon, Plastile, Terraflex), decorative laminates (e.g. Formica, Naugatop, Conolite) and styrene wall tile.

Different types of plastics are explained and identified by trade names. For example, Lumarith, Masuron, and Nixonite are cellulose acetate materials; Plexiglas, Crystalite, and Lucite are acrylic resins; while Durite, MakaLot, Resinox and Textolite are phenolic...
materials. The manufacture and application of laminated plastics and translucent laminates are also discussed.

Lusty concisely describes the difference between thermo-plastics (i.e. polyvinyl-chloride) and thermo-setting plastics (i.e. Bakelite). The manufacture of molded and laminated sheet plastics is reviewed in addition to their possible applications as windows, wall and floor tiles, plumbing, and interior decoration.

Marshall provides an overview of plastics and their manufacturing processes. The organization of the plastics industry is explained.

This article outlines three types of plastic materials available in 1931 including phenolic resins (e.g. Bakelite), cellulose acetate (e.g. Lumarith), and urea formaldehyde resins (e.g. Beetle). A chart of architectural uses, trade names, forms, principal characteristics, suitable uses, colors, transparency and effects of various compounds is included.

This brief article lists the characteristics of different types of synthetic resin plastics as well as the manufacturers and trade names of these products.

This issue contains eleven articles about plastics, including "Chemistry's Man Made Plastics" by William Demarest, "Structural Considerations" by Frederick J. McGarry, and "Residential Research" by Lee Frankl.

This issue is devoted to plastics in architecture. An introductory review by Albert Dietz is followed by articles discussing properties, building codes, applications, and case studies. Although much of the information pertains specifically to the 1970s, the issue is helpful in understanding the development of plastics in the twentieth century.

Although most of this book focuses on contemporary design, Chapter Five, "Historical Applications," summarizes developments in early architectural applications. Photographs illustrate pre-fabrication systems and component housing systems such as the 1957 Monsanto House of the Future.

Over 11,000 entries are defined in this book by an expert in the plastics field. It is supplemented with illustrations, a 24-page chronology (beginning with 1800 B.C.), and a list of 186 references.

Supplemented with numerous photographs, this article describes the different types of thermoplastics and thermo-setting plastics. A
time line of the evolution of plastics, beginning with the discovery of urea in 1773, and ending with developments in 1938, is provided.

In addition to explaining the manufacturing process of plastics, their advantages and disadvantages, and historical applications, this book provides extensive information on exterior and interior uses. Particular subjects include Corroplast roofing, Perspex glazing and wall panels, Holoplast panels, and Prespine wall coverings. A glossary of trade names (e.g. Accotile, Durite, Kalistron, Luxorite, Plastrim), a bibliography, and advertisements are also provided.

The authors discuss the various applications of acrylic plastics (marketed under the trade names Lucite and Plexiglass), including partitions, corrugated panels, storefronts, lighting and skylights. Recommendations are made for optical considerations, safety, machining, and installation.

Composites and Laminates

During the first half of the twentieth century, many innovative composite materials were developed, especially in the 1930s and 1940s. These materials were often either substitute materials such as Formica, a replacement for tile and wood countertops, or labor-saving prefabricated materials, such as Celotex siding, an asphalt-based material with a backing and finished surface. While laminates and composites are often thought of as building materials of the latter part of the twentieth century, they did play an important role in construction during the first half.

This short but informative article defines and explains the use of each class of wood fiber building boards. It includes a table with specifics regarding composition, sizes, appearance, fasteners and finishes for this material.

Although this book focuses on the development of composite laminates since 1949, it is helpful in providing some historical background. Particularly useful are Chapter 3, "Structural Glued Laminated Timber," Chapter 4, "Plywood," Chapter 7, "Composite-Glass Structures," and Chapter 12, "Stainless-Steel-Clad Metal."

This book, which describes the evolution of Formica laminate and its pervasive presence in American society, grew out of the celebration of Formica Corporation's 75th anniversary. It provides ample photographs, many historical, and includes chapters specifically on Formica use in the fifties and in diners.

"Products and Practice." *Architectural Forum*. Vol. 72, No. 6 (June 1940), pp. 413-418.

This article discusses the role of plastics in building, especially when used as a laminate and combined with wood. It covers decorative laminates, resin bonded plywood and molded products. Trade names and manufacturers (e.g. Bakelite by the Bakelite Corporation, Vinlylite by the Carbide and Carbon Chemicals Corporation) are also included.

The construction of a World War II housing project by the Housing Authority of Los Angeles is the topic of this article. It describes, among other techniques, the integration of plastics and masonite-tempered Presdwood.

The panels discussed in this article were developed during World War II for high-speed aircraft. The honeycomb paper core panel, which can be faced with sheet materials such as plywood or metal, was being tested for strength and resistance to decay.

This short article promotes the use of urea formaldehyde laminations in exterior and interior applications. It cites translucence, ease of cutting, heat resistance, and minimal weight as some of the advantages of this material.

This article praises the versatility of this fire-resistant sound-deadening material. It explains the types of wood wool slabs, their uses, and the process of producing them from wood fiber.

Wallboard, Stucco, and Plaster

Although gypsum is one of the oldest building materials, particularly as in its use in plaster, it was not until the 1940s that it was used in sheet form for wall and ceiling systems. The speed of erection and cost placed it in competition with conventional plaster. Although gypsum board, plaster, and stucco may be considered finish materials, they played important roles in the twentieth century construction industry. The development and treatment of these materials are addressed in the following entries.

A general description of stucco, its composition, characteristics, and application as well as a brief history is given. Proper mixing techniques are also included.

This article describes a new material produced by Buttonlath Manufacturing Company, Buttonlath, which was used as a special lath system for the application of plaster. It was made with a plastic base and waterproof paper and was thought to work well for soundproofing, heat insulation, and fire resistance.

The various methods of sgraffito are described, first as practiced in Italy with a special lime putty; then as used at the 1915 Panama Pacific Exposition, with a gypsum base; and then as used with more contemporary Portland cement varieties. Photographs show examples of sgraffito from Renaissance Italy and John Galen Howard's Hilgard Hall at the University of California, Berkeley. The author ponders problems and the fate of sgraffito in future architectural endeavors.

This article briefly describes and outlines the principal uses of lime, cement and plaster. Specific areas include hydrated lime, lime stucco, hydraulic lime, Portland cement, white cement, Lumnite, brick cement, slag cement, and LaFarge cement.

The exterior finishing of stone, brick, log, and wood frame buildings with a two- or three-part plaster coat is the focus of this brief. Attention is paid to uses of stucco that began in the late 1890s with the Prairie style, continued through the 1920s Art Deco period, and were greatly popularized during the 1930s and 1940s with the various Revival styles.

Modern methods used to save plasterwork are outlined in this article, and include adhesion systems and stabilization methods. One section is devoted to Akoustolith Plaster. This material's history and composition are described as determined through experiments and information found in patents.

This article provides definitions and descriptions of terms and accessories relating to plastering as encountered in the 1930s.

In 1945 North America and Great Britain were using 200,000,000 square yards of gypsum plasterboard each year. This material became a staple of the twentieth century building industry. Lefebure explains the incredible ingenuity entailed in plasterboard production and the numerous qualities of the product.

With the late nineteenth century substitution of gypsum for lime as a base material, plaster
evolved into a twentieth-century wall coating. Combined with rock lath, a paper-faced compressed gypsum board lath, gypsum plaster proved an economical finish product for residential work through the 1930s. This Brief provides information on deterioration problems associated with structural failure, poor workmanship, improper curing and moisture problems. It also discusses the repair of cracks, replacement of lath, patching of holes, removal, and substitution.

Wall Coverings and Coatings

The search for protective coatings for a variety of applications during the two World Wars led to significant developments in paint technology. The composition of paint was particularly influenced by the use of synthetic ingredients. The following entries address paint and another finish material, wallcoverings, in a twentieth century context.

The problems encountered with reattaching plaster are discussed. The majority of the article provides a description of a recommended method of plaster reattachment. Sections include materials used, formulation, application, and the advantages of the method that is described.

The development of drywall is discussed in the first of this two-part article. It concentrates on the attributes of fiber board, explaining its uses, cost, and sizes, providing details for application. The article is meant to provide architects with information on the proper choice of materials.

Despite the title, this article provides useful information on house paint colors popular up until 1924. The color palette produced by the author is based on early manuals and textbooks for painters.

New paints (1944) and their chemical compositions are discussed in comparison to existing paints. Guidelines for specifications and applications (including the Kinatron tube) for paints such as lead, enamel, casein products, varnishes, and aluminum are given.
Discussion also includes products that are not available due to the war; and the pros and cons of painter-mixed versus manufacturer-mixed paints.

The chapter that deals with wall coverings between 1890 and 1915 includes many photographs of period wall coverings. The influence of wallpaper design, the colors used, the types and locations of wallpaper, and the influence of style are discussed.

A rubber-based coating produced by Goodyear Tire and Rubber Company is introduced as a corrosion preventative for application to wood, metal, or concrete. Light reflection, density and hardness of Aluminum Plicote and Whitel Plicote are discussed.

The latter part of this book includes reproductions of wallpapers from the twentieth century. Each catalog entry includes useful information such as the manufacturer's name, country, as well as date and method of manufacture of the original paper. A list of manufacturers of reproduction papers is included.

This article discusses the results of a six-year test in Washington, D.C. on the durability of various masonry paints. Walls of stone and cinder-concrete block, lightweight-aggregate block, new and used common brick, and cast concrete slabs were painted with cement water, resin emulsion, oil-base and rubber solution paints. Recommendations are made based on the study and are clearly illustrated with a chart.

The new paint technologies that were developed due to war and war-time shortages are discussed. Many types of paint and

The interior of the Johnson Wax Corporation Building, 1936, Racine Wisconsin, designed by Frank Lloyd Wright, features several uniquely 20th century building materials such as linoleum, stainless steel, and tube-glass walls. Photo: Jack E. Boucher, HABS Collection.
materials are included, such as pigments, oils, water-mixed paints, cement-based paints, casein, synthetic resin, metallic paints, rust-resistors, fire retarders and fluorescent paints.

Resilient Flooring

The search for sanitary and attractive resilient flooring in the nineteenth century resulted in Frederick Walton's development of Linoleum in England in 1863. The overwhelmingly prominent use of this product in later years makes Linoleum an integral part of any discussion of early twentieth century flooring.

As with most building materials of the twentieth century, the two World Wars resulted in new developments, bringing various vinyls and poured resilient floors to the fore. The entries below include information regarding the development of some of these products, their characteristics, and preservation.

The recommended methods for installing, cleaning, and repairing historic linoleum are given in this article. Once the initial work is completed, methods for cleaning and maintaining this floor covering are outlined. The installation that is described is based on a 1920s method.

A comprehensive history of the development and manufacturing techniques of floor cloths and linoleum is presented. Recommendations
for the repair, cleaning and restoration of linoleum are included.

"Poured Resilient Flooring for Houses."

Three types of resilient flooring are discussed in this article, specifically plastic floorings that can be poured in place over concrete, wood or steel subfloors. Included in the article are descriptions of Silvacon, Oaktred and Dex-O-Tex brands, along with installation procedures, specifications, and product compositions. Photographs are also included.
Construction Systems

During the first half of the twentieth century, many innovative construction systems were developed for both housing stock and commercial buildings. Spurred on by the need for economical and speedy construction systems and new building materials, many manufacturers developed prefabricated and mass-produced buildings. These products ranged from partial systems such as honeycomb-laminated panels and insulated plywood wall panels, to complete structures such as the Lustron House and the Stran Steel Quonset Hut.

Another popular system, particularly through the 1930s, was Guastavino vaulting. The materials used in this system evolved as new building materials, such as Akoustalith acoustic tiles, became available. Because of their relationship to new building materials of the twentieth century, sources addressing construction systems have been included.

Concrete Systems

This is an early report of tilt-up construction as it was being implemented in the years immediately following World War II. The article contains contemporary costs, usual materials and details, a limited history of the system, with patent information and techniques of construction.

This article discusses early techniques and strategies for the implementing of the lift-slab system of reinforced concrete slab floors.

A tilt-up stone-faced concrete system developed by Form-U-Lay Homes of Cleveland, this system allows for the construction of a concrete wall on the ground after which it is tilted vertically into position.

This article discusses tilt-up and lift-up construction systems for concrete slabs. The author advocates the application of gentle pressure to the concrete during the early curing stages, or "densing," as a means to insure against cracks in the slabs.

Guastavino Vaulting

This article describes the historical origins and advantages of thin masonry vaulting that was popular in the United States from the 1880s to the 1940s. The contributions of Rafael Guastavino, Sr., who brought this construction technique to the United States from Spain, are also discussed.

After providing a concise history of Rafael Guastavino, Sr. and his company, Prudon describes the materials and construction of thin-shelled vault construction. He provides information on Rumford and Akoustalith tiles (introduced in 1914 and 1916 respectively), reasons for structural failure, and recommendations for restoration.
developed new wall systems. The potential of materials such as Santocel, Cemesto board, honeycomb laminated panels, foam plastics, and metal panels is explored here.

The "speed-built" system, developed by Kim Weber of Los Angeles, was used in the construction of prefabricated houses in Washington. This article describes the process which includes the integration of plywood panels and stressed skin sheets. It uses prefabricated panels for the roof, floor, and walls.

This article briefly reports on prefabricated and mass-produced houses such as the Lustron House, the B-16 House (insulated plywood panels), the Vultee House (aluminum and plastic), the Harman House (steel frame), and the HomeOla House (stressed-skin panels).

This article describes a Federal Housing Administration project in Fort Wayne, Indiana involving plywood box beam panelled houses. The construction system is discussed and illustrated from its preliminary stages to roof installation.

Drawings and explanations for a variety of prefabricated components, such as walls and
floors, are given in this article. It concludes with a summary of the current and future uses of synthetic finishes, wood, steel, and concrete.

Luce describes a residential building system that uses a reinforced brick slab, four-inch load-bearing walls and brick partition walls built into prefabricated panels on site. Construction instructions and specifications are included, as well as many photographs. The system was first introduced at the Chicago "Century of Progress" exhibition in 1937.

This article describes and illustrates Farm Security Administration prefabricated steel farmstead units. Each building's foundation, frame, sides, roof, exterior door, window trim, and fireplace is composed of steel. The article concludes with a discussion of labor and costs. This work serves as an introduction to pre-war prefabrication.

The construction and cost of Tennessee Coal, Iron and Railroad Company’s prefabricated steel farm buildings for the federal government is the basis for this concise article.

Steel Systems

This book covers the history and development of tensile structures, from traditional use in the suspension bridge to its application in modern architecture. Photographs, drawings, and a bibliography are included.

An experimental system consisting of pipe columns and steel beams provides an opportunity for flexibility of interior space and a curtain wall exterior. This system is characterized by a reduced initial cost, low maintenance, ease and speed of erection, and possibilities for prefabrication. Photographs, floor plans, and construction details are included.

Lopez describes the manufacturing of the quonset hut by the Stran-Steel Company. The use of the Quonset as housing and factory stock is discussed, and model specifications are given. Many detailed construction diagrams and photographs are included.

Konrad Wachsmann’s invention of a structural system that uses standardized tubular members and moveable partitions is the basis of discussion for this article. This is an extensive but concise description of the construction and design of the system complete with photographs and line drawings.

The McLellan steel frame construction system consists of small, round steel rods which are welded into a network creating walls, roof and floor joists. Panels are electric welded as a covering and metal lath is stitched to the frame prior to the application of concrete. The structure is claimed to be resistant to fires, earthquakes, and termites.

This brief article on the varied uses of Quonset Huts with reference to the Great Lakes Steel Corporation is accompanied by black and white photographs.

"Quonsets Turn to Civilian Life." *Interiors.* Vol. 105, No. 2 (February 1946), pp. 92-93.

When the Quonset hut returned to America after World War II, it rapidly gained acceptance as building stock. Its prefabricated modular system made it easy to build at a low cost. This article describes the use of this building system in post-war America. Construction details and photographs are included.

This article discusses the use of the Quonset hut as a modular building system that can be combined to create large buildings quickly. These buildings can be rapidly erected and used as factories and warehouses. Construction diagrams, photographs and case studies are included.
Additional Resources

Centers of Research

American Institute of Architects
AIA Archives
1735 New York Avenue, NW
Washington, DC 20006

Avery Architectural and Fine Arts Library
200 Avery
Columbia University
New York NY 10027

Library of Congress
101 Independence Avenue, S.E.
Washington, DC 20540

National Trust for Historic Preservation Library
McKeldin Library
University of Maryland
Architecture Building
College Park, MD 20742

Periodicals

Architectural Record
McGraw-Hill Information Systems Company
1221 Avenue of the Americas
New York, NY 10020

Architectural Technology
1130 Connecticut Avenue, N.W., Suite 625
Washington, DC 20036

Architecture
BPI Communications
1515 Broadway
New York, NY 10036

Building Design and Construction
Cahners Publishing
1350 East Touhy Avenue
P.O. Box 5080
Des Plaines, IL 60018

The Bulletin
Association for Preservation Technology International
P.O. Box 8178
Fredericksburg, VA 22404

The Construction Specifier
Construction Specifications Institute
601 Madison Street
Alexandria, VA 22314-1791

CRM Bulletin
US Department of the Interior National Park Service Cultural Resources
P.O. Box 37127
Washington, DC 20013-7127

Historic Preservation
National Trust for Historic Preservation
1785 Massachusetts Avenue, N.W.
Washington, DC 20036

Journal of the Society of Architectural Historians
1232 Pine Street
Philadelphia, PA 19107

Metal Architecture
7450 North Skokie Boulevard
Skokie, IL 60077

Modern Metals
Trend Publishing
625 North Michigan Avenue, Suite 2500
Chicago, IL 60611
The Old House Journal and
The Old House Journal Catalog
2 Main Street
Gloucester, MA 01930

Preservation News
National Trust for Historic Preservation
1785 Massachusetts Avenue, N.W.
Washington, DC 20036

Progressive Architecture
600 Summer Street
P.O. Box 1361
Stamford CT 06904

Preservation Organizations

Advisory Council on Historic Preservation
1100 Pennsylvania Avenue, Suite 809
Washington, DC 20004

American Association for State and Local History
530 Church Street, Suite 600
Nashville, TN 37219

Association for Preservation Technology International
P. O. Box 8178
Fredericksburg, VA 22404

Council on America’s Military Past
P. O. Box 1151
Fort Myer, VA 22211

Friends of Terra Cotta
C/o Susan Tunick
771 West End Avenue, 10E
New York, NY 10025

National Trust for Historic Preservation
1785 Massachusetts Avenue, N.W.
Washington, DC 20036

Society of Architectural Historians
1232 Pine Street
Philadelphia, PA 19107

Vernacular Architecture Forum
C/o Michael Ann Williams
Programs in Folk Studies/MLIS
Western Kentucky University
Bowling Green, KY 42101

Professional and Trade Organizations

General

American Architectural Manufacturers Association
1540 E. Dundee Road, Suite 310
Palatine, IL 60067

American Council of Independent Laboratories
1629 K Street, N.W., Suite 400
Washington, DC 20006

American Institute of Architects
1735 New York Avenue, N.W.
Washington, DC 20006

American National Standards Institute
11 W. 42nd Street
New York, NY 10036

Associated Builders and Contractors
1300 N. 17th Street, 8th Floor
Rosslyn, VA 22209
Advertisement for Flexglass, an early 20th century real-glass material that was easily glued to any surface, and came in four types: opaque, rolled pattern mirror, metallic, and flat mirror.
Masonry Institute of America
2550 Beverly Boulevard
Los Angeles, CA 90057

American Iron and Steel Institute
1101 17th N.W., Suite 1300
Washington, DC 20036-4700

Tile Heritage Foundation
P.O. Box 1850
Healdsburg, CA 95448

American Society for Metals
Materials Park, OH 44073

Concrete

American Concrete Institute
P. O. Box 19150
22400 Seven Mile
Detroit, MI 48219

Copper Development Association
260 Madison Avenue, 16th Floor
New York, NY 10016

Concrete Reinforcing Steel Institute
933 N. Plum Grove Road
Chaunburk, IL 60173-4758

Ferroalloys Association
900 2nd Street, N.E., Suite 306
Washington, DC 20002

National Precast Concrete Association
10333 N. Meridian, Suite 272
Indianapolis, IN 46290

Lead Industries Association
295 Madison Avenue
New York, NY 10017

Portland Cement Association
5420 Old Orchard Road
Skokie, IL 60077-1083

Metal Construction Association
1101 14th Street, N.W., Suite 1100
Washington, DC 20005

Prestressed Concrete Institute
175 W. Jackson Boulevard
Chicago, IL 60604

National Association of Architectural Metal Manufacturers
600 S. Federal Street, Suite 400
Chicago, IL 60605

Glass

Flat Glass Marketing Association
3310 SW. Harrison Street
Topeka, KS 66611-2279

American Institute of Steel Construction
1 E. Wacker Drive, Suite 3100
Chicago, IL 60601-2001

Glass Tempering Association
3310 SW. Harrison Street
Topeka, KS 66611-2279

Insulating Glass Certification Council
3933 U.S. Route 11
Cortland, NY 13045
National Glass Association
8200 Greensboro Drive
McLean, VA 22102-3881

Asphalt Institute
Asphalt Institute Building
College Park, MD 20740

Rubber Manufacturers' Association
1400 K Street, N.W.
Washington, DC 20005

Society of Plastics Industry
355 Lexington Avenue
New York, NY 10017

Wallboard, Stucco, and Plaster

Plastering Information Bureau
21243 Ventura Boulevard, Suite 115
Woodland Hills, CA 91364

United States Gypsum Association
125 S. Franklin St.
Chicago, IL 60606

Wall Coverings and Coatings

National Paint and Coatings
1500 Rhode Island Avenue, N.W.
Washington, DC 20005

Government Agencies

Federal Housing Administration
U.S. Department of Housing and Urban Development
451 7th Street, S.W., Room 915B
Washington, DC 20410