这
United States Department of Agriculture

®Natural Resources Conservation Service

National Park Service

Soil Survey of Sleeping Bear Dunes National Lakeshore, Michigan

How To Use This Soil Survey

This publication consists of text, tables, and maps. The text includes descriptions of detailed soil map units and provides an explanation of the information presented in the tables. It also includes a glossary of terms used in the text and tables and a list of references.

The detailed soil maps can be useful in planning the use and management of small areas. To find information about your area of interest, locate that area on the map sheet. Note the map unit symbols that are in that area. Go to the Contents, which lists the map units by symbol and name and shows where each map unit is described.

The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.

National Cooperative Soil Survey

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service has leadership for the Federal part of the National Cooperative Soil Survey.

The soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, the maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

Literature Citation

The correct citation for this survey is as follows:
United States Department of Agriculture, Natural Resources Conservation Service, and United States Department of the Interior, National Park Service. 2013. Soil survey of Sleeping Bear Dunes National Lakeshore, Michigan. (Accessible online at: http://soils.usda.gov/survey/printed surveys/)

Cover Caption

North Bar Lake (center of photo) lies to the north of the Empire Bluffs (in the distance). Image was taken from the Pierce Stocking Scenic Drive. North Bar Lake is surrounded by Deer Park soils that formed in dunes.

Additional information about the Nation's natural resources is available online from the Natural Resources Conservation Service at http://www.nrcs.usda.gov/.

Nondiscrimination Statement

Nondiscrimination Policy

The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the basis of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and, where applicable, political beliefs, marital status, familial or parental status, sexual orientation, whether all or part of an individual's income is derived from any public assistance program, or protected genetic information. The Department prohibits discrimination in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases apply to all programs and/or employment activities.)

To File an Employment Complaint

If you wish to file an employment complaint, you must contact your agency's EEO Counselor (http://directives.sc.egov.usda.gov/33081.wba) within 45 days of the date of the alleged discriminatory act, event, or personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint filing_file.html.

To File a Program Complaint

If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form, found online at http://www.ascr.usda. gov/complaint_filing_cust.html or at any USDA office, or call (866) 632-9992 to request the form. You may also write a letter containing all of the information requested in the form. Send your completed complaint form or letter by mail to U.S. Department of Agriculture; Director, Office of Adjudication; 1400 Independence Avenue, S.W.; Washington, D.C. 20250-9419; by fax to (202) 690-7442; or by email to program. intake@usda.gov.

Persons with Disabilities

If you are deaf, are hard of hearing, or have speech disabilities and you wish to file either an EEO or program complaint, please contact USDA through the Federal Relay Service at (800) 877-8339 or (800) 845-6136 (in Spanish).

If you have other disabilities and wish to file a program complaint, please see the contact information above. If you require alternative means of communication for program information (e.g., Braille, large print, audiotape, etc.), please contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

Supplemental Nutrition Assistance Program

For additional information dealing with Supplemental Nutrition Assistance Program (SNAP) issues, call either the USDA SNAP Hotline Number at (800) 221-5689, which is also in Spanish, or the State Information/Hotline Numbers (http://directives.sc.egov. usda.gov/33085.wba).

All Other Inquiries

For information not pertaining to civil rights, please refer to the listing of the USDA Agencies and Offices (http://directives.sc.egov.usda.gov/33086.wba).

Contents

How To Use This Soil Survey i
Preface xi
Introduction 1
How This Survey Was Made 1
Detailed Soil Map Units 3
190775—Adrian-Houghton mucks 4
190777—Alcona-Richter sandy loams, 0 to 2 percent slopes 6
190778-Alcona-Richter sandy loams, 2 to 6 percent slopes 7
190779—Alpena gravelly sandy loam, 0 to 12 percent slopes 9
190780—Au Gres-Kalkaska sands, 0 to 4 percent slopes 11
190781—Bach loam 13
190782—Deer Park sand, 6 to 18 percent slopes 14
190783-Deer Park sand, 18 to 45 percent slopes 15
190784—Deer Park-Roscommon sands, 0 to 6 percent slopes 16
190786-Dune land 18
190787-East Lake loamy sand, 0 to 6 percent slopes 18
190788-East Lake loamy sand, 6 to 12 percent slopes 20
190789-East Lake loamy sand, 12 to 18 percent slopes 22
190790-East Lake loamy sand, 18 to 25 percent slopes 23
190791-Eastport sand, 0 to 6 percent slopes 24
190792-Edwards muck-Marl beds complex 26
190794-Emmet-Leelanau complex, 2 to 6 percent slopes 28
190795-Emmet-Leelanau complex, 6 to 12 percent slopes 30
190796-Emmet-Leelanau complex, 12 to 18 percent slopes 32
190797-Emmet-Leelanau complex, 18 to 25 percent slopes 35
190799—Emmet-Leelanau complex, 25 to 50 percent slopes 37
190801-Emmet-Mancelona gravelly sandy loams, 4 to 12 percent slopes 39
190803-Emmet-Mancelona gravelly sandy loams, 18 to 35 percent slopes 42
190805-Emmet-Omena sandy loams, 2 to 6 percent slopes 44
190806-Emmet-Omena sandy loams, 6 to 12 percent slopes 47
190807-Emmet-Omena sandy loams, 12 to 18 percent slopes 49
190808-Emmet-Omena sandy loams, 18 to 25 percent slopes 52
190809-Emmet-Omena sandy loams, 25 to 50 percent slopes 54
190811-Hettinger-Muck complex 57
190812-Hettinger-Tonkey loams 59
190814—Kalkaska sand, 0 to 6 percent slopes 62
190815-Kalkaska sand, 6 to 12 percent slopes 64
190816-Kalkaska sand, 12 to 18 percent slopes 66
190817-Kalkaska sand, 18 to 25 percent slopes 67
190818-Kalkaska sand, 25 to 45 percent slopes 69
190819-Kalkaska-East Lake loamy sands, 0 to 6 percent slopes 71
190820-Kiva-Mancelona gravelly sandy loams, 2 to 6 percent slopes 73
190821—Kiva-Mancelona gravelly sandy loams, 6 to 12 percent slopes 75
190823-Kiva-Mancelona gravelly sandy loams, 18 to 25 percent slopes 78
190824—Lake beaches 80
190825—Lake bluffs 80
190826—Leelanau-East Lake loamy sands, 0 to 6 percent slopes 81
190827—Leelanau-East Lake loamy sands, 6 to 12 percent slopes 83
190828—Leelanau-East Lake loamy sands, 12 to 18 percent slopes 86
190829—Leelanau-East Lake loamy sands, 18 to 25 percent slopes 88
190830—Leelanau-East Lake loamy sands, 25 to 45 percent slopes 91
190831—Lupton-Markey mucks 94
190832-Mancelona sandy loam, 0 to 6 percent slopes 96
190833-Mancelona sandy loam, 6 to 12 percent slopes 97
190834—Mancelona-East Lake loamy sands, 0 to 6 percent slopes 99
190835—Mancelona-East Lake loamy sands, 6 to 12 percent slopes 101
190836-Mancelona-East Lake loamy sands, 12 to 18 percent slopes 104
190837—Mancelona-East Lake loamy sands, 18 to 25 percent slopes 106
190838-Mancelona-East Lake loamy sands, 25 to 45 percent slopes 109
190839—Mancelona-Richter gravelly sandy loams, 0 to 6 percent slopes 111
190840—Nester silt loam, 2 to 6 percent slopes 114
190841—Nester silt loam, 6 to 12 percent slopes 115
190842—Nester silt loam, 12 to 18 percent slopes 117
190843—Nester silt loam, 18 to 25 percent slopes 119
190844—Nester silt loam, 25 to 50 percent slopes 120
190846—Pits, gravel 122
190847—Richter-Alcona sandy loams, 0 to 2 percent slopes 123
190848—Richter-Alcona sandy loams, 2 to 6 percent slopes 124
190849—Roscommon sand-Markey muck 126
190850—Sanilac silt loam, 0 to 6 percent slopes 129
190851-Tonkey-Munuscong-losco sandy loams, 0 to 2 percent slopes 130
190852-Tonkey-Munuscong-losco sandy loams, 2 to 6 percent slopes 133
190853-Water 136
190854—Wallace-Kalkaska sands, 2 to 12 percent slopes 136
190855-Wind eroded land, sloping 138
190856-Wind eroded land, steep 139
193236-Beaches 140
193237-Thompsonville-Milnichol fine sands, 0 to 3 percent slopes 140
193255—Spinks-Coloma sands, 0 to 6 percent slopes 142
193256—Spinks-Coloma sands, 6 to 12 percent slopes 145
193257—Spinks-Coloma sands, 12 to 18 percent slopes 147
193258—Spinks-Coloma sands, 18 to 35 percent slopes 150
193260—Copemish sand, 3 to 12 percent slopes 152
193262—Kaleva sand, 0 to 6 percent slopes 154
193263—Kaleva sand, 6 to 12 percent slopes 156
193265-Grattan sand, 0 to 6 percent slopes 157
193266-Grattan sand, 6 to 12 percent slopes 159
193267-Grattan sand, 12 to 18 percent slopes 160
193269—Grattan sand, 35 to 50 percent slopes 162
193270—Covert sand, 0 to 6 percent slopes 164
193271—Pipestone sand, 0 to 4 percent slopes 165
193272—Dair muck 167
193277-Benona sand, 0 to 6 percent slopes 168
193278-Benona sand, 6 to 12 percent slopes 170
193279—Benona sand, 12 to 18 percent slopes 172
193284—Udorthents-Udipsamments complex, very steep 174
193285—Lumley-Makinen complex 176
193286-Histosols and Aquents, ponded 178
193287—Dune land-Quartzipsamments complex, hilly to very steep 180
193288—Udipsamments, nearly level and undulating 181
193342—Gorvan-Houghton-Glendora complex, frequently flooded 182
193349—Spinks-Coloma sands, 35 to 70 percent slopes 185
193351—Benona sand, 18 to 35 percent slopes 188
193354 -Dune land-Quartzipsamments complex, undulating to hilly 189
193357—Shavenaugh sand, 18 to 35 percent slopes 191
193359—Shavenaugh sand, 6 to 12 percent slopes 193
193360—Shavenaugh sand, 0 to 6 percent slopes 195
193362-Benzonia sand, 18 to 35 percent slopes 197
193363—Benzonia sand, 12 to 18 percent slopes 199
193364—Benzonia sand, 6 to 12 percent slopes 201
193365—Benzonia sand, 0 to 6 percent slopes 203
193371—Dair-Pipestone complex, 0 to 2 percent slopes 205
193372—Access Denied 207
193423—Benona sand, 35 to 70 percent slopes 207
193484 -Pits, sand and gravel 209
193494—Nordhouse sand, 18 to 70 percent slopes 209
193496-Nordhouse sand, 6 to 18 percent slopes 210
193497—Nordhouse sand, 0 to 6 percent slopes. 211
193498—Nordhouse-Platteriver-Dair complex, 0 to 6 percent slopes 213
193503—Spinks-Shavenaugh sands, 0 to 6 percent slopes 215
193504—Spinks-Shavenaugh sands, 6 to 12 percent slopes 218
193505—Spinks-Shavenaugh sands, 12 to 18 percent slopes 221
193506—Spinks-Shavenaugh sands, 18 to 35 percent slopes 223
193507—Spinks-Shavenaugh sands, 35 to 50 percent slopes 226
193508-Madaus muck 229
193509—Boyer-Shavenaugh complex, 0 to 6 percent slopes 230
193510—Boyer-Shavenaugh complex, 6 to 12 percent slopes 233
193511-Boyer-Shavenaugh complex, 18 to 35 percent slopes 235
193513—Dair-Adrian mucks 238
193514—Platteriver-Pipestone sands, 0 to 4 percent slopes 240
202010—Houghton-Adrian mucks 242
202016—Spinks-Tekenink, sandy substratum, complex, 0 to 6 percent slopes 244
631170—Fogg-Benzonia sands, 35 to 50 percent slopes 246
631171—Fogg-Benzonia sands, 18 to 35 percent slopes 249
631172—Fogg-Benzonia sands, 12 to 18 percent slopes 252
631173-Fogg-Benzonia sands, 6 to 12 percent slopes 254
631174—Fogg-Benzonia sands, 0 to 6 percent slopes 257
680939—Fern-Spinks sands, 6 to 12 percent slopes 260
680943-Milnichol fine sand, 0 to 4 percent slopes 262
680945—Fern sand, 6 to 12 percent slopes 264
680946-Fern sand, 0 to 6 percent slopes 265
680971—Nessen-Kaleva sands, 18 to 35 percent slopes 267
680972—Nessen-Kaleva sands, 12 to 18 percent slopes 270
680973-Nessen-Kaleva sands, 6 to 12 percent slopes 272
680974—Nessen-Kaleva sands, 0 to 6 percent slopes 275
893251—Boyer-Shavenaugh complex, 12 to 18 percent slopes 278
894062—Remus-Spinks complex, 18 to 35 percent slopes 280
894063—Remus-Spinks complex, 12 to 18 percent slopes 283
894064-Fern-Remus complex, 6 to 12 percent slopes 285
894065—Fern-Remus complex, 0 to 6 percent slopes 288
894104-Mollineaux-Remus complex, 18 to 35 percent slopes 290
894105-Mollineaux-Remus complex, 12 to 18 percent slopes 293
894165—Spinks-Tekenink, sandy substratum, complex, 35 to 50 percent slopes 295
899682—Kaleva sand, 35 to 50 percent slopes 298
899722-Goodharbor sand, 1 to 12 percent slopes 300
899731-Covert-Pipestone sands, 0 to 6 percent slopes 301
899733-Covert-Dair complex, 0 to 6 percent slopes 303
899734 -Benzonia sand, 35 to 50 percent slopes 306
Use and Management of the Soils 309
Interpretive Ratings 309
Rating Class Terms 309
Numerical Ratings 309
Land Capability Classification 310
Prime and Other Important Farmland 311
Hydric Soils 312
Landform and Parent Material. 313
Land Management 313
Recreation 315
Engineering 316
Dwellings and Small Commercial Buildings 317
Roads and Streets, Shallow Excavations, and Landscaping 318
Sewage Disposal 319
Source of Gravel and Sand 320
Source of Reclamation Material, Roadfill, and Topsoil. 320
Ponds and Embankments 321
Soil Properties 323
Engineering Properties 323
Physical Soil Properties 324
Erosion Properties 325
Total Soil Carbon 326
Chemical Soil Properties 327
Water Features 327
Soil Features 328
Formation and Classification of the Soils 331
Factors of Soil Formation 331
Processes of Soil Horizon Differentiation 345
Classification of the Soils 349
References 351
Glossary 353
Tables 363
Table 1.—Soil Legend 364
Table 2.-Land Capability Classification 388
Table 3.—Prime and Other Important Farmland 398
Table 4.-Hydric Soils 399
Table 5.-Landform and Parent Material 409
Table 6.—Land Management, Part I (Planting) 433
Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads) 450
Table 6.—Land Management, Part III (Site Preparation) 468
Table 6.—Land Management, Part IV (Site Restoration) 481
Table 7.—Recreation, Part I (Camp and Picnic Areas) 497
Table 7.—Recreation, Part II (Trail Management) 518
Table 8.-Dwellings and Small Commercial Buildings 537
Table 9.—Roads and Streets, Shallow Excavations, and Landscaping 554
Table 10.-Sewage Disposal 580
Table 11.-Source of Gravel and Sand 609
Table 12.—Source of Reclamation Material, Roadfill, and Topsoil 628
Table 13.—Ponds and Embankments 654
Table 14.—Engineering Properties 675
Table 15.—Physical Soil Properties 723
Table 16.—Erosion Properties 755
Table 17.—Total Soil Carbon. 782
Table 18.—Chemical Soil Properties 793
Table 19.-Water Features 820
Table 20.-Soil Features 853
Table 21.-Taxonomic Classification of the Soils 867
Table 22.—Soil Classification Key 869

Preface

This soil survey was developed in conjunction with the National Park Service's Soil Inventory and Monitoring Program and is intended to serve as the official source document for soils occurring within Sleeping Bear Dunes National Lakeshore, Michigan.

This soil survey contains information that affects current and future land use planning in the park. It contains predictions of soil behavior for selected land uses. The survey highlights soil limitations, actions needed to overcome the limitations, and the impact of selected land uses on the environment. It is designed to meet the needs of the National Park Service and its partners to better understand the properties of the soils in the park and the effects of these properties on various natural ecological characteristics. This knowledge can help the National Park Service and its partners to understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. The location of each map unit is shown on the detailed soil maps. Each soil in the survey area is described, and information on specific uses is given. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the park office for Sleeping Bear Dunes National Lakeshore.

Soil Survey of Sleeping Bear Dunes National Lakeshore, Michigan

United States Department of Agriculture, Natural Resources Conservation
Service, and United States Department of the Interior, National Park Service

How This Survey Was Made

This survey was made in conjunction with the National Park Service's Soil Inventory and Monitoring Program to provide information about the soils and miscellaneous areas within Sleeping Bear Dunes National Lakeshore.

The soil survey data was clipped from two county-based soil surveys: the soil survey of Benzie and Manistee Counties, Michigan (USDA-NRCS, 2008) and the soil survey of Leelanau County, Michigan (USDA-SCS, 1973). The soil survey of Benzie and Manistee Counties was mapped at a scale of 1:12,000 and was correlated in August 2005. Its data was updated in March 2010. The soil survey of Leelanau County was mapped at a scale of 1:20,000 and correlated in January 1967. Its data was partially updated in June 2003. The overall data for Leelanau County was considered out-of-date at the time this report was assembled. The data for this document was extracted in January 2013. In some instances, because data was clipped from more than one county-based set of soil maps, some same-named detailed soil map units may have more than one map symbol and their properties may vary. There are 152 different map units in the park and 642 map unit components. Two duplicate water map units were combined.

Sections of this report were reviewed by State-based staff of NRCS and by soils staff at the University of California, Davis.

The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil
scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units).

Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they delineated the boundaries of these bodies on digital imagery and identified each as a specific map unit.

Detailed Soil Map Units

The map units delineated on the detailed soil maps in this survey represent the soils or miscellaneous areas in the park. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. The contrasting components are mentioned in the map unit descriptions. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the maps provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a soil series. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. The soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their
use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil map are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Deer Park sand, 6 to 18 percent slopes, is a phase of the Deer Park series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the map. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Au Gres-Kalkaska sands, 0 to 4 percent slopes, is an example.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Dune land is an example.

For some map units, component percentages do not add up to 100 percent due to the vintage of the data. In older soil surveys, components of minor extent were not assigned a component percentage.

Table 1 lists each map unit in the park, its major and minor components, and the percentage of each component in the unit. Other tables give properties of the soils and the limitations, capabilities, and potentials for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

190775—Adrian-Houghton mucks

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt Elevation: 600 to 1,495 feet
Mean annual precipitation: 25 to 35 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 60 to 140 days

Map Unit Composition

Adrian and similar soils: 55 percent
Houghton and similar soils: 45 percent

Description of the Adrian Soil

Classification

Sandy or sandy-skeletal, mixed, euic, mesic Terric Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low
Parent material: 16 to 51 inches of organic material over sandy glaciofluvial deposits Restrictive feature(s): None within a depth of 60 inches

Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: High (about 11.3 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D
\section*{Typical Profile}
Oa-0 to 8 inches; muck
Oe-8 to 24 inches; muck
$2 \mathrm{Cg}-24$ to 60 inches; sand

Description of the Houghton Soil

Classification

Euic, mesic Typic Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: More than 51 inches of organic material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 23.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D
Typical Profile
Oa-0 to 10 inches; muck
Oe-10 to 60 inches; muck

190777-Alcona-Richter sandy loams, 0 to 2 percent slopes

Map Unit Setting
Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,600 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition
Alcona and similar soils: 55 percent
Richter and similar soils: 30 percent
Dissimilar minor components: 15 percent

Description of the Alcona Soil

Classification

Coarse-loamy, mixed, active, frigid Alfic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: Stratified sandy and loamy glaciofluvial deposits and/or glaciolacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Water table (depth, kind): About 30 to 72 inches, perched (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 8.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2s
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 12 inches; loamy fine sand
12 to 18 inches; loamy sand
18 to 24 inches; sandy loam
24 to 60 inches; stratified loamy sand to sandy loam

Description of the Richter Soil

Classification

Coarse-loamy, mixed, semiactive, frigid Alfic Haplaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 25 to 40 inches of sandy and/or loamy material over stratified, calcareous sandy and silty glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 to 18 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2w
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 27 inches; fine sandy loam
27 to 60 inches; stratified loamy fine sand to sandy loam
Minor Components

Hettinger soils

Percent of map unit: 15 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190778—Alcona-Richter sandy loams, 2 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet

Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Alcona and similar soils: 65 percent
Richter and similar soils: 25 percent
Dissimilar minor components: 10 percent

Description of the Alcona Soil

Classification

Coarse-loamy, mixed, active, frigid Alfic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Low
Parent material: Stratified sandy and loamy glaciofluvial deposits and/or glaciolacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Water table (depth, kind): About 30 to 72 inches, perched (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 8.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 12 inches; loamy fine sand
12 to 18 inches; loamy sand
18 to 24 inches; sandy loam
24 to 60 inches; stratified loamy sand to sandy loam

Description of the Richter Soil

Classification

Coarse-loamy, mixed, semiactive, frigid Alfic Haplaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear

Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Very low
Parent material: 25 to 40 inches of sandy and/or loamy material over stratified, calcareous sandy and silty glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 to 18 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Moderate (about 7.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: B
Typical Profile
0 to 8 inches; sandy loam
8 to 27 inches; fine sandy loam
27 to 60 inches; stratified loamy fine sand to sandy loam

Minor Components

East Lake soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190779—Alpena gravelly sandy loam, 0 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt Elevation: 600 to 1,000 feet

Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 100 to 150 days

Map Unit Composition

Alpena and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Alpena Soil

Classification

Sandy-skeletal, mixed, frigid Entic Hapludolls

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 0 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Very low
Parent material: 4 to 10 inches of sandy and loamy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Very low (about 2.1 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 4 inches; gravelly sandy loam
4 to 60 inches; cobbly coarse sand

Minor Components

Kiva soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North

Slope range: 2 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No
Mancelona soils
Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 2 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190780—Au Gres-Kalkaska sands, 0 to 4 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 22 to 44 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days
Map Unit Composition
Au Gres and similar soils: 45 percent
Kalkaska and similar soils: 35 percent
Dissimilar minor components: 20 percent
Description of the Au Gres Soil

Classification

Sandy, mixed, frigid Typic Endoaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 to 18 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic

Calcium carbonate equivalent (maximum weight percentage): 0 Available water capacity: Low (about 4.2 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4w
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 12 inches; sand
12 to 24 inches; sand
24 to 60 inches; sand

Description of the Kalkaska Soil

Classification

Sandy, mixed, frigid Typic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 3.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 7 inches; sand
7 to 15 inches; sand
15 to 32 inches; sand
32 to 60 inches; sand

Minor Components

Markey soils

Percent of map unit: 10 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North

Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Roscommon soils
Percent of map unit: 10 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190781—Bach loam

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,400 feet
Mean annual precipitation: 19 to 34 inches
Mean annual air temperature: 36 to 46 degrees F
Frost-free period: 70 to 172 days

Map Unit Composition

Bach and similar soils: 90 percent
Dissimilar minor components: 10 percent
Description of the Bach Soil

Classification

Fine-loamy, mixed, semiactive, calcareous, frigid Mollic Haplaquepts

Setting

Landform: Depressions
Landform position (three-dimensional): Talf
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Medium
Parent material: Calcareous silty lacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: High (about 9.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: B/D
Typical Profile
0 to 8 inches; loam
8 to 19 inches; silt loam
19 to 60 inches; stratified fine sand to silt

Minor Components

Edwards soils
Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Sanilac soils
Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190782—Deer Park sand, 6 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 695 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 41 to 45 degrees F
Frost-free period: 120 to 150 days
Map Unit Composition
Deer Park and similar soils: 100 percent
Description of the Deer Park Soil

Classification

Mixed, frigid Spodic Udipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North

Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: Sandy eolian deposits and/or lacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very low (about 2.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 1 inch; sand
1 to 4 inches; sand
4 to 60 inches; sand

190783—Deer Park sand, 18 to 45 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 695 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 41 to 45 degrees F
Frost-free period: 120 to 150 days
Map Unit Composition
Deer Park and similar soils: 100 percent

Description of the Deer Park Soil

Classification
Mixed, frigid Spodic Udipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: Sandy eolian deposits and/or lacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very low (about 2.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 1 inch; sand
1 to 4 inches; sand
4 to 60 inches; sand

190784—Deer Park-Roscommon sands, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,495 feet
Mean annual precipitation: 22 to 44 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days
Map Unit Composition
Deer Park and similar soils: 70 percent
Roscommon and similar soils: 25 percent
Dissimilar minor components: 5 percent
Description of the Deer Park Soil

Classification

Mixed, frigid Spodic Udipsamments

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Negligible
Parent material: Sandy eolian deposits and/or lacustrine deposits

Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very low (about 2.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 1 inch; sand
1 to 4 inches; sand
4 to 60 inches; sand

Description of the Roscommon Soil

Classification

Mixed, frigid Mollic Psammaquents

Setting

Landform: Depressions
Landform position (three-dimensional): Talf
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 5
Available water capacity: Low (about 4.5 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Typical Profile

0 to 6 inches; sand
6 to 60 inches; sand

Minor Components

Markey soils

Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190786—Dune land

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt

Map Unit Composition

Dune land: 100 percent

Description of Dune Land

General

The source materials for dune land are glacial outwash and till which were reworked by wind and wave action. Areas of dune land are not stabilized by vegetation.

Setting

Slope range: 6 to 60 percent
Representative aspect: North

Properties and Qualities

Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0

190787—East Lake loamy sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

East Lake and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Negligible
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Kalkaska soils

Percent of map unit: 5 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Mancelona soils
Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190788—East Lake loamy sand, 6 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

East Lake and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

losco soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Footslope and toeslope
Geomorphic position (three-dimensional): Base slope
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Munuscong soils

Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Tonkey soils

Percent of map unit: 2 percent
Landform: Depressions
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190789—East Lake loamy sand, 12 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

East Lake and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Kalkaska soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190790—East Lake loamy sand, 18 to 25 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

East Lake and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the East Lake Soil

Classification
Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Kalkaska soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190791—Eastport sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 695 feet

Mean annual precipitation: 27 to 31 inches
Mean annual air temperature: 43 to 46 degrees F
Frost-free period: 130 to 150 days

Map Unit Composition

Eastport and similar soils: 93 percent
Dissimilar minor components: 7 percent

Description of the Eastport Soil

Classification

Mixed, frigid Spodic Udipsamments

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Negligible
Parent material: Sandy eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 3.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 3 inches; sand
3 to 26 inches; sand
26 to 60 inches; sand

Minor Components

Alpena soils

Percent of map unit: 7 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North

Slope range: 0 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190792—Edwards muck-Marl beds complex

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,400 feet
Mean annual precipitation: 19 to 44 inches
Mean annual air temperature: 36 to 46 degrees F
Frost-free period: 60 to 172 days
Map Unit Composition
Edwards and similar soils: 70 percent
Marl beds: 20 percent
Dissimilar minor components: 10 percent

Description of the Edwards Soil

Classification

Marly, euic, mesic, frigid Limnic Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 16 to 51 inches of organic material over marl deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: Frequent
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.0 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 75
Available water capacity: Very high (about 18.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Typical Profile

Oa-0 to 30 inches; muck
Lma-30 to 60 inches; marly material

Description of the Marl Beds

Setting

Landform: Depressions
Slope range: 0 to 1 percent
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: High
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: At the surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.0 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 75
Available water capacity: Very high (about 13.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7w
Meets hydric soil criteria: Yes
Hydrologic soil group: D

Typical Profile

Oa-0 to 7 inches; muck
Lma-7 to 60 inches; marly material

Minor Components

Lupton soils

Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Markey soils
Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190794—Emmet-Leelanau complex, 2 to 6 percent slopes

Map Unit Setting
Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,600 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days
\section*{Map Unit Composition}
Emmet and similar soils: 60 percent
Leelanau and similar soils: 30 percent
Dissimilar minor components: 10 percent
\section*{Description of the Emmet Soil}
\section*{Classification}
Coarse-loamy, mixed, active, frigid Typic Eutroboralfs
\section*{Setting}
Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Very low
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)
\section*{Interpretive Groups}
Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: B
\section*{Typical Profile}
0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam
Description of the Leelanau Soil
\section*{Classification}
Sandy, mixed, frigid Alfic Haplorthods

Setting
Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Negligible
Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandyglaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 28 inches; loamy sand
28 to 36 inches; sandy loam
36 to 60 inches; loamy sand
Minor Components
East Lake soils
Percent of map unit: 4 percentGeomorphic position (three-dimensional): RiseRepresentative aspect: NorthSlope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Alcona soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Nester soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise

Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190795—Emmet-Leelanau complex, 6 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Emmet and similar soils: 60 percent
Leelanau and similar soils: 30 percent
Dissimilar minor components: 10 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Low
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3e

Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam

Description of the Leelanau Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 28 inches; loamy sand
28 to 36 inches; sandy loam
36 to 60 inches; loamy sand

Minor Components

East Lake soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No
Nester soils
Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190796-Emmet-Leelanau complex, 12 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Emmet and similar soils: 50 percent
Leelanau and similar soils: 30 percent
Dissimilar minor components: 20 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Low

Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam

Description of the Leelanau Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4e

Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand 8 to 28 inches; loamy sand 28 to 36 inches; sandy loam 36 to 60 inches; loamy sand

Minor Components

East Lake soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 2 to 12 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Wallace soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 2 to 12 percent
Down-slope shape: Linear

Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Alcona soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Interfluve, base slope, side slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Richter soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190797-Emmet-Leelanau complex, 18 to 25 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Emmet and similar soils: 50 percent
Leelanau and similar soils: 30 percent
Dissimilar minor components: 20 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: B
Typical Profile
0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam

Description of the Leelanau Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 28 inches; loamy sand
28 to 36 inches; sandy loam
36 to 60 inches; loamy sand

Minor Components

East Lake soils

Percent of map unit: 10 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 10 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190799—Emmet-Leelanau complex, 25 to 50 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Emmet and similar soils: 45 percent
Leelanau and similar soils: 30 percent
Dissimilar minor components: 25 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam

Description of the Leelanau Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low

Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 28 inches; loamy sand
28 to 36 inches; sandy loam
36 to 60 inches; loamy sand

Minor Components

East Lake soils

Percent of map unit: 13 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 12 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190801—Emmet-Mancelona gravelly sandy loams, 4 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,400 feet

Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 100 to 150 days

Map Unit Composition

Emmet and similar soils: 70 percent
Mancelona and similar soils: 25 percent
Dissimilar minor components: 5 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 4 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; gravelly sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam
Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Slope range: 4 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)

Interpretive Groups

Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; gravelly sandy loam
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Minor Components

Nester soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kiva soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope

Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190803—Emmet-Mancelona gravelly sandy loams, 18 to 35 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt
Elevation: 600 to 1,400 feet
Mean annual precipitation: 22 to 44 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 60 to 150 days

Map Unit Composition

Emmet and similar soils: 60 percent
Mancelona and similar soils: 30 percent
Dissimilar minor components: 10 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Medium
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7e

Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; gravelly sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; gravelly sandy loam
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Minor Components

Alpena soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Backslope, footslope, and toeslope Geomorphic position (three-dimensional): Nose slope, base slope, and side slope Representative aspect: North

Slope range: 0 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kiva soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Lupton soils

Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Markey soils

Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Nester soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190805—Emmet-Omena sandy loams, 2 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,400 feet

Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Emmet and similar soils: 50 percent
Omena and similar soils: 45 percent
Dissimilar minor components: 5 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Very low
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam
Description of the Omena Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear

Representative aspect: North Soil temperature class: Frigid Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: Loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 6.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 14 inches; sandy loam
14 to 60 inches; sandy loam

Minor Components

Kiva soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 1 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190806—Emmet-Omena sandy loams, 6 to 12 percent slopes

Map Unit Setting
Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,600 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition
Emmet and similar soils: 50 percent
Omena and similar soils: 45 percent
Dissimilar minor components: 5 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: B
Typical Profile
0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam

Description of the Omena Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: Loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 6.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3 e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 14 inches; sandy loam
14 to 60 inches; sandy loam

Minor Components

Hettinger soils

Percent of map unit: 1 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Kiva soils

Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No
Leelanau soils
Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear and convex
Across-slope shape: Linea, convex, and concave
Meets hydric soil criteria: No

Tonkey soils

Percent of map unit: 1 percent
Landform: Depressions
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190807-Emmet-Omena sandy loams, 12 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Emmet and similar soils: 50 percent
Omena and similar soils: 45 percent
Dissimilar minor components: 5 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam

Description of the Omena Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North

Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: Loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 6.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 14 inches; sandy loam
14 to 60 inches; sandy loam

Minor Components

Kiva soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190808-Emmet-Omena sandy loams, 18 to 25 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Emmet and similar soils: 50 percent
Omena and similar soils: 45 percent
Dissimilar minor components: 5 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam

Description of the Omena Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: High
Parent material: Loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 6.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 14 inches; sandy loam
14 to 60 inches; sandy loam

Minor Components

Kiva soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Leelanau soils
Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190809—Emmet-Omena sandy loams, 25 to 50 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Emmet and similar soils: 50 percent
Omena and similar soils: 45 percent
Dissimilar minor components: 5 percent

Description of the Emmet Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Landform position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Medium
Parent material: 24 to 50 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 26 inches; sandy loam
26 to 32 inches; sandy clay loam
32 to 60 inches; sandy loam

Description of the Omena Soil

Classification

Coarse-loamy, mixed, active, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: High
Parent material: Loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None

Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 6.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 14 inches; sandy loam
14 to 60 inches; sandy loam

Minor Components

Kiva soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190811-Hettinger-Muck complex

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,600 feet
Mean annual precipitation: 19 to 44 inches
Mean annual air temperature: 36 to 46 degrees F
Frost-free period: 60 to 172 days

Map Unit Composition

Hettinger and similar soils: 45 percent
Muck: 30 percent
Dissimilar minor components: 25 percent

Description of the Hettinger Soil

Classification

Fine-loamy, mixed, active, nonacid, frigid Mollic Haplaquepts

Setting

Landform: Depressions
Landform position (three-dimensional): Talf
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: 12 to 36 inches of fine-loamy material over stratified, calcareous silty and clayey glaciolacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 25
Available water capacity: High (about 10.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: C/D

Typical Profile

0 to 8 inches; loam
8 to 23 inches; silty clay loam
23 to 60 inches; stratified clay loam to silty clay loam

Description of Muck

Setting

Landform: Depressions
Slope range: 0 to 2 percent
Properties and Qualities
Runoff: Very low
Parent material: Organic material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the surface
Drainage class: Very poorly drained

Interpretive Groups

Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D
Typical Profile
Oa1-0 to 11 inches; muck
Oa2-11 to 23 inches; muck
2C-23 to 60 inches; loam

Minor Components

Kiva soils

Percent of map unit: 5 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Lupton soils
Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Mancelona soils
Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Markey soils

Percent of map unit: 3 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip

Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Tonkey soils
Percent of map unit: 3 percent
Landform: Depressions
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Edwards soils

Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Roscommon soils

Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190812-Hettinger-Tonkey loams

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt Elevation: 600 to 1,600 feet
Mean annual precipitation: 22 to 44 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 60 to 150 days
Map Unit Composition
Hettinger and similar soils: 45 percent
Tonkey and similar soils: 30 percent
Dissimilar minor components: 25 percent

Description of the Hettinger Soil

Classification

Fine-loamy, mixed, active, nonacid, frigid Mollic Haplaquepts

Setting

Landform: Depressions

Landform position (three-dimensional): Talf
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Medium
Parent material: 12 to 36 inches of fine-loamy material over stratified, calcareous silty and clayey glaciolacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 25
Available water capacity: High (about 10.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: C/D

Typical Profile

0 to 8 inches; loam
8 to 23 inches; silty clay loam
23 to 60 inches; stratified clay loam to silty clay loam
Description of the Tonkey Soil

Classification

Coarse-loamy, mixed, semiactive, nonacid, frigid Mollic Haplaquepts

Setting

Landform: Depressions
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Very low
Parent material: Stratified loamy and sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 5
Available water capacity: Moderate (about 8.1 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: B/D

Typical Profile

0 to 8 inches; loam
8 to 20 inches; loamy sand
20 to 60 inches; stratified sand to sandy loam

Minor Components

Mancelona soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Markey soils

Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Munuscong soils
Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Roscommon soils

Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Lupton soils

Percent of map unit: 3 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip

Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Epoufette soils
Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190814—Kalkaska sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days
Map Unit Composition
Kalkaska and similar soils: 85 percent
Dissimilar minor components: 15 percent
Description of the Kalkaska Soil

Classification

Sandy, mixed, frigid Typic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 3.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 7 inches; sand
7 to 15 inches; sand
15 to 32 inches; sand
32 to 60 inches; sand

Minor Components

Au Gres soils

Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

East Lake soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

losco soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Mancelona soils
Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Munuscong soils
Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Tonkey soils

Percent of map unit: 2 percent
Landform: Depressions
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190815—Kalkaska sand, 6 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Kalkaska and similar soils: 85 percent
Dissimilar minor components: 15 percent

Description of the Kalkaska Soil

Classification

Sandy, mixed, frigid Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 3.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 7 inches; sand
7 to 15 inches; sand
15 to 32 inches; sand
32 to 60 inches; sand

Minor Components

East Lake soils

Percent of map unit: 5 percent
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Emmet soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No
Mancelona soils
Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190816—Kalkaska sand, 12 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Kalkaska and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Kalkaska Soil

Classification

Sandy, mixed, frigid Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 3.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 7 inches; sand
7 to 15 inches; sand
15 to 32 inches; sand
32 to 60 inches; sand

Minor Components

East Lake soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Alcona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Interfluve, base slope, side slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190817—Kalkaska sand, 18 to 25 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days
Map Unit Composition
Kalkaska and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Kalkaska Soil

Classification

Sandy, mixed, frigid Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 3.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 7 inches; sand
7 to 15 inches; sand
15 to 32 inches; sand
32 to 60 inches; sand

Minor Components

East Lake soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope

Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Emmet soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190818—Kalkaska sand, 25 to 45 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days
Map Unit Composition
Kalkaska and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Kalkaska Soil

Classification

Sandy, mixed, frigid Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex

Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 3.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 7 inches; sand
7 to 15 inches; sand
15 to 32 inches; sand
32 to 60 inches; sand

Minor Components

East Lake soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Deer Park soils

Percent of map unit: 2 percent

Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Wallace soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 2 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190819—Kalkaska-East Lake loamy sands, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Kalkaska and similar soils: 55 percent
East Lake and similar soils: 35 percent
Dissimilar minor components: 10 percent
Description of the Kalkaska Soil

Classification

Sandy, mixed, frigid Typic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None

Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 7 inches; loamy sand
7 to 15 inches; sand
15 to 32 inches; sand
32 to 60 inches; sand

Description of the East Lake Soil

Classification
Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Negligible
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Alcona soils
Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Leelanau soils
Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Leelanau soils
Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
\section*{Mancelona soils}
Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Richter soils
Percent of map unit: 2 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190820—Kiva-Mancelona gravelly sandy loams, 2 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,000 feet
Mean annual precipitation: 27 to 32 inches

Mean annual air temperature: 41 to 46 degrees F Frost-free period: 100 to 150 days

Map Unit Composition

Kiva and similar soils: 65 percent
Mancelona and similar soils: 30 percent
Dissimilar minor components: 5 percent

Description of the Kiva Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Low
Parent material: 10 to 24 inches of loamy material over sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 6 inches; gravelly sandy loam
6 to 20 inches; gravelly sandy loam
20 to 60 inches; gravelly coarse sand
Description of the Mancelona Soil
Classification
Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North

Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)

Interpretive Groups

Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; gravelly sandy loam
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Minor Components

Alpena soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190821—Kiva-Mancelona gravelly sandy loams, 6 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt
Elevation: 600 to 1,600 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days
Map Unit Composition
Kiva and similar soils: 50 percent
Mancelona and similar soils: 30 percent
Dissimilar minor components: 20 percent

Description of the Kiva Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium

Parent material: 10 to 24 inches of loamy material over sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 6 inches; gravelly sandy loam
6 to 20 inches; gravelly sandy loam
20 to 60 inches; gravelly coarse sand

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)

Interpretive Groups

Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; gravelly sandy loam
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Minor Components

Alcona soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Alpena soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 0 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Emmet soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope

Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No
Richter soils
Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190823—Kiva-Mancelona gravelly sandy loams, 18 to 25 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Kiva and similar soils: 50 percent
Mancelona and similar soils: 30 percent
Dissimilar minor components: 20 percent

Description of the Kiva Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 18 to 25 percent
Down-slope shape: Linear
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: High
Parent material: 10 to 24 inches of loamy material over sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None

Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 6 inches; gravelly sandy loam
6 to 20 inches; gravelly sandy loam
20 to 60 inches; gravelly coarse sand

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Medium
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; gravelly sandy loam
8 to 25 inches; loamy sand

25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Minor Components

Alpena soils

Percent of map unit: 10 percent
Geomorphic position (two-dimensional): Backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, base slope, and side slope
Representative aspect: North
Slope range: 0 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 10 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190824—Lake beaches

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt

Map Unit Composition

Lake beaches: 100 percent

Description of Lake Beaches

General

This map unit occurs along the lake and is non-vegetated.

Setting

Slope range: 0 to 13 percent
Representative aspect: North

190825—Lake bluffs

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Map Unit Composition
Lake bluffs: 100 percent

Description of Lake Bluffs

General

This map unit occurs along steep bluffs and is non-vegetated.

Setting

Slope range: 20 to 30 percent
Representative aspect: North

190826—Leelanau-East Lake loamy sands, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Leelanau and similar soils: 60 percent
East Lake and similar soils: 30 percent
Dissimilar minor components: 10 percent

Description of the Leelanau Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Negligible
Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 28 inches; loamy sand

28 to 36 inches; sandy loam 36 to 60 inches; loamy sand

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Negligible
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Alcona soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent

Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190827—Leelanau-East Lake loamy sands, 6 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days
Map Unit Composition
Leelanau and similar soils: 65 percent
East Lake and similar soils: 25 percent
Dissimilar minor components: 10 percent

Description of the Leelanau Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)

Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 28 inches; loamy sand
28 to 36 inches; sandy loam
36 to 60 inches; loamy sand

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Mancelona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Alcona soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Richter soils

Percent of map unit: 1 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear

Across-slope shape: Linear Meets hydric soil criteria: No

Tonkey soils

Percent of map unit: 1 percent
Landform: Depressions
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190828—Leelanau-East Lake loamy sands, 12 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days
Map Unit Composition
Leelanau and similar soils: 65 percent
East Lake and similar soils: 25 percent
Dissimilar minor components: 10 percent

Description of the Leelanau Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)

Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 28 inches; loamy sand
28 to 36 inches; sandy loam
36 to 60 inches; loamy sand

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Alcona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Interfluve, base slope, side slope, head
slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190829—Leelanau-East Lake loamy sands, 18 to 25 percent slopes

Map Unit Setting
Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet

Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Leelanau and similar soils: 50 percent
East Lake and similar soils: 35 percent
Dissimilar minor components: 15 percent

Description of the Leelanau Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 28 inches; loamy sand
28 to 36 inches; sandy loam
36 to 60 inches; loamy sand

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Kalkaska soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest

Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Alcona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Interfluve, base slope, side slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190830—Leelanau-East Lake loamy sands, 25 to 45 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 36 inches
Mean annual air temperature: 39 to 50 degrees F
Frost-free period: 70 to 180 days
Map Unit Composition
Leelanau and similar soils: 50 percent
East Lake and similar soils: 35 percent
Dissimilar minor components: 15 percent

Description of the Leelanau Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 25 to 45 percent

Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 20 to 52 inches of sandy and loamy material over calcareous sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 28 inches; loamy sand
28 to 36 inches; sandy loam
36 to 60 inches; loamy sand

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained

Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Alcona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Interfluve, base slope, side slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Mancelona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Wind eroded land

Percent of map unit: 3 percent
Representative aspect: North
Slope range: 12 to 45 percent

190831—Lupton-Markey mucks

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt Elevation: 600 to 1,495 feet
Mean annual precipitation: 19 to 44 inches
Mean annual air temperature: 36 to 46 degrees F
Frost-free period: 60 to 172 days

Map Unit Composition

Lupton and similar soils: 60 percent
Markey and similar soils: 30 percent
Dissimilar minor components: 10 percent
Description of the Lupton Soil

Classification

Euic, frigid Typic Haplosaprists
Setting
Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Very low
Parent material: More than 51 inches of organic material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 23.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D
Typical Profile
Oa1-0 to 10 inches; muck
Oa2-10 to 60 inches; muck

Description of the Markey Soil

Classification

Sandy or sandy-skeletal, mixed, euic, frigid Terric Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Very low
Parent material: 16 to 51 inches of organic material over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 3
Available water capacity: High (about 10.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Typical Profile

Oa-0 to 20 inches; muck
2C-20 to 60 inches; sand

Minor Components

Edwards soils

Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Roscommon soils

Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190832-Mancelona sandy loam, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 100 to 150 days
Map Unit Composition
Mancelona and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low

Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; sandy loam
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Minor Components

East Lake soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Kiva soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190833-Mancelona sandy loam, 6 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Mancelona and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Mancelona Soil

Classification
Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; sandy loam
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Minor Components

East Lake soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kiva soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No
Leelanau soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190834—Mancelona-East Lake loamy sands, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Mancelona and similar soils: 60 percent
East Lake and similar soils: 30 percent
Dissimilar minor components: 10 percent

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None

Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Description of the East Lake Soil

Classification
Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Negligible
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Kalkaska soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Kiva soils
Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
\section*{Leelanau soils}
Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
\section*{Sanilac soils}
Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190835—Mancelona-East Lake loamy sands, 6 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Mancelona and similar soils: 55 percent
East Lake and similar soils: 35 percent
Dissimilar minor components: 10 percent

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3 e
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; loamy sand
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North

Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Alpena soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 0 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kiva soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No
Tonkey soils
Percent of map unit: 1 percent
Landform: Depressions
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190836-Mancelona-East Lake loamy sands, 12 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Mancelona and similar soils: 50 percent
East Lake and similar soils: 30 percent
Dissimilar minor components: 20 percent

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None

Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand
Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Kalkaska soils

Percent of map unit: 10 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Kiva soils

Percent of map unit: 10 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190837-Mancelona-East Lake loamy sands, 18 to 25 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 25 to 35 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 60 to 150 days
Map Unit Composition
Mancelona and similar soils: 45 percent
East Lake and similar soils: 30 percent
Dissimilar minor components: 25 percent

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Landform position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Medium
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand
Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None

Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Kalkaska soils

Percent of map unit: 10 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Kiva soils

Percent of map unit: 10 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Adrian soils

Percent of map unit: 3 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Houghton soils

Percent of map unit: 2 percent
Landform: Depressions

Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190838—Mancelona-East Lake loamy sands, 25 to 45 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Mancelona and similar soils: 50 percent
East Lake and similar soils: 30 percent
Dissimilar minor components: 20 percent

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, interfluve, base slope, and crest
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Description of the East Lake Soil

Classification

Sandy, mixed, frigid Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 20 to 40 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

0 to 8 inches; loamy sand
8 to 26 inches; loamy sand
26 to 60 inches; gravelly coarse sand

Minor Components

Emmet soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Slope range: 25 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Kalkaska soils
Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Kiva soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190839—Mancelona-Richter gravelly sandy loams, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,600 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Mancelona and similar soils: 70 percent
Richter and similar soils: 25 percent
Dissimilar minor components: 5 percent

Description of the Mancelona Soil

Classification

Sandy, mixed, frigid Alfic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Very low
Parent material: 18 to 40 inches of sandy and/or gravelly material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 18
Available water capacity: Low (about 3.8 inches)
Interpretive Groups
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 8 inches; gravelly sandy loam
8 to 25 inches; loamy sand
25 to 30 inches; gravelly sandy loam
30 to 60 inches; very gravelly coarse sand

Description of the Richter Soil

Classification

Coarse-loamy, mixed, semiactive, frigid Alfic Haplaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 25 to 40 inches of sandy and/or loamy material over stratified, calcareous sandy and silty glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 to 18 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 27 inches; fine sandy loam
27 to 60 inches; stratified loamy fine sand to sandy loam

Minor Components

Epoufette soils

Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Tonkey soils

Percent of map unit: 2 percent
Landform: Depressions
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Wallace soils

Percent of map unit: 1 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Convex
Meets hydric soil criteria: No

190840—Nester silt loam, 2 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Nester and similar soils: 90 percent
Dissimilar minor components: 10 percent
Description of the Nester Soil

Classification

Fine, mixed, semiactive, frigid Typic Eutroboralfs

Setting

Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: High
Parent material: 20 to 36 inches of loamy and clayey material over calcareous loamy and clayey till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 25
Available water capacity: Moderate (about 8.7 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: C

Typical Profile

0 to 6 inches; silt loam
6 to 8 inches; silt loam
8 to 28 inches; silty clay loam
28 to 60 inches; silty clay loam

Minor Components

Emmet soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise

Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Kalkaska soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Sanilac soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190841—Nester silt loam, 6 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Nester and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Nester Soil

Classification

Fine, mixed, semiactive, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very high
Parent material: 20 to 36 inches of loamy and clayey material over calcareous loamy and clayey till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 25
Available water capacity: Moderate (about 8.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3 e
Meets hydric soil criteria: No
Hydrologic soil group: C

Typical Profile

0 to 6 inches; silt loam
6 to 8 inches; silt loam
8 to 28 inches; silty clay loam
28 to 60 inches; silty clay loam

Minor Components

Emmet soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Omena soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

190842—Nester silt loam, 12 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 36 inches
Mean annual air temperature: 39 to 50 degrees F
Frost-free period: 70 to 180 days

Map Unit Composition

Nester and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Nester Soil

Classification

Fine, mixed, semiactive, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very high
Parent material: 20 to 36 inches of loamy and clayey material over calcareous loamy and clayey till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 25
Available water capacity: Moderate (about 8.7 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4e

Meets hydric soil criteria: No
Hydrologic soil group: C

Typical Profile

0 to 6 inches; silt loam
6 to 8 inches; silt loam
8 to 28 inches; silty clay loam
28 to 60 inches; silty clay loam

Minor Components

Emmet soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Kalkaska soils
Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Omena soils
Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex

Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Wind eroded land
Percent of map unit: 1 percent
Representative aspect: North
Slope range: 12 to 18 percent

190843—Nester silt loam, 18 to 25 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,400 feet
Mean annual precipitation: 27 to 32 inches
Mean annual air temperature: 41 to 46 degrees F
Frost-free period: 90 to 150 days

Map Unit Composition

Nester and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Nester Soil

Classification

Fine, mixed, semiactive, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very high
Parent material: 20 to 36 inches of loamy and clayey material over calcareous loamy and clayey till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 25
Available water capacity: Moderate (about 8.7 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6e

Meets hydric soil criteria: No
Hydrologic soil group: C

Typical Profile

0 to 6 inches; silt loam
6 to 8 inches; silt loam
8 to 28 inches; silty clay loam
28 to 60 inches; silty clay loam

Minor Components

Emmet soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope
Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Leelanau soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Omena soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 25 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190844—Nester silt loam, 25 to 50 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches

Mean annual air temperature: 39 to 46 degrees F Frost-free period: 70 to 150 days

Map Unit Composition

Nester and similar soils: 90 percent
Dissimilar minor components: 10 percent
Description of the Nester Soil

Classification

Fine, mixed, semiactive, frigid Typic Eutroboralfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Very high
Parent material: 20 to 36 inches of loamy and clayey material over calcareous loamy and clayey till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 25
Available water capacity: Moderate (about 8.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: C

Typical Profile

0 to 6 inches; silt loam
6 to 8 inches; silt loam
8 to 28 inches; silty clay loam
28 to 60 inches; silty clay loam

Minor Components

Emmet soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, base slope, nose slope, head slope, and side slope

Representative aspect: South
Aspect range: Southeast to southwest (clockwise)
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Leelanau soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Omena soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 25 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 25 to 45 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

190846—Pits, gravel

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt

Map Unit Composition

Pits: 100 percent

Description of Pits

This map unit consists of areas of old, inactive gravel pits.

190847—Richter-Alcona sandy loams, 0 to 2 percent slopes

Map Unit Setting
Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,600 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition
Richter and similar soils: 45 percent
Alcona and similar soils: 40 percent
Dissimilar minor components: 15 percent
Description of the Richter Soil

Classification

Coarse-loamy, mixed, semiactive, frigid Alfic Haplaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 25 to 40 inches of sandy and/or loamy material over stratified,
calcareous sandy and silty glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 to 18 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Moderate (about 7.4 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2w
Meets hydric soil criteria: No
Hydrologic soil group: B
Typical Profile
0 to 8 inches; sandy loam
8 to 27 inches; fine sandy loam
27 to 60 inches; stratified loamy fine sand to sandy loam

Description of the Alcona Soil

Classification

Coarse-loamy, mixed, active, frigid Alfic Haplorthods
Setting
Landform position (three-dimensional): Rise
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Low
Parent material: Stratified sandy and loamy glaciofluvial deposits and/or glaciolacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 8.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2 s
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 12 inches; loamy fine sand
12 to 18 inches; loamy sand
18 to 24 inches; sandy loam
24 to 60 inches; stratified loamy sand to sandy loam
Minor Components

Tonkey soils

Percent of map unit: 15 percent
Landform: Depressions
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190848—Richter-Alcona sandy loams, 2 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,600 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Richter and similar soils: 45 percent
Alcona and similar soils: 40 percent
Dissimilar minor components: 15 percent
Description of the Richter Soil

Classification

Coarse-loamy, mixed, semiactive, frigid Alfic Haplaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Low
Parent material: 25 to 40 inches of sandy and/or loamy material over stratified, calcareous sandy and silty glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 to 18 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Moderate (about 7.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: B
Typical Profile
0 to 8 inches; sandy loam
8 to 27 inches; fine sandy loam
27 to 60 inches; stratified loamy fine sand to sandy loam

Description of the Alcona Soil

Classification

Coarse-loamy, mixed, active, frigid Alfic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: Stratified sandy and loamy glaciofluvial deposits and/or glaciolacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 8.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sandy loam
8 to 12 inches; loamy fine sand
12 to 18 inches; loamy sand
18 to 24 inches; sandy loam
24 to 60 inches; stratified loamy sand to sandy loam
Minor Components

Tonkey soils

Percent of map unit: 10 percent
Landform: Depressions
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Nester soils

Percent of map unit: 5 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190849—Roscommon sand-Markey muck

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 22 to 44 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Roscommon and similar soils: 50 percent
Markey and similar soils: 30 percent
Dissimilar minor components: 20 percent
Description of the Roscommon Soil

Classification

Mixed, frigid Mollic Psammaquents

Setting

Landform: Depressions
Landform position (three-dimensional): Talf
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 5
Available water capacity: Low (about 4.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Typical Profile

0 to 6 inches; sand
6 to 60 inches; sand

Description of the Markey Soil

Classification

Sandy or sandy-skeletal, mixed, euic, frigid Terric Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North

Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: 16 to 51 inches of organic material over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 3
Available water capacity: High (about 10.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D
Typical Profile
Oa-0 to 20 inches; muck
2C-20 to 60 inches; sand

Minor Components

Au Gres soils

Percent of map unit: 10 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

East Lake soils

Percent of map unit: 5 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190850—Sanilac silt loam, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,400 feet
Mean annual precipitation: 19 to 34 inches
Mean annual air temperature: 36 to 46 degrees F
Frost-free period: 70 to 172 days

Map Unit Composition

Sanilac and similar soils: 90 percent
Dissimilar minor components: 10 percent
Description of the Sanilac Soil

Classification

Fine-loamy, mixed, semiactive, calcareous, frigid Aeric Endoaquepts

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: Calcareous silty lacustrine deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Depth to water table: About 12 to 18 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: High (about 10.7 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 2 e
Meets hydric soil criteria: No
Hydrologic soil group: C

Typical Profile

0 to 6 inches; silt loam
6 to 16 inches; silt loam
16 to 24 inches; silt loam
24 to 60 inches; stratified very fine sand to silt loam

Minor Components

Bach soils

Percent of map unit: 4 percent
Landform: Depressions

Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Epoufette soils
Percent of map unit: 3 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Hettinger soils
Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
\section*{Edwards soils}
Percent of map unit: 1 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190851-Tonkey-Munuscong-losco sandy loams, 0 to 2 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days

Map Unit Composition

Tonkey and similar soils: 40 percent Munuscong and similar soils: 25 percent losco and similar soils: 25 percent Dissimilar minor components: 10 percent

Description of the Tonkey Soil

Classification

Coarse-loamy, mixed, semiactive, nonacid, frigid Mollic Haplaquepts

Setting

Landform: Depressions
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: Stratified loamy and sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 5
Available water capacity: Moderate (about 7.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: B/D
Typical Profile
0 to 8 inches; sandy loam
8 to 20 inches; fine sandy loam
20 to 60 inches; stratified sand to sandy loam

Description of the Munuscong Soil

Classification

Coarse-loamy over clayey, mixed, active, nonacid, frigid Mollic Haplaquepts

Setting

Landform: Depressions
Landform position (three-dimensional): Talf
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Medium
Parent material: 20 to 40 inches of loamy material over clayey lacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None

Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Poorly drained
Shrink-swell potential: High (about 7.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 8.2 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: B/D

Typical Profile

0 to 10 inches; sandy loam
10 to 24 inches; fine sandy loam
24 to 60 inches; silty clay

Description of the Iosco Soil

Classification

Sandy over loamy, mixed, active, frigid Argic Endoaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: 20 to 40 inches of sandy glaciofluvial deposits over loamy till or glacialacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 to 18 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 23
Available water capacity: Moderate (about 8.8 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3w
Meets hydric soil criteria: No
Hydrologic soil group: B
Typical Profile
0 to 8 inches; loamy sand
8 to 27 inches; sand
27 to 34 inches; silty clay loam
34 to 60 inches; silty clay loam

Minor Components

Au Gres soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Kalkaska soils
Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Nester soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

190852-Tonkey-Munuscong-losco sandy loams, 2 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 34 inches
Mean annual air temperature: 39 to 46 degrees F
Frost-free period: 70 to 150 days
Map Unit Composition
Tonkey and similar soils: 35 percent
Munuscong and similar soils: 30 percent
losco and similar soils: 20 percent
Dissimilar minor components: 15 percent

Description of the Tonkey Soil

Classification

Coarse-loamy, mixed, semiactive, nonacid, frigid Mollic Haplaquepts

Setting

Landform: Depressions
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North

Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: Stratified loamy and sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 5
Available water capacity: Moderate (about 7.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: B/D

Typical Profile

0 to 8 inches; sandy loam
8 to 20 inches; fine sandy loam
20 to 60 inches; stratified sand to sandy loam

Description of the Munuscong Soil

Classification

Coarse-loamy over clayey, mixed, active, nonacid, frigid Mollic Haplaquepts

Setting

Landform: Depressions
Landform position (three-dimensional): Talf
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Medium
Parent material: 20 to 40 inches of loamy material over clayey lacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Poorly drained
Shrink-swell potential: High (about 7.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 8.2 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w

Meets hydric soil criteria: Yes
Hydrologic soil group: B/D

Typical Profile

0 to 10 inches; sandy loam
10 to 24 inches; fine sandy loam
24 to 60 inches; silty clay

Description of the Iosco Soil

Classification

Sandy over loamy, mixed, active, frigid Argic Endoaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid
Properties and Qualities
Runoff: Low
Parent material: 20 to 40 inches of sandy glaciofluvial deposits over loamy till or glacialacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 to 18 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 23
Available water capacity: Moderate (about 8.8 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3w
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; loamy sand
8 to 27 inches; sand
27 to 34 inches; silty clay loam
34 to 60 inches; silty clay loam

Minor Components

Au Gres soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Kalkaska soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Nester soils

Percent of map unit: 4 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 2 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Hettinger soils
Percent of map unit: 3 percent
Landform: Depressions
Geomorphic position (three-dimensional): Talf
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

190853—Water

Map Unit Setting
Major land resource area (MLRA): 96-Western Michigan Fruit Belt
Map Unit Composition
Water: 100 percent

Description of Water

This map unit consists of lakes, ponds, and streams.

190854—Wallace-Kalkaska sands, 2 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt
Elevation: 600 to 1,895 feet
Mean annual precipitation: 27 to 36 inches
Mean annual air temperature: 39 to 50 degrees F
Frost-free period: 70 to 180 days
Map Unit Composition
Wallace and similar soils: 50 percent
Kalkaska and similar soils: 45 percent
Dissimilar minor components: 5 percent

Description of the Wallace Soil

Classification

Sandy, mixed, frigid, shallow, ortstein Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 2 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Low
Parent material: Sandy deposits with ortstein on glaciofluvial, eolian, and/or glaciolacustrine deposits
Restrictive feature(s): Ortstein at a depth of 8 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very low (about 0.6 inch)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

0 to 8 inches; sand
8 to 24 inches; sand
24 to 60 inches; sand

Description of the Kalkaska Soil

Classification

Sandy, mixed, frigid Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 2 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Frigid
Soil temperature regime: Frigid

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 3.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
0 to 7 inches; sand
7 to 15 inches; sand
15 to 32 inches; sand
32 to 60 inches; sand

Minor Components

Eastport soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Wind eroded land
Percent of map unit: 2 percent
Representative aspect: North
Slope range: 0 to 12 percent

190855-Wind eroded land, sloping

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,000 feet
Mean annual precipitation: 28 to 36 inches
Mean annual air temperature: 39 to 50 degrees F
Frost-free period: 100 to 180 days
Map Unit Composition
Wind eroded land: 100 percent

Description of Wind Eroded Land

General

This map unit is a non-soil area that has no stabilizing vegetation.

Setting

Slope range: 0 to 12 percent
Representative aspect: North

Properties and Qualities

Runoff: Very low
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.2 inches)

190856-Wind eroded land, steep

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 600 to 1,000 feet
Mean annual precipitation: 28 to 36 inches
Mean annual air temperature: 39 to 50 degrees F
Frost-free period: 100 to 180 days
Map Unit Composition
Wind eroded land: 100 percent

Description of Wind Eroded Land

General

This map unit is a non-soil area that has no stabilizing vegetation.

Setting

Slope range: 12 to 45 percent
Representative aspect: North

Properties and Qualities

Runoff: Low
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.2 inches)

193236—Beaches

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt Mean annual precipitation: 27 to 38 inches Mean annual air temperature: 37 to 55 degrees F

Map Unit Composition
Beaches: 100 percent

Description of Beaches

This map unit consists of non-soil areas that are not stabilized by vegetation.

193237-Thompsonville-Milnichol fine sands, 0 to 3 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Thompsonville and similar soils: 50 percent
Milnichol and similar soils: 40 percent
Dissimilar minor components: 10 percent
Description of the Thompsonville Soil

Classification

Sandy, mixed, mesic Alfic Oxyaquic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 40 to 60 inches of sandy glaciofluvial deposits over stratified loamy and silty materials
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 18 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline

Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 8.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Bunchberry dogwood, pink lady's slipper, wintergreen, western brackenfern, and lowbush blueberry

Typical Profile

A-0 to 5 inches; fine sand
E-5 to 15 inches; fine sand
Bs1-15 to 29 inches; fine sand
Bs2-29 to 37 inches; fine sand
Bs3-37 to 55 inches; sand
2B/E-55 to 72 inches; silty clay loam
2C-72 to 80 inches; stratified very fine sandy loam to silty clay loam

Description of the Milnichol Soil

Classification

Sandy, mixed, mesic Typic Epiaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 40 to 60 inches of sandy glaciofluvial deposits over loamy alluvium
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 8.8 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4w
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Bunchberry dogwood, wintergreen, partridgeberry, western
brackenfern, American starflower, and Canada mayflower

Typical Profile

A-0 to 2 inches; fine sand E-2 to 12 inches; fine sand Bhs-12 to 15 inches; fine sand Bs1-15 to 25 inches; fine sand Bs2-25 to 33 inches; fine sand C-33 to 47 inches; fine sand
2C1-47 to 50 inches; stratified loamy fine sand to fine sandy loam
2C2—50 to 68 inches; silty clay loam
2C3-68 to 80 inches; silt loam

Minor Components

Covert soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Pipestone soils
Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193255—Spinks-Coloma sands, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Spinks and similar soils: 50 percent
Coloma and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent

Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Description of the Coloma Soil

Classification

Mixed, mesic Lamellic Udipsamments

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None

Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 3 inches; sand
E-3 to 4 inches; sand
Bw1-4 to 8 inches; sand
Bw2-8 to 15 inches; sand
Bw3-15 to 25 inches; sand
Bw4-25 to 40 inches; sand
E and $\operatorname{Bt}-40$ to 80 inches; sand

Minor Components

Shavenaugh soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Benona soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193256—Spinks-Coloma sands, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Spinks and similar soils: 50 percent
Coloma and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt 1 - 17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Description of the Coloma Soil

Classification

Mixed, mesic Lamellic Udipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 3 inches; sand
E-3 to 4 inches; sand
Bw1-4 to 8 inches; sand
Bw2-8 to 15 inches; sand
Bw3-15 to 25 inches; sand
Bw4-25 to 40 inches; sand
E and Bt-40 to 80 inches; sand

Minor Components

Shavenaugh soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Benona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Tekenink, sandy substratum soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

193257-Spinks-Coloma sands, 12 to 18 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Spinks and similar soils: 55 percent
Coloma and similar soils: 35 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand
Description of the Coloma Soil

Classification

Mixed, mesic Lamellic Udipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent

Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, Canada mayflower

Typical Profile

A-0 to 3 inches; sand
E-3 to 4 inches; sand
Bw1-4 to 8 inches; sand
Bw2-8 to 15 inches; sand
Bw3-15 to 25 inches; sand
Bw4-25 to 40 inches; sand
E and $\mathrm{Bt}-40$ to 80 inches; sand

Minor Components

Shavenaugh soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Benona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope

Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193258—Spinks-Coloma sands, 18 to 35 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Spinks and similar soils: 50 percent
Coloma and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches

```
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)
```


Interpretive Groups

```
Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: A
```


Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand
Description of the Coloma Soil

Classification

Mixed, mesic Lamellic Udipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 3 inches; sand
E-3 to 4 inches; sand
Bw1-4 to 8 inches; sand
Bw2-8 to 15 inches; sand
Bw3-15 to 25 inches; sand
Bw4-25 to 40 inches; sand
E and $\mathrm{Bt}-40$ to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Tekenink, sandy substratum soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193260—Copemish sand, 3 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 575 to 1,115 feet
Mean annual precipitation: 27 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Copemish and similar soils: 95 percent
Dissimilar minor components: 5 percent

Description of the Copemish Soil

Classification

Sandy, mixed, mesic, ortstein Entic Haplorthods

Setting

Landform: Beach ridges and outwash plains
Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 3 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Ortstein in sandy glaciofluvial deposits
Restrictive feature(s): Ortstein at a depth of 8 to 14 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very low (about 0.8 inch)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Velvetleaf huckleberry, lowbush blueberry, Canada mayflower, wintergreen, and western brackenfern

Typical Profile

A-0 to 2 inches; sand
E1-2 to 7 inches; sand
E2-7 to 11 inches; sand
Bs1-11 to 28 inches; sand
Bs2-28 to 36 inches; sand
C-36 to 80 inches; sand

Minor Components

Covert soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Backslope, footslope, and toeslope Geomorphic position (three-dimensional): Side slope and base slope
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear

Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 3 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Saugatuck soils

Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Footslope and toeslope
Geomorphic position (three-dimensional): Base slope
Representative aspect: North
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193262—Kaleva sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Kaleva and similar soils: 95 percent
Dissimilar minor components: 5 percent

Description of the Kaleva Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits

Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Canada mayflower, mapleleaf viburnum, American starflower, bloodroot, trillium, sweet cicely, spinulose shield fern, western brackenfern, and trout lily

Typical Profile

A-0 to 3 inches; sand
E-3 to 9 inches; sand
Bhs-9 to 11 inches; sand
Bs1-11 to 16 inches; sand
Bs2-16 to 21 inches; sand
C1-21 to 70 inches; sand
C2—70 to 80 inches; sand

Minor Components

Benzonia soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Nessen soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 1 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193263—Kaleva sand, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Kaleva and similar soils: 95 percent
Dissimilar minor components: 5 percent

Description of the Kaleva Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Spinulose shield fern, trout lily, Canada mayflower, sweet cicely, western brackenfern, bloodroot, American starflower, trillium, and mapleleaf viburnum

Typical Profile
A-0 to 3 inches; sand

E-3 to 9 inches; sand
Bhs-9 to 11 inches; sand
Bs1-11 to 16 inches; sand
Bs2-16 to 21 inches; sand
C1-21 to 70 inches; sand
C2-70 to 80 inches; sand

Minor Components

Benzonia soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Nessen soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 1 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

193265-Grattan sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Grattan and similar soils: 95 percent
Dissimilar minor components: 5 percent

Description of the Grattan Soil

Classification

Sandy, mixed, mesic Entic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Hawthorn, serviceberry, bigleaf aster, sweet cicely, wintergreen, Canada yew, lowbush blueberry, trillium, Canada mayflower, western brackenfern, and American starflower

Typical Profile

A-0 to 4 inches; sand
E-4 to 13 inches; sand
Bs1-13 to 18 inches; sand
Bs2-18 to 25 inches; sand
BC-25 to 53 inches; sand
C-53 to 80 inches; sand

Minor Components

Kaleva soils

Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear

Across-slope shape: Linear
Meets hydric soil criteria: No

Shavenaugh soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193266-Grattan sand, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Grattan and similar soils: 95 percent
Dissimilar minor components: 5 percent
Description of the Grattan Soil

Classification

Sandy, mixed, mesic Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic

Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Serviceberry, bigleaf aster, hawthorn, wintergreen, sweet cicely, western brackenfern, Canada yew, American starflower, trillium, lowbush blueberry, and Canada mayflower

Typical Profile

A-0 to 4 inches; sand
E-4 to 13 inches; sand
Bs1-13 to 18 inches; sand
Bs2-18 to 25 inches; sand
BC-25 to 53 inches; sand
C-53 to 80 inches; sand

Minor Components

Kaleva soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Shavenaugh soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

193267—Grattan sand, 12 to 18 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches

Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Grattan and similar soils: 95 percent
Dissimilar minor components: 5 percent

Description of the Grattan Soil

Classification

Sandy, mixed, mesic Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Serviceberry, bigleaf aster, hawthorn, wintergreen, sweet cicely, western brackenfern, Canada yew, American starflower, trillium, lowbush blueberry, and Canada mayflower

Typical Profile

A-0 to 4 inches; sand
E-4 to 13 inches; sand
Bs1-13 to 18 inches; sand
Bs2—18 to 25 inches; sand
BC-25 to 53 inches; sand
C-53 to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Shavenaugh soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193269—Grattan sand, 35 to 50 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Grattan and similar soils: 95 percent
Dissimilar minor components: 5 percent
Description of the Grattan Soil

Classification

Sandy, mixed, mesic Entic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Serviceberry, bigleaf aster, hawthorn, wintergreen, sweet cicely, western brackenfern, Canada yew, American starflower, trillium, lowbush blueberry, and Canada mayflower

Typical Profile

A-0 to 4 inches; sand
E-4 to 13 inches; sand
Bs1-13 to 18 inches; sand
Bs2-18 to 25 inches; sand
BC-25 to 53 inches; sand
C-53 to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193270—Covert sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Covert and similar soils: 90 percent
Dissimilar minor components: 10 percent
Description of the Covert Soil

Classification

Sandy, mixed, mesic Oxyaquic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 24 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.1 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Bunchberry dogwood, pink lady's slipper, wintergreen, western brackenfern, and lowbush blueberry

Typical Profile

A-0 to 1 inch; sand
E-1 to 8 inches; sand
Bs1-8 to 18 inches; sand
Bs2—18 to 25 inches; sand

BC-25 to 29 inches; sand
C1-29 to 38 inches; sand
C2-38 to 47 inches; sand
C3-47 to 80 inches; sand

Minor Components

Grattan soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Pipestone soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Saugatuck soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Shavenaugh soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193271—Pipestone sand, 0 to 4 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Pipestone and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Pipestone Soil

Classification

Sandy, mixed, mesic Typic Endoaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.3 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4w
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Bunchberry dogwood, wintergreen, Canada mayflower, partridgeberry, western brackenfern, and American starflower

Typical Profile

A-0 to 2 inches; sand
E-2 to 9 inches; sand
Bhs-9 to 12 inches; sand
Bs-12 to 24 inches; sand
BC-24 to 32 inches; sand
C-32 to 80 inches; sand

Minor Components

Saugatuck soils

Percent of map unit: 4 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 3 percent
Down-slope shape: Linear

Across-slope shape: Linear
Meets hydric soil criteria: No

Covert soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Dair soils
Percent of map unit: 3 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

193272—Dair muck

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Dair and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Dair Soil

Classification

Mixed, mesic Typic Psammaquents

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: 4 to 8 inches of organic material over sandy glaciofluvial deposits Restrictive feature(s): None within a depth of 60 inches

Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 6.5 inches)
\section*{Interpretive Groups}
Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Sedge, redosier dogwood, speckled alder, sensitive fern, blueflag iris, and yellow marsh marigold

Typical Profile

Oa-0 to 4 inches; muck
A-4 to 7 inches; mucky sandy loam
Bw-7 to 11 inches; sand
C-11 to 21 inches; sand
Cg1-21 to 50 inches; sand
Cg2—50 to 80 inches; sand

Minor Components

Adrian soils

Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Pipestone soils
Percent of map unit: 5 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193277—Benona sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches

Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Benona and similar soils: 90 percent Dissimilar minor components: 10 percent

Description of the Benona Soil

Classification

Sandy, mixed, mesic Lamellic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 6.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, currant, twistedstalk, trillium, Canada mayflower, sweet cicely, trout lily, wild sarsaparilla, common ladyfern, western brackenfern, and spinulose shield fern

Typical Profile

A-0 to 2 inches; sand
E-2 to 6 inches; sand
Bs1-6 to 9 inches; sand
Bs2-9 to 17 inches; sand
Bw-17 to 28 inches; sand
$E^{\prime}-28$ to 46 inches; sand
E and Bt-46 to 80 inches; sand

Minor Components

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise

Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Shavenaugh soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193278-Benona sand, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Benona and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Benona Soil

Classification

Sandy, mixed, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 6.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Spinulose shield fern, western brackenfern, common ladyfern, wild sarsaparilla, trout lily, sweet cicely, Canada mayflower, baneberry, currant, twistedstalk, and trillium

Typical Profile

A-0 to 2 inches; sand
E-2 to 6 inches; sand
Bs1-6 to 9 inches; sand
Bs2-9 to 17 inches; sand
Bw-17 to 28 inches; sand
$E^{\prime}-28$ to 46 inches; sand
E and Bt-46 to 80 inches; sand

Minor Components

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 3 percent

Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 3 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Shavenaugh soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

193279—Benona sand, 12 to 18 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Benona and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Benona Soil

Classification

Sandy, mixed, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 6.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Spinulose shield fern, western brackenfern, common ladyfern, wild sarsaparilla, trout lily, sweet cicely, Canada mayflower, baneberry, currant, twistedstalk, and trillium

Typical Profile

A-0 to 2 inches; sand
E-2 to 6 inches; sand
Bs1-6 to 9 inches; sand
Bs2-9 to 17 inches; sand
Bw-17 to 28 inches; sand
$E^{\prime}-28$ to 46 inches; sand
E and Bt-46 to 80 inches; sand

Minor Components

Coloma soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex

Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Fogg soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Shavenaugh soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193284—Udorthents-Udipsamments complex, very steep

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Udorthents and similar soils: 55 percent
Udipsamments and similar soils: 35 percent
Dissimilar minor components: 10 percent

Description of the Udorthents

Classification

Udorthents

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, side slope, base slope, head slope, interfluve, and nose slope
Slope range: 35 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North

Soil temperature class: Not used
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very high
Parent material: Loamy and/or clayey material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 16.8 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: B

Typical Profile

AC-0 to 80 inches; sandy loam

Description of the Udipsamments

Classification

Udipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, side slope, base slope, head slope, interfluve, and nose slope
Slope range: 35 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Not used
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s

Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

AC-0 to 80 inches; sand

Minor Components

Coloma soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Filer soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193285—Lumley-Makinen complex

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Lumley and similar soils: 55 percent
Makinen and similar soils: 40 percent
Dissimilar minor components: 5 percent

Description of the Lumley Soil

Classification

Dysic, mesic Typic Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent

Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: More than 51 inches of acid organic material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 0.0 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 33.1 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Leatherleaf, bog Labrador tea, and sphagnum

Typical Profile

Oi1-0 to 3 inches; peat
Oi2-3 to 6 inches; peat
Oa1-6 to 8 inches; muck
Oa2-8 to 20 inches; muck
Oa3-20 to 45 inches; muck
Oa4-45 to 53 inches; muck
Oa5-53 to 80 inches; muck
Description of the Makinen Soil

Classification

Sandy or sandy-skeletal, mixed, dysic, mesic Terric Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: 16 to 51 inches of organic material over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent

Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 15.4 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Leatherleaf, bog Labrador tea, and sphagnum

Typical Profile

Oa1-0 to 4 inches; muck
Oa2-4 to 14 inches; muck
Oa3-14 to 22 inches; muck
Oa4-22 to 31 inches; muck
C-31 to 80 inches; sand

Minor Components

Saugatuck soils

Percent of map unit: 5 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193286-Histosols and Aquents, ponded

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Histosols and similar soils: 55 percent
Aquents and similar soils: 45 percent

Description of the Histosols

Classification

Histosols

Setting

Landform: Marshes
Landform position (three-dimensional): Dip

Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: 16 to more than 51 inches of organic material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 0.0 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 20.1 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 8w
Meets hydric soil criteria: Yes
Hydrologic soil group:

Typical Profile

Oa-0 to 45 inches; muck
C-45 to 80 inches; sand

Description of the Aquents

Classification

Aquents

Setting

Landform: Marshes
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Wet glaciofluvial deposits and/or glaciolacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.8 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 8w
Meets hydric soil criteria: Yes
Hydrologic soil group: D
Typical Profile
AC-0 to 80 inches; sand

193287—Dune land-Quartzipsamments complex, hilly to very steep

Map Unit Setting
Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition
Dune land: 55 percent
Quartzipsamments and similar soils: 40 percent
Dissimilar minor components: 5 percent
Description of Dune Land

General

This map unit component consists of non-soil areas that have no stabilizing vegetation.

Setting

Slope range: 18 to 70 percent
Representative aspect: North
Properties and Qualities
Runoff: Low
Parent material: Eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches

Description of the Quartzipsamments

Classification

Quartzipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 35 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy eolian deposits and/or glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.0 inches)

Interpretive Groups

Meets hydric soil criteria: No
Hydrologic soil group: A

Typical Profile

AC-0 to 80 inches; sand

Minor Components

Nordhouse soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193288-Udipsamments, nearly level and undulating

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Udipsamments and similar soils: 100 percent
Description of the Udipsamments

Classification

Udipsamments

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent

Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
AC-0 to 80 inches; sand

193342-Gorvan-Houghton-Glendora complex, frequently flooded

Map Unit Setting
Major land resource areas (MLRA): 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Gorvan and similar soils: 35 percent
Houghton and similar soils: 30 percent
Glendora and similar soils: 20 percent
Dissimilar minor components: 15 percent
Description of the Gorvan Soil
\section*{Classification}
Fine-loamy over sandy or sandy-skeletal, mixed, semiactive, mesic Fluvaquentic Endoaquolls
\section*{Setting}
Landform: Flood plains
Landform position (three-dimensional): Talf
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear

Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Silty and clayey alluvium over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: Frequent
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 5
Available water capacity: Moderate (about 8.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: B/D

Vegetation

Existing plants: Grape, poison ivy, horsetail, mint, and willow

Typical Profile

A1-0 to 4 inches; silt loam
A2-4 to 11 inches; silt loam
Cg-11 to 27 inches; silt loam
2Cg-27 to 80 inches; sand

Description of the Houghton Soil

Classification

Euic, mesic Typic Haplosaprists

Setting

Landform: Flood plains
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: More than 51 inches of organic material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: Frequent
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 0.0 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic

Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 32.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: B/D

Vegetation

Existing plants: Willow, mint, horsetail, poison ivy, and grape

Typical Profile

Oa1-0 to 12 inches; muck
Oa2-12 to 26 inches; muck
Oa3-26 to 80 inches; muck

Description of the Glendora Soil

Classification

Mixed, mesic Mollic Psammaquents

Setting

Landform: Flood plains
Landform position (three-dimensional): Talf
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Sandy alluvium
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: Frequent
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Willow, mint, horsetail, poison ivy, and grape

Typical Profile

A-0 to 6 inches; mucky loamy sand
Cg1-6 to 9 inches; loamy sand
Cg2-9 to 30 inches; sand
Cg3-30 to 80 inches; sand

Minor Components

Abscota soils
Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Adrian soils
Percent of map unit: 5 percent
Landform: Flood plains
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Dair soils
Percent of map unit: 3 percent
Landform: Flood plains
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Aquents
Percent of map unit: 2 percent
Landform: Flood plains
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

193349—Spinks-Coloma sands, 35 to 70 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Spinks and similar soils: 50 percent
Coloma and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 35 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Description of the Coloma Soil

Classification

Mixed, mesic Lamellic Udipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 35 to 70 percent

Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 3 inches; sand
E-3 to 4 inches; sand
Bw1-4 to 8 inches; sand
Bw2-8 to 15 inches; sand
Bw3-15 to 25 inches; sand
Bw4-25 to 40 inches; sand
E and $\mathrm{Bt}-40$ to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope

Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193351—Benona sand, 18 to 35 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Benona and similar soils: 95 percent
Dissimilar minor components: 5 percent

Description of the Benona Soil

Classification

Sandy, mixed, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 6.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Spinulose shield fern, western brackenfern, common ladyfern, wild sarsaparilla, trout lily, sweet cicely, Canada mayflower, baneberry, currant, twistedstalk, and trillium

Typical Profile
A-0 to 2 inches; sand
E-2 to 6 inches; sand
Bs1-6 to 9 inches; sand
Bs2-9 to 17 inches; sand
Bw-17 to 28 inches; sand
$E^{\prime}-28$ to 46 inches; sand
E and $\mathrm{Bt}-46$ to 80 inches; sand

Minor Components

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Fogg soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193354-Dune land-Quartzipsamments complex, undulating to hilly

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Dune land: 50 percent
Quartzipsamments and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of Dune Land

General

This map unit component consists of non-soil areas that have no stabilizing vegetation.

Setting

Slope range: 6 to 18 percent
Representative aspect: North
Properties and Qualities
Runoff: Low
Parent material: Eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches

Description of the Quartzipsamments

Classification

Quartzipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 6 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy eolian deposits and/or glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.0 inches)
Interpretive Groups
Meets hydric soil criteria: No
Hydrologic soil group: A
Typical Profile
AC-0 to 80 inches; sand

Minor Components

Nordhouse soils

Percent of map unit: 4 percent

Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Goodharbor soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 1 to 12 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Platteriver soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Footslope and toeslope
Geomorphic position (three-dimensional): Base slope and side slope
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193357—Shavenaugh sand, 18 to 35 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Shavenaugh and similar soils: 85 percent
Dissimilar minor components: 15 percent

Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Low
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Mapleleaf viburnum, rattlesnake fern, dutchman's breeches, trout lily, springbeauty, bloodroot, hepatica, sweet cicely, wild leek, trillium, blue cohosh, and common ladyfern

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
$2 \mathrm{C}-44$ to 80 inches; very gravelly sand

Minor Components

Nessen soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Kaleva soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193359—Shavenaugh sand, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Shavenaugh and similar soils: 85 percent
Dissimilar minor components: 15 percent
Description of the Shavenaugh Soil
Classification
Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Mapleleaf viburnum, rattlesnake fern, dutchman's breeches, trout lily, springbeauty, bloodroot, hepatica, sweet cicely, wild leek, trillium, blue cohosh, and common ladyfern

Typical Profile

A- 0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
2C-44 to 80 inches; very gravelly sand

Minor Components

Nessen soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear

Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kaleva soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

193360—Shavenaugh sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Shavenaugh and similar soils: 85 percent
Dissimilar minor components: 15 percent

Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Common ladyfern, western brackenfern, blue cohosh, sweet cicely, hepatica, bloodroot, trillium, wild leek, springbeauty, trout lily, dutchman's breeches, rattlesnake fern, and mapleleaf viburnum

Typical Profile

A-0 to 5 inches; sand
E—5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
2C-44 to 80 inches; very gravelly sand
Minor Components

Nessen soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Kaleva soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193362—Benzonia sand, 18 to 35 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Benzonia and similar soils: 90 percent
Dissimilar minor components: 10 percent
Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North

Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Dutchman's breeches, wild leek, springbeauty, bloodroot, twistedstalk, serviceberry, trout lily, western brackenfern, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
$\mathrm{E}-5$ to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2—27 to 35 inches; sand
E and $B t-35$ to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent

Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Fogg soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193363—Benzonia sand, 12 to 18 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Benzonia and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North

Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Dutchman's breeches, wild leek, springbeauty, bloodroot, twistedstalk, serviceberry, trout lily, western brackenfern, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2—27 to 35 inches; sand
E and $\mathrm{Bt}-35$ to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent

Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Fogg soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193364—Benzonia sand, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Benzonia and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)

Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Dutchman's breeches, wild leek, springbeauty, bloodroot, twistedstalk, serviceberry, trout lily, western brackenfern, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2-27 to 35 inches; sand
E and $B t-35$ to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No
Kaleva soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent

Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Nessen soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

193365—Benzonia sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Benzonia and similar soils: 90 percent
Dissimilar minor components: 10 percent
Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic

Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Trillium, western brackenfern, trout lily, bellwort, serviceberry, twistedstalk, bloodroot, springbeauty, wild leek, dutchman's breeches, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2-27 to 35 inches; sand
E and Bt- 35 to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Kaleva soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Nessen soils

Percent of map unit: 2 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear

Across-slope shape: Linear
Meets hydric soil criteria: No

193371—Dair-Pipestone complex, 0 to 2 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Dair and similar soils: 50 percent
Pipestone and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Dair Soil

Classification

Mixed, mesic Typic Psammaquents

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 4 to 8 inches of organic material over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 6.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Speckled alder, yellow marsh marigold, sedge, redosier dogwood, blueflag iris, and sensitive fern

Typical Profile

Oa-0 to 4 inches; muck
A-4 to 7 inches; mucky sandy loam
Bw-7 to 11 inches; sand
C-11 to 21 inches; sand
Cg1-21 to 50 inches; sand
Cg2—50 to 80 inches; sand
Description of the Pipestone Soil

Classification

Sandy, mixed, mesic Typic Endoaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.3 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4w
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Bunchberry dogwood, wintergreen, partridgeberry, western brackenfern, American starflower, and Canada mayflower

Typical Profile

A-0 to 2 inches; sand
E-2 to 9 inches; sand
Bhs-9 to 12 inches; sand
Bs-12 to 24 inches; sand
BC-24 to 32 inches; sand
C-32 to 80 inches; sand

Minor Components

Covert soils

Percent of map unit: 5 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North

Slope range: 0 to 6 percent Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Houghton soils
Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

193372—Access Denied

Map Unit Setting
Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Map Unit Composition
Access Denied: 100 percent

Description of Access Denied

This map unit consists of areas that were not mapped because access to the property was denied.

193423—Benona sand, 35 to 70 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Benona and similar soils: 95 percent
Dissimilar minor components: 5 percent

Description of the Benona Soil

Classification

Sandy, mixed, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 35 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North

Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 6.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Spinulose shield fern, western brackenfern, common ladyfern, wild sarsaparilla, trout lily, sweet cicely, Canada mayflower, baneberry, currant, twistedstalk, and trillium

Typical Profile

A-0 to 2 inches; sand
E-2 to 6 inches; sand
Bs1-6 to 9 inches; sand
Bs2-9 to 17 inches; sand
Bw-17 to 28 inches; sand
$E^{\prime}-28$ to 46 inches; sand
E and $\mathrm{Bt}-46$ to 80 inches; sand

Minor Components

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Fogg soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent

Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193484—Pits, sand and gravel

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Pits, sand and gravel: 100 percent
Description Pits, Sand and Gravel
Areas of this map unit consist of abandoned sand and gravel pits.

193494—Nordhouse sand, 18 to 70 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Nordhouse and similar soils: 100 percent
Description of the Nordhouse Soil

Classification

Mesic, uncoated Spodic Quartzipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 70 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None

Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.2 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Canada yew, mapleleaf viburnum, twistedstalk, sweet cicely, blueberry, and Canada mayflower

Typical Profile

A-0 to 3 inches; sand
E-3 to 11 inches; sand
Bs-11 to 40 inches; sand
C1-40 to 60 inches; sand
C2-60 to 80 inches; sand

193496-Nordhouse sand, 6 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Nordhouse and similar soils: 95 percent
Dissimilar minor components: 5 percent

Description of the Nordhouse Soil

Classification

Mesic, uncoated Spodic Quartzipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low

Parent material: Sandy eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.2 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Canada yew, mapleleaf viburnum, twistedstalk, sweet cicely, blueberry, and Canada mayflower

Typical Profile
A-0 to 3 inches; sand
E-3 to 11 inches; sand
Bs-11 to 40 inches; sand
C1-40 to 60 inches; sand
C2-60 to 80 inches; sand

Minor Components

Platteriver soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Footslope and toeslope
Geomorphic position (three-dimensional): Side slope and base slope
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Dair soils
Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (two-dimensional): Toeslope
Geomorphic position (three-dimensional): Base slope and dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

193497-Nordhouse sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 575 to 1,115 feet

Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Nordhouse and similar soils: 95 percent
Dissimilar minor components: 5 percent

Description of the Nordhouse Soil

Classification

Mesic, uncoated Spodic Quartzipsamments

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.2 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Canada yew, mapleleaf viburnum, twistedstalk, sweet cicely, blueberry, and Canada mayflower

Typical Profile

A-0 to 3 inches; sand
E-3 to 11 inches; sand
Bs-11 to 40 inches; sand
C1-40 to 60 inches; sand
C2-60 to 80 inches; sand

Minor Components

Platteriver soils

Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent

Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Dair soils
Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

193498-Nordhouse-Platteriver-Dair complex, 0 to 6 percent slopes

Map Unit Setting
Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition
Nordhouse and similar soils: 40 percent
Platteriver and similar soils: 35 percent
Dair and similar soils: 25 percent

Description of the Nordhouse Soil

Classification

Mesic, uncoated Spodic Quartzipsamments

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic

Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.2 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Canada yew, mapleleaf viburnum, twistedstalk, sweet cicely, blueberry, and Canada mayflower

Typical Profile

A-0 to 3 inches; sand
E-3 to 11 inches; sand
Bs-11 to 40 inches; sand
C1-40 to 60 inches; sand
C2-60 to 80 inches; sand

Description of the Platteriver Soil

Classification

Mixed, mesic Oxyaquic Udipsamments

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 18 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Bunchberry dogwood, pink lady's slipper, wintergreen, western brackenfern, lowbush blueberry, kinnikinnick

Typical Profile

Oa-0 to 1 inch; highly decomposed plant material
A-1 to 3 inches; sand

E-3 to 14 inches; sand
Bw1-14 to 20 inches; sand
Bw2-20 to 29 inches; sand
C-29 to 80 inches; sand

Description of the Dair Soil

Classification

Mixed, mesic Typic Psammaquents

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 4 to 8 inches of organic material over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 6.5 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Speckled alder, yellow marsh marigold, sedge, redosier dogwood, blueflag iris, and sensitive fern

Typical Profile

Oa-0 to 4 inches; muck
A-4 to 7 inches; mucky sandy loam
Bw-7 to 11 inches; sand
C-11 to 21 inches; sand
Cg1-21 to 50 inches; sand
Cg2-50 to 80 inches; sand

193503—Spinks-Shavenaugh sands, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt

Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Spinks and similar soils: 50 percent
Shavenaugh and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Blackberry, baneberry, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, bloodroot, mapleleaf viburnum, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and $B t 2-62$ to 72 inches; sand
C-72 to 80 inches; sand

Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, blackberry, bloodroot, goldenrod, trillium, mapleleaf viburnum, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
2C-44 to 80 inches; very gravelly sand

Minor Components

Coloma soils

Percent of map unit: 4 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear

Across-slope shape: Linear
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193504—Spinks-Shavenaugh sands, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Spinks and similar soils: 50 percent
Shavenaugh and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low

Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, blackberry, bloodroot, goldenrod, trillium, mapleleaf viburnum, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and $\mathrm{Bt} 1-17$ to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)

Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, blackberry, bloodroot, goldenrod, trillium, mapleleaf viburnum, and downy yellow violet

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
2C-44 to 80 inches; very gravelly sand

Minor Components

Coloma soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North

Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

193505—Spinks-Shavenaugh sands, 12 to 18 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Spinks and similar soils: 50 percent
Shavenaugh and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4e

Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, blackberry, bloodroot, goldenrod, trillium, mapleleaf viburnum, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and $B t 2-62$ to 72 inches; sand
C-72 to 80 inches; sand

Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet
cicely, western brackenfern, blackberry, bloodroot, goldenrod, trillium, mapleleaf viburnum, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
$2 \mathrm{C}-44$ to 80 inches; very gravelly sand

Minor Components

Coloma soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193506—Spinks-Shavenaugh sands, 18 to 35 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt

Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Spinks and similar soils: 50 percent
Shavenaugh and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, blackberry, bloodroot, goldenrod, trillium, mapleleaf viburnum, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand

E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, blackberry, bloodroot, goldenrod, trillium, mapleleaf viburnum, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
2C-44 to 80 inches; very gravelly sand

Minor Components

Coloma soils

Percent of map unit: 6 percent

Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193507—Spinks-Shavenaugh sands, 35 to 50 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Spinks and similar soils: 50 percent
Shavenaugh and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, blackberry, bloodroot, goldenrod, trillium, mapleleaf viburnum, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand
Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Low
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches

Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, blackberry, bloodroot, goldenrod, trillium, mapleleaf viburnum, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
$2 \mathrm{C}-44$ to 80 inches; very gravelly sand

Minor Components

Coloma soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193508—Madaus muck

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Madaus and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Madaus Soil

Classification

Coarse-silty over sandy or sandy-skeletal, carbonatic over mixed, mesic Histic Humaquepts

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible

Parent material: Less than 16 inches of organic material over silty marl over sandy glaciofluvial deposits over clayey lacustrine deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 60
Available water capacity: Very high (about 13.3 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: B/D

Vegetation

Existing plants: Jack in the pulpit, sedge, dogwood, common elderberry, and poison sumac

Typical Profile

Oa-0 to 12 inches; muck
Lca1-12 to 34 inches; marly silt loam
Lca2-34 to 38 inches; marly silt loam
2C-38 to 62 inches; sand
3C-62 to 80 inches; clay

Minor Components

Dair soils

Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes
Houghton soils
Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

193509—Boyer-Shavenaugh complex, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Boyer and similar soils: 50 percent
Shavenaugh and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Boyer Soil

Classification

Coarse-loamy, mixed, semiactive, mesic Typic Hapludalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: 20 to 40 inches of loamy and sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Moderate (about 6.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, bloodroot, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 3 inches; fine sandy loam
E-3 to 4 inches; gravelly sandy loam
Bt1-4 to 14 inches; gravelly sandy loam
Bt2—14 to 30 inches; gravelly sandy loam
2C1-30 to 45 inches; very gravelly sand
2C2-45 to 80 inches; stratified gravelly sand to sand

Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible

Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, bloodroot, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
2C-44 to 80 inches; very gravelly sand

Minor Components

Nessen soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Covert soils

Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear

Across-slope shape: Linear
Meets hydric soil criteria: No

193510—Boyer-Shavenaugh complex, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Boyer and similar soils: 50 percent
Shavenaugh and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Boyer Soil

Classification

Coarse-loamy, mixed, semiactive, mesic Typic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Medium
Parent material: 20 to 40 inches of loamy and sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Moderate (about 6.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e

Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, bloodroot, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 3 inches; fine sandy loam
E-3 to 4 inches; gravelly sandy loam
Bt1-4 to 14 inches; gravelly sandy loam
Bt2-14 to 30 inches; gravelly sandy loam
2C1-30 to 45 inches; very gravelly sand
2C2-45 to 80 inches; stratified gravelly sand to sand

Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, bloodroot, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
2C-44 to 80 inches; very gravelly sand

Minor Components

Coloma soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Nessen soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

193511—Boyer-Shavenaugh complex, 18 to 35 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Boyer and similar soils: 50 percent
Shavenaugh and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Boyer Soil

Classification

Coarse-loamy, mixed, semiactive, mesic Typic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: High
Parent material: 20 to 40 inches of loamy and sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Moderate (about 6.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, bloodroot, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 3 inches; fine sandy loam
$\mathrm{E}-3$ to 4 inches; gravelly sandy loam
Bt1-4 to 14 inches; gravelly sandy loam
Bt2-14 to 30 inches; gravelly sandy loam
2C1-30 to 45 inches; very gravelly sand
2C2-45 to 80 inches; stratified gravelly sand to sand
Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave

Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, bloodroot, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand
Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
$2 \mathrm{C}-44$ to 80 inches; very gravelly sand

Minor Components

Coloma soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nessen soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope

Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

193513—Dair-Adrian mucks

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Dair and similar soils: 50 percent
Adrian and similar soils: 45 percent
Dissimilar minor components: 5 percent

Description of the Dair Soil

Classification

Mixed, mesic Typic Psammaquents

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 4 to 8 inches of organic material over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 6.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Speckled alder, yellow marsh marigold, sedge, redosier dogwood, blueflag iris, sensitive fern, Jack in the pulpit, goldthread, horsetail, rush, willow, and cattail

Typical Profile

Oa-0 to 4 inches; muck
A-4 to 7 inches; mucky sandy loam
Bw-7 to 11 inches; sand
C-11 to 21 inches; sand
Cg1-21 to 50 inches; sand
Cg2-50 to 80 inches; sand

Description of the Adrian Soil

Classification

Sandy or sandy-skeletal, mixed, euic, mesic Terric Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 16 to 51 inches of organic material over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 16.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Speckled alder, Jack in the pulpit, yellow marsh marigold, sedge, redosier dogwood, goldthread, horsetail, blueflag iris, rush, sensitive fern, willow, and cattail

Typical Profile

Oa1-0 to 7 inches; muck
Oa2-7 to 20 inches; muck
Oa3-20 to 35 inches; muck
Cg-35 to 80 inches; sand

Minor Components

Covert soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

193514—Platteriver-Pipestone sands, 0 to 4 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Platteriver and similar soils: 55 percent
Pipestone and similar soils: 40 percent
Dissimilar minor components: 5 percent
Description of the Platteriver Soil

Classification

Mixed, mesic Oxyaquic Udipsamments

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 18 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 4.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4s

Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Kinnikinnick, bunchberry dogwood, pink lady's slipper, wintergreen, western brackenfern, and lowbush blueberry

Typical Profile

Oa-0 to 1 inch; highly decomposed plant material
A-1 to 3 inches; sand
E-3 to 14 inches; sand
Bw1-14 to 20 inches; sand
Bw2-20 to 29 inches; sand
C-29 to 80 inches; sand

Description of the Pipestone Soil

Classification

Sandy, mixed, mesic Typic Endoaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4w
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Bunchberry dogwood, wintergreen, partridgeberry, western brackenfern, American starflower, and Canada mayflower

Typical Profile

A-0 to 2 inches; sand
E-2 to 9 inches; sand
Bhs-9 to 12 inches; sand
Bs-12 to 24 inches; sand
BC-24 to 32 inches; sand
C-32 to 80 inches; sand

Minor Components

Dair soils
Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

202010—Houghton-Adrian mucks

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Houghton and similar soils: 55 percent
Adrian and similar soils: 40 percent
Dissimilar minor components: 5 percent
Description of the Houghton Soil

Classification

Euic, mesic Typic Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: More than 51 inches of organic material
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 0.0 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic

Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 32.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: B/D

Vegetation

Existing plants: Speckled alder, cattail, sedge, blueflag iris, goldthread, redosier dogwood, rush, Jack in the pulpit, horsetail, and willow

Typical Profile

Oa1-0 to 12 inches; muck
Oa2-12 to 26 inches; muck
Oa3-26 to 80 inches; muck

Description of the Adrian Soil

Classification

Sandy or sandy-skeletal, mixed, euic, mesic Terric Haplosaprists

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 16 to 51 inches of organic material over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Very high (about 16.7 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Speckled alder, cattail, sedge, blueflag iris, goldthread, redosier dogwood, rush, Jack in the pulpit, horsetail, and willow

Typical Profile

Oa1-0 to 7 inches; muck
Oa2-7 to 20 inches; muck

Oa3-20 to 35 inches; muck
Cg-35 to 80 inches; sand

Minor Components

Dair soils
Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

202016-Spinks-Tekenink, sandy substratum, complex, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 96—Western Michigan Fruit Belt; 98—Southern
Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Spinks and similar soils: 50 percent
Tekenink, sandy substratum and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline

Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Description of the Tekenink, Sandy Substratum Soil

Classification

Coarse-loamy, mixed, semiactive, mesic Typic Glossudalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low
Parent material: 60 to 80 inches of loamy and/or sandy till over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Moderate (about 8.8 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2 e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 8 inches; loamy fine sand E-8 to 16 inches; loamy fine sand Bw-16 to 21 inches; sandy loam E/B-21 to 49 inches; loamy sand Bt-49 to 62 inches; sandy loam 2C1-62 to 72 inches; loamy sand 2C2—72 to 80 inches; sand

Minor Components

Coloma soils

Percent of map unit: 4 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Remus soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Shavenaugh soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

631170—Fogg-Benzonia sands, 35 to 50 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Fogg and similar soils: 50 percent
Benzonia and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Fogg Soil

Classification
Sandy, mixed, mesic Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: 40 to 60 inches of sandy glaciofluvial deposits over loamy till over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 7.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Jack in the pulpit, kinnikinnick, springbeauty, dutchman's breeches, trout lily, wintergreen, sweet cicely, bloodroot, false Solomon's seal, twistedstalk, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 2 inches; sand
E-2 to 7 inches; sand
Bhs-7 to 13 inches; sand
Bs1-13 to 21 inches; sand
Bs2-21 to 34 inches; sand
E/B-34 to 43 inches; loamy fine sand
B/E-43 to 48 inches; sandy loam
Bt-48 to 55 inches; sandy loam
E and Bt-55 to 80 inches; sand
Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope

Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Jack in the pulpit, kinnikinnick, springbeauty, dutchman's breeches, trout lily, wintergreen, sweet cicely, bloodroot, false Solomon's seal, twistedstalk, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2—27 to 35 inches; sand
E and $B t-35$ to 80 inches; sand

Minor Components

Mollineaux soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

631171—Fogg-Benzonia sands, 18 to 35 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Fogg and similar soils: 50 percent
Benzonia and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Fogg Soil

Classification

Sandy, mixed, mesic Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: 40 to 60 inches of sandy glaciofluvial deposits over loamy till over sandy glaciofluvial deposits

Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 7.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Jack in the pulpit, kinnikinnick, springbeauty, dutchman's breeches, trout lily, wintergreen, sweet cicely, bloodroot, false Solomon's seal, twistedstalk, trillium, bellwort, and Canada mayflower

Typical Profile
A-0 to 2 inches; sand
E-2 to 7 inches; sand
Bhs-7 to 13 inches; sand
Bs1-13 to 21 inches; sand
Bs2-21 to 34 inches; sand
E/B-34 to 43 inches; loamy fine sand
$B / E-43$ to 48 inches; sandy loam
Bt-48 to 55 inches; sandy loam
E and Bt-55 to 80 inches; sand

Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)

Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Jack in the pulpit, kinnikinnick, springbeauty, dutchman's breeches, trout lily, wintergreen, sweet cicely, bloodroot, false Solomon's seal, twistedstalk, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2—27 to 35 inches; sand
E and $B t-35$ to 80 inches; sand

Minor Components

Mollineaux soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent

Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

631172—Fogg-Benzonia sands, 12 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Fogg and similar soils: 50 percent
Benzonia and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Fogg Soil

Classification

Sandy, mixed, mesic Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 40 to 60 inches of sandy glaciofluvial deposits over loamy till over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 7.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Jack in the pulpit, kinnikinnick, springbeauty, dutchman's breeches, trout lily, wintergreen, sweet cicely, bloodroot, false Solomon's seal, twistedstalk, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 2 inches; sand
E-2 to 7 inches; sand
Bhs-7 to 13 inches; sand
Bs1-13 to 21 inches; sand
Bs2-21 to 34 inches; sand
E/B-34 to 43 inches; loamy fine sand
B/E-43 to 48 inches; sandy loam
Bt-48 to 55 inches; sandy loam
E and $\mathrm{Bt}-55$ to 80 inches; sand

Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Jack in the pulpit, kinnikinnick, springbeauty, dutchman's breeches, trout lily, wintergreen, sweet cicely, bloodroot, false Solomon's seal, twistedstalk, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2-27 to 35 inches; sand
E and $\mathrm{Bt}-35$ to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Mollineaux soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

631173—Fogg-Benzonia sands, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches

Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Fogg and similar soils: 50 percent
Benzonia and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Fogg Soil

Classification

Sandy, mixed, mesic Alfic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 40 to 60 inches of sandy glaciofluvial deposits over loamy till over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 7.9 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Jack in the pulpit, kinnikinnick, springbeauty, dutchman's breeches, trout lily, wintergreen, sweet cicely, bloodroot, false Solomon's seal, twistedstalk, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 2 inches; sand
E-2 to 7 inches; sand
Bhs-7 to 13 inches; sand
Bs1-13 to 21 inches; sand
Bs2-21 to 34 inches; sand
E/B-34 to 43 inches; loamy fine sand
$B / E-43$ to 48 inches; sandy loam

Bt-48 to 55 inches; sandy loam
E and Bt-55 to 80 inches; sand

Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Jack in the pulpit, kinnikinnick, springbeauty, dutchman's breeches, trout lily, wintergreen, sweet cicely, bloodroot, false Solomon's seal, twistedstalk, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2-27 to 35 inches; sand
E and $\mathrm{Bt}-35$ to 80 inches; sand

Minor Components

Tekenink, sandy substratum soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Benona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Kaleva soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

631174—Fogg-Benzonia sands, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Fogg and similar soils: 50 percent
Benzonia and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Fogg Soil

Classification

Sandy, mixed, mesic Alfic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear

Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: 40 to 60 inches of sandy glaciofluvial deposits over loamy till over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 7.9 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Jack in the pulpit, kinnikinnick, springbeauty, dutchman's breeches, trout lily, wintergreen, Canada mayflower, sweet cicely, bloodroot, false Solomon's seal, twistedstalk, trillium, and bellwort

Typical Profile

A-0 to 2 inches; sand
E-2 to 7 inches; sand
Bhs-7 to 13 inches; sand
Bs1-13 to 21 inches; sand
Bs2-21 to 34 inches; sand
E/B-34 to 43 inches; loamy fine sand
$B / E-43$ to 48 inches; sandy loam
Bt-48 to 55 inches; sandy loam
E and $\mathrm{Bt}-55$ to 80 inches; sand

Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Sandy glaciofluvial deposits

Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Trillium, dutchman's breeches, false Solomon's seal, bellwort, bloodroot, kinnikinnick, Jack in the pulpit, wintergreen, trout lily, twistedstalk, sweet cicely, springbeauty, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand
E-5 to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2-27 to 35 inches; sand
E and Bt- 35 to 80 inches; sand

Minor Components

Tekenink, sandy substratum soils
Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Benona soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Kaleva soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

680939—Fern-Spinks sands, 6 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Fern and similar soils: 50 percent
Spinks and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Fern Soil

Classification

Loamy, mixed, active, mesic Arenic Oxyaquic Glossudalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: 20 to 40 inches of sandy glaciofluvial deposits over loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 24 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: High (about 10.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Western brackenfern, baneberry, goldenrod, bigleaf aster, downy yellow violet, trillium, Canada mayflower, and wild leek

Typical Profile

Ap-0 to 9 inches; sand
E-9 to 10 inches; sand

Bw-10 to 24 inches; sand
2B/E-24 to 29 inches; clay loam
2Bt-29 to 42 inches; clay loam
2BC-42 to 50 inches; clay loam
2C-50 to 80 inches; clay loam

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Western brackenfern, baneberry, goldenrod, bigleaf aster, downy yellow violet, trillium, wild leek, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Minor Components

Coloma soils

Percent of map unit: 5 percent

Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Perrinton soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

680943-Milnichol fine sand, 0 to 4 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Milnichol and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Milnichol Soil

Classification

Sandy, mixed, mesic Typic Epiaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: 40 to 60 inches of sandy glaciofluvial deposits over loamy alluvium Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None

Frequency of ponding: None
Depth to water table: About 6 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Moderate (about 8.8 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4w
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Wintergreen, American starflower, partridgeberry, bunchberry dogwood, western brackenfern, and Canada mayflower

Typical Profile

A-0 to 2 inches; fine sand
E-2 to 12 inches; fine sand
Bhs-12 to 15 inches; fine sand
Bs1-15 to 25 inches; fine sand
Bs2-25 to 33 inches; fine sand
C-33 to 47 inches; fine sand
2C1-47 to 50 inches; stratified loamy fine sand to fine sandy loam
2C2-50 to 68 inches; silty clay loam
2C3-68 to 80 inches; silt loam

Minor Components

Pipestone soils

Percent of map unit: 4 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Covert soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Thompsonville soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

680945—Fern sand, 6 to 12 percent slopes

Map Unit Setting
Major land resource areas (MLRA): 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Fern and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Fern Soil

Classification

Loamy, mixed, active, mesic Arenic Oxyaquic Glossudalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: 20 to 40 inches of sandy glaciofluvial deposits over loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 24 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: High (about 10.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 9 inches; sand
E-9 to 10 inches; sand

Bw-10 to 24 inches; sand
2B/E-24 to 29 inches; clay loam
2Bt-29 to 42 inches; clay loam
2BC-42 to 50 inches; clay loam
2C-50 to 80 inches; clay loam

Minor Components

Marlette soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Tekenink, sandy substratum soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

680946-Fern sand, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Fern and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Fern Soil

Classification

Loamy, mixed, active, mesic Arenic Oxyaquic Glossudalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 20 to 40 inches of sandy glaciofluvial deposits over loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 24 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: High (about 10.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, Canada mayflower, western brackenfern, goldenrod, trillium, and downy yellow violet

Typical Profile

Ap-0 to 9 inches; sand
E-9 to 10 inches; sand
Bw-10 to 24 inches; sand
2B/E-24 to 29 inches; clay loam
2Bt-29 to 42 inches; clay loam
2BC-42 to 50 inches; clay loam
2C-50 to 80 inches; clay loam

Minor Components

Marlette soils

Percent of map unit: 4 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear

Across-slope shape: Linear
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

680971-Nessen-Kaleva sands, 18 to 35 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Nessen and similar soils: 50 percent
Kaleva and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Nessen Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Low

Parent material: 40 to 55 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Low (about 4.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, spinulose shield fern, trout lily, hepatica, Canada mayflower, sweet cicely, western brackenfern, bloodroot, American starflower, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 4 inches; sand
E-4 to 11 inches; sand
Bhs-11 to 15 inches; sand
Bs1-15 to 24 inches; sand
Bs2-24 to 39 inches; sand
Bt-39 to 44 inches; gravelly sand
2C-44 to 80 inches; stratified sand to gravelly sand

Description of the Kaleva Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained

Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, spinulose shield fern, trout lily, hepatica, Canada mayflower, sweet cicely, western brackenfern, bloodroot, American starflower, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 3 inches; sand
E-3 to 9 inches; sand
Bhs-9 to 11 inches; sand
Bs1-11 to 16 inches; sand
Bs2-16 to 21 inches; sand
C1-21 to 70 inches; sand
C2—70 to 80 inches; sand

Minor Components

Shavenaugh soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope

Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

680972—Nessen-Kaleva sands, 12 to 18 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Nessen and similar soils: 50 percent
Kaleva and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Nessen Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: 40 to 55 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Low (about 4.3 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, spinulose shield fern, trout lily, hepatica, Canada mayflower, sweet cicely, western brackenfern, bloodroot, American starflower, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 4 inches; sand
E-4 to 11 inches; sand
Bhs-11 to 15 inches; sand
Bs1-15 to 24 inches; sand
Bs2-24 to 39 inches; sand
Bt-39 to 44 inches; gravelly sand
2C-44 to 80 inches; stratified sand to gravelly sand

Description of the Kaleva Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, spinulose shield fern, trout lily, hepatica, Canada mayflower, sweet cicely, western brackenfern, bloodroot, American starflower, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 3 inches; sand
E-3 to 9 inches; sand
Bhs-9 to 11 inches; sand
Bs1-11 to 16 inches; sand
Bs2—16 to 21 inches; sand
C1-21 to 70 inches; sand
C2—70 to 80 inches; sand

Minor Components

Shavenaugh soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Boyer soils
Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

680973—Nessen-Kaleva sands, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches

Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Nessen and similar soils: 50 percent
Kaleva and similar soils: 40 percent
Dissimilar minor components: 10 percent
Description of the Nessen Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: 40 to 55 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Low (about 4.3 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, spinulose shield fern, trout lily, hepatica, Canada mayflower, sweet cicely, western brackenfern, bloodroot, American starflower, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 4 inches; sand
E-4 to 11 inches; sand
Bhs-11 to 15 inches; sand
Bs1-15 to 24 inches; sand
Bs2—24 to 39 inches; sand

Bt-39 to 44 inches; gravelly sand
2C-44 to 80 inches; stratified sand to gravelly sand

Description of the Kaleva Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, spinulose shield fern, trout lily, hepatica, Canada mayflower, sweet cicely, western brackenfern, bloodroot, American starflower, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 3 inches; sand
E-3 to 9 inches; sand
Bhs-9 to 11 inches; sand
Bs1-11 to 16 inches; sand
Bs2-16 to 21 inches; sand
C1-21 to 70 inches; sand
C2—70 to 80 inches; sand

Minor Components

Shavenaugh soils

Percent of map unit: 5 percent

Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Crest, interfluve, side slope, base slope, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

680974—Nessen-Kaleva sands, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Nessen and similar soils: 50 percent
Kaleva and similar soils: 40 percent
Dissimilar minor components: 10 percent
Description of the Nessen Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (three-dimensional): Rise

Slope range: 0 to 6 percent Down-slope shape: Linear Across-slope shape: Linear Representative aspect: North Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: 40 to 55 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Low (about 4.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, hepatica, bloodroot, mapleleaf viburnum, spinulose shield fern, trout lily, Canada mayflower, sweet cicely, western brackenfern, American starflower, and trillium

Typical Profile

A-0 to 4 inches; sand
E-4 to 11 inches; sand
Bhs-11 to 15 inches; sand
Bs1-15 to 24 inches; sand
Bs2-24 to 39 inches; sand
Bt-39 to 44 inches; gravelly sand
2C-44 to 80 inches; stratified sand to gravelly sand

Description of the Kaleva Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible

Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, spinulose shield fern, trout lily, hepatica, Canada mayflower, sweet cicely, western brackenfern, bloodroot, American starflower, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 3 inches; sand
E-3 to 9 inches; sand
Bhs-9 to 11 inches; sand
Bs1-11 to 16 inches; sand
Bs2-16 to 21 inches; sand
C1-21 to 70 inches; sand
C2—70 to 80 inches; sand

Minor Components

Shavenaugh soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Boyer soils

Percent of map unit: 2 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear

Across-slope shape: Linear
Meets hydric soil criteria: No

893251—Boyer-Shavenaugh complex, 12 to 18 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Boyer and similar soils: 50 percent
Shavenaugh and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Boyer Soil

Classification

Coarse-loamy, mixed, semiactive, mesic Typic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Medium
Parent material: 20 to 40 inches of loamy and sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Moderate (about 6.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, bloodroot, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 3 inches; fine sandy loam
E-3 to 4 inches; gravelly sandy loam
Bt1-4 to 14 inches; gravelly sandy loam
Bt2-14 to 30 inches; gravelly sandy loam
2C1-30 to 45 inches; very gravelly sand
2C2-45 to 80 inches; stratified gravelly sand to sand

Description of the Shavenaugh Soil

Classification

Mixed, mesic Psammentic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 30 to 50 inches of sandy material over calcareous sandy and gravelly glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 20
Available water capacity: Low (about 5.0 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wild leek, common ladyfern, rattlesnake fern, blue cohosh, springbeauty, dutchman's breeches, trout lily, hepatica, sweet cicely, western brackenfern, bloodroot, trillium, and mapleleaf viburnum

Typical Profile

A-0 to 5 inches; sand
E-5 to 8 inches; sand

Bw1-8 to 16 inches; sand
Bw2-16 to 28 inches; sand
Bw3-28 to 34 inches; sand
Bt-34 to 44 inches; loamy sand
2C-44 to 80 inches; very gravelly sand

Minor Components

Coloma soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Nessen soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

894062—Remus-Spinks complex, 18 to 35 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Remus and similar soils: 50 percent
Spinks and similar soils: 40 percent
Dissimilar minor components: 10 percent
Description of the Remus Soil

Classification

Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope

Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very high
Parent material: 40 to more than 60 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Very high (about 13.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 9 inches; fine sandy loam
Bw-9 to 15 inches; fine sandy loam
E/B-15 to 24 inches; loamy sand
B/E-24 to 35 inches; sandy clay loam
Bt-35 to 66 inches; sandy clay loam
C-66 to 80 inches; loam

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits

Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 6e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt 1 - 17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Minor Components

Coloma soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Tekenink, sandy substratum soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

894063—Remus-Spinks complex, 12 to 18 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 96—Western Michigan Fruit Belt; 98—Southern
Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Remus and similar soils: 50 percent
Spinks and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Remus Soil

Classification

Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: High
Parent material: 40 to more than 60 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Very high (about 13.3 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4e

Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 9 inches; fine sandy loam
Bw-9 to 15 inches; fine sandy loam
E/B-15 to 24 inches; loamy sand
$B / E-24$ to 35 inches; sandy clay loam
Bt- 35 to 66 inches; sandy clay loam
C-66 to 80 inches; loam

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, Canada mayflower, western brackenfern, goldenrod, trillium, and downy yellow violet

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand

E and $\mathrm{Bt} 1-17$ to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Minor Components

Coloma soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Tekenink, sandy substratum soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

894064—Fern-Remus complex, 6 to 12 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Fern and similar soils: 50 percent

Remus and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Fern Soil

Classification

Loamy, mixed, active, mesic Arenic Oxyaquic Glossudalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: 20 to 40 inches of sandy glaciofluvial deposits over loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 24 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: High (about 10.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 9 inches; sand
E-9 to 10 inches; sand
Bw-10 to 24 inches; sand
2B/E-24 to 29 inches; clay loam
2Bt-29 to 42 inches; clay loam
2BC-42 to 50 inches; clay loam
2C—50 to 80 inches; clay loam

Description of the Remus Soil

Classification

Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: High
Parent material: 40 to more than 60 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Very high (about 13.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 9 inches; fine sandy loam
Bw-9 to 15 inches; fine sandy loam
E/B-15 to 24 inches; loamy sand
B/E-24 to 35 inches; sandy clay loam
Bt-35 to 66 inches; sandy clay loam
C-66 to 80 inches; loam

Minor Components

Coloma soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Marlette soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 6 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

894065-Fern-Remus complex, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 96—Western Michigan Fruit Belt; 98—Southern
Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Fern and similar soils: 50 percent
Remus and similar soils: 40 percent
Dissimilar minor components: 10 percent
Description of the Fern Soil

Classification

Loamy, mixed, active, mesic Arenic Oxyaquic Glossudalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very low
Parent material: 20 to 40 inches of sandy glaciofluvial deposits over loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 24 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: High (about 10.7 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 3s
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 9 inches; sand
E-9 to 10 inches; sand
Bw-10 to 24 inches; sand
2B/E-24 to 29 inches; clay loam
2Bt-29 to 42 inches; clay loam
2BC-42 to 50 inches; clay loam
2C-50 to 80 inches; clay loam

Description of the Remus Soil

Classification

Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Medium

Parent material: 40 to more than 60 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Very high (about 13.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 2e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 9 inches; fine sandy loam
Bw-9 to 15 inches; fine sandy loam
E/B-15 to 24 inches; loamy sand
$B / E-24$ to 35 inches; sandy clay loam
Bt- 35 to 66 inches; sandy clay loam
C-66 to 80 inches; loam

Minor Components

Coloma soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Marlette soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

894104-Mollineaux-Remus complex, 18 to 35 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Mollineaux and similar soils: 50 percent
Remus and similar soils: 40 percent
Dissimilar minor components: 10 percent
Description of the Mollineaux Soil

Classification

Sandy over loamy, mixed, active, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Medium
Parent material: Sandy glaciofluvial deposits over loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 8.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 6 inches; loamy sand
E-6 to 9 inches; loamy sand
Bs1-9 to 15 inches; loamy sand
Bs2-15 to 27 inches; loamy sand
E and Bt1-27 to 38 inches; loamy sand
B/E-38 to 64 inches; clay loam
E and Bt2-64 to 80 inches; sand

Description of the Remus Soil

Classification

Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Very high
Parent material: 40 to more than 60 inches of loamy material over calcareous loamy till Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained

Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Very high (about 13.3 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 9 inches; fine sandy loam
Bw-9 to 15 inches; fine sandy loam
E/B-15 to 24 inches; loamy sand
B/E-24 to 35 inches; sandy clay loam
Bt-35 to 66 inches; sandy clay loam
C-66 to 80 inches; loam

Minor Components

Coloma soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Onekama soils
Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex

Across-slope shape: Convex and concave Meets hydric soil criteria: No

894105-Mollineaux-Remus complex, 12 to 18 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Mollineaux and similar soils: 50 percent
Remus and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Mollineaux Soil

Classification

Sandy over loamy, mixed, active, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits over loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 8.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

A-0 to 6 inches; loamy sand
E-6 to 9 inches; loamy sand
Bs1-9 to 15 inches; loamy sand
Bs2-15 to 27 inches; loamy sand
E and Bt1-27 to 38 inches; loamy sand
B/E-38 to 64 inches; clay loam
E and B t2-64 to 80 inches; sand

Description of the Remus Soil

Classification

Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: High
Parent material: 40 to more than 60 inches of loamy material over calcareous loamy till
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Moderate (about 4.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 10
Available water capacity: Very high (about 13.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 9 inches; fine sandy loam
Bw-9 to 15 inches; fine sandy loam
E/B-15 to 24 inches; loamy sand
$B / E-24$ to 35 inches; sandy clay loam

Bt- 35 to 66 inches; sandy clay loam
C-66 to 80 inches; loam

Minor Components

Coloma soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Benzonia soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Onekama soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 12 to 18 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

894165-Spinks-Tekenink, sandy substratum, complex, 35 to 50 percent slopes

Map Unit Setting
Major land resource area (MLRA): 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Spinks and similar soils: 50 percent
Tekenink, sandy substratum and similar soils: 40 percent
Dissimilar minor components: 10 percent

Description of the Spinks Soil

Classification

Sandy, mixed, mesic Lamellic Hapludalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Low
Parent material: Sandy glaciofluvial deposits and/or eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.5 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 5 inches; sand
Bw1-5 to 10 inches; sand
Bw2-10 to 17 inches; sand
E and Bt1-17 to 62 inches; sand
E and Bt2-62 to 72 inches; sand
C-72 to 80 inches; sand

Description of the Tekenink, Sandy Substratum Soil

Classification

Coarse-loamy, mixed, semiactive, mesic Typic Glossudalfs

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 35 to 50 percent

Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Medium
Parent material: 60 to 80 inches of loamy and/or sandy till over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Moderate (about 8.8 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7e
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Baneberry, wild leek, bigleaf aster, western brackenfern, goldenrod, trillium, downy yellow violet, and Canada mayflower

Typical Profile

Ap-0 to 8 inches; loamy fine sand
E-8 to 16 inches; loamy fine sand
Bw-16 to 21 inches; sandy loam
E/B-21 to 49 inches; loamy sand
Bt-49 to 62 inches; sandy loam
2C1-62 to 72 inches; loamy sand
2C2-72 to 80 inches; sand

Minor Components

Coloma soils

Percent of map unit: 4 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Remus soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope

Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 18 to 35 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No
Shavenaugh soils
Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

899682—Kaleva sand, 35 to 50 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96-Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Kaleva and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Kaleva Soil

Classification

Sandy, mixed, mesic Typic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Low
Parent material: Sandy glaciofluvial deposits

Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Spinulose shield fern, trout lily, Canada mayflower, sweet cicely, western brackenfern, bloodroot, American starflower, trillium, and mapleleaf viburnum

Typical Profile
A-0 to 3 inches; sand
E-3 to 9 inches; sand
Bhs-9 to 11 inches; sand
Bs1-11 to 16 inches; sand
Bs2-16 to 21 inches; sand
C1-21 to 70 inches; sand
C2—70 to 80 inches; sand

Minor Components

Benzonia soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

899722—Goodharbor sand, 1 to 12 percent slopes

Map Unit Setting

Major land resource area (MLRA): 96—Western Michigan Fruit Belt Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Goodharbor and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Goodharbor Soil

Classification

Mesic, uncoated Typic Quartzipsamments

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Slope range: 1 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Very low
Parent material: Sandy eolian deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 15
Available water capacity: Low (about 4.8 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 6s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Wintergreen, lowbush blueberry, and kinnikinnick
Typical Profile
A-0 to 1 inch; sand
E-1 to 3 inches; sand
Bw1-3 to 23 inches; sand

Bw2-23 to 40 inches; sand
C-40 to 80 inches; sand

Minor Components

Nordhouse soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Nose slope, head slope, interfluve, crest, base slope, and side slope
Representative aspect: North
Slope range: 1 to 12 percent
Down-slope shape: Linear
Across-slope shape: Linear and convex
Meets hydric soil criteria: No

Platteriver soils

Percent of map unit: 5 percent
Geomorphic position (two-dimensional): Footslope and toeslope
Geomorphic position (three-dimensional): Side slope and base slope
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

899731—Covert-Pipestone sands, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96-Western Michigan Fruit Belt; 98-Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Covert and similar soils: 50 percent
Pipestone and similar soils: 40 percent
Dissimilar minor components: 10 percent
Description of the Covert Soil

Classification

Sandy, mixed, mesic Oxyaquic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic

Properties and Qualities

Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 24 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.1 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Bunchberry dogwood, pink lady's slipper, wintergreen, western brackenfern, and lowbush blueberry

Typical Profile

A-0 to 1 inch; sand
E-1 to 8 inches; sand
Bs1-8 to 18 inches; sand
Bs2-18 to 25 inches; sand
BC-25 to 29 inches; sand
C1-29 to 38 inches; sand
C2—38 to 47 inches; sand
C3-47 to 80 inches; sand
Description of the Pipestone Soil

Classification

Sandy, mixed, mesic Typic Endoaquods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 6 inches (see table 19)
Drainage class: Somewhat poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic

Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.3 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4w
Meets hydric soil criteria: No
Hydrologic soil group: B

Vegetation

Existing plants: Bunchberry dogwood, wintergreen, partridgeberry, western brackenfern, American starflower, and Canada mayflower

Typical Profile

A-0 to 2 inches; sand
E-2 to 9 inches; sand
Bhs-9 to 12 inches; sand
Bs-12 to 24 inches; sand
BC-24 to 32 inches; sand
C-32 to 80 inches; sand

Minor Components

Dair soils

Percent of map unit: 5 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

Saugatuck soils

Percent of map unit: 5 percent
Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 3 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

899733—Covert-Dair complex, 0 to 6 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt; 98—Southern Michigan and Northern Indiana Drift Plain
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days
Map Unit Composition
Covert and similar soils: 50 percent
Dair and similar soils: 45 percent
Dissimilar minor components: 5 percent

Description of the Covert Soil

Classification

Sandy, mixed, mesic Oxyaquic Haplorthods

Setting

Landform position (three-dimensional): Rise
Slope range: 0 to 6 percent
Down-slope shape: Linear
Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: About 24 inches (see table 19)
Drainage class: Moderately well drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.1 inches)

Interpretive Groups

Land capability subclass (nonirrigated): 4s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Bunchberry dogwood, pink lady's slipper, wintergreen, western brackenfern, and lowbush blueberry

Typical Profile

A-0 to 1 inch; sand
E-1 to 8 inches; sand
Bs1-8 to 18 inches; sand
Bs2-18 to 25 inches; sand
BC-25 to 29 inches; sand
C1-29 to 38 inches; sand
C2-38 to 47 inches; sand
C3-47 to 80 inches; sand
Description of the Dair Soil

Classification

Mixed, mesic Typic Psammaquents

Setting

Landform: Depressions
Landform position (three-dimensional): Dip
Slope range: 0 to 2 percent
Down-slope shape: Linear

Across-slope shape: Linear
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Negligible
Parent material: 4 to 8 inches of organic material over sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Depth to water table: At the soil surface
Drainage class: Very poorly drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Moderate (about 6.5 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 5w
Meets hydric soil criteria: Yes
Hydrologic soil group: A/D

Vegetation

Existing plants: Speckled alder, yellow marsh marigold, sedge, redosier dogwood, blueflag iris, and sensitive fern

Typical Profile

Oa-0 to 4 inches; muck
A-4 to 7 inches; mucky sandy loam
Bw-7 to 11 inches; sand
C-11 to 21 inches; sand
Cg1-21 to 50 inches; sand
Cg2-50 to 80 inches; sand

Minor Components

Pipestone soils

Percent of map unit: 3 percent Geomorphic position (three-dimensional): Rise
Representative aspect: North
Slope range: 0 to 4 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: No

Houghton soils

Percent of map unit: 2 percent
Landform: Depressions
Geomorphic position (three-dimensional): Dip
Representative aspect: North
Slope range: 0 to 2 percent
Down-slope shape: Linear
Across-slope shape: Linear
Meets hydric soil criteria: Yes

899734—Benzonia sand, 35 to 50 percent slopes

Map Unit Setting

Major land resource areas (MLRA): 94A—Northern Michigan and Wisconsin Sandy Drift; 96—Western Michigan Fruit Belt
Elevation: 575 to 1,115 feet
Mean annual precipitation: 28 to 38 inches
Mean annual air temperature: 37 to 55 degrees F
Frost-free period: 113 to 185 days

Map Unit Composition

Benzonia and similar soils: 90 percent
Dissimilar minor components: 10 percent

Description of the Benzonia Soil

Classification

Sandy, isotic, mesic Lamellic Haplorthods

Setting

Landform position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Landform position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Representative aspect: North
Soil temperature class: Mesic
Soil temperature regime: Mesic
Properties and Qualities
Runoff: Low
Parent material: Sandy glaciofluvial deposits
Restrictive feature(s): None within a depth of 60 inches
Frequency of flooding: None
Frequency of ponding: None
Depth to water table: More than 72 inches
Drainage class: Somewhat excessively drained
Shrink-swell potential: Low (about 1.5 LEP)
Salinity maximum: Not saline
Sodicity maximum: Not sodic
Calcium carbonate equivalent (maximum weight percentage): 0
Available water capacity: Low (about 5.6 inches)
Interpretive Groups
Land capability subclass (nonirrigated): 7s
Meets hydric soil criteria: No
Hydrologic soil group: A

Vegetation

Existing plants: Dutchman's breeches, wild leek, springbeauty, bloodroot, twistedstalk, serviceberry, trout lily, western brackenfern, trillium, bellwort, and Canada mayflower

Typical Profile

A-0 to 5 inches; sand

E-5 to 11 inches; sand
Bhs1-11 to 15 inches; sand
Bhs2-15 to 20 inches; sand
Bs1-20 to 27 inches; sand
Bs2-27 to 35 inches; sand
E and Bt- 35 to 80 inches; sand

Minor Components

Benona soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Coloma soils

Percent of map unit: 3 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Fogg soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Grattan soils

Percent of map unit: 2 percent
Geomorphic position (two-dimensional): Summit, shoulder, backslope, footslope, and toeslope
Geomorphic position (three-dimensional): Side slope, base slope, crest, interfluve, head slope, and nose slope
Representative aspect: North
Slope range: 35 to 50 percent
Down-slope shape: Linear and convex
Across-slope shape: Convex and concave
Meets hydric soil criteria: No

Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils within Sleeping Bear Dunes National Lakeshore. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soilrelated failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils as farmland and as sites for buildings, sanitary facilities, highways and other transportation systems, and recreational facilities. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the park. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, and trees and shrubs.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the park for various uses. Many of the tables identify the limitations that affect specified uses and indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Rating Class Terms

Rating classes are expressed in the tables in terms that indicate the extent to which the soils are limited by all of the soil features that affect a specified use or in terms that indicate the suitability of the soils for the use. Thus, the tables may show limitation classes or suitability classes. Terms for the limitation classes are not limited, slightly limited, somewhat limited, and very limited. The suitability ratings are expressed as well suited, moderately well suited, poorly suited, and unsuited or as good, fair, and poor.

Numerical Ratings

Numerical ratings in the tables indicate the relative severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact
on the use and the point at which the soil feature is not a limitation. The limitations appear in order from the most limiting to the least limiting. Thus, if more than one limitation is identified, the most severe limitation is listed first and the least severe one is listed last.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for rangeland, for forestland, or for engineering purposes.

In the capability system, soils are generally grouped at three levels-capability class, subclass, and unit (USDA-SCS, 1961). Only class and subclass are used in this survey.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have slight limitations that restrict their use.
Class 2 soils have moderate limitations that restrict the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that restrict the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, 2e. The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, rangeland, forestland, wildlife habitat, or recreation.

The capability classification of map units in this park is given in the section "Detailed Soil Map Units" and in table 2.

Prime and Other Important Farmland

Table 3 lists the map units in the park that are considered important farmlands. Important farmlands consist of prime farmland, unique farmland, and farmland of statewide or local importance. This list does not constitute a recommendation for a particular land use.

In an effort to identify the extent and location of important farmlands, the Natural Resources Conservation Service, in cooperation with other interested Federal, State, and local government organizations, has inventoried land that can be used for the production of the Nation's food supply.

Prime farmland is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil quality, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. The water supply is dependable and of adequate quality. Prime farmland is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime farmland is available at the local office of the Natural Resources Conservation Service.

For some soils identified as prime farmland, measures that overcome a hazard or limitation, such as flooding, wetness, and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures.

A recent trend in land use in some areas has been the loss of some prime farmland to industrial and urban uses. The loss of prime farmland to other uses puts pressure on marginal lands, which generally are more erodible, droughty, and less productive and cannot be easily cultivated.

Unique farmland is land other than prime farmland that is used for the production of specific high-value food and fiber crops, such as citrus, tree nuts, olives, cranberries, and other fruits and vegetables. It has the special combination of soil quality, growing season, moisture supply, temperature, humidity, air drainage, elevation, and aspect needed for the soil to economically produce sustainable high yields of these crops when properly managed. The water supply is dependable and of adequate quality. Nearness to markets is an additional consideration. Unique farmland is not based on national criteria. It commonly is in areas where there is a special microclimate, such as the wine country in California.

In some areas, land that does not meet the criteria for prime or unique farmland is considered to be farmland of statewide importance for the production of food, feed, fiber, forage, and oilseed crops. The criteria for defining and delineating farmland of statewide importance are determined by the appropriate State agencies. Generally, this land includes areas of soils that nearly meet the requirements for prime farmland and that economically produce high yields of crops when treated and managed according to acceptable farming methods. Some areas may produce as high a yield
as prime farmland if conditions are favorable. Farmland of statewide importance may include tracts of land that have been designated for agriculture by State law.

In some areas that are not identified as having national or statewide importance, land is considered to be farmland of local importance for the production of food, feed, fiber, forage, and oilseed crops. This farmland is identified by the appropriate local agencies. Farmland of local importance may include tracts of land that have been designated for agriculture by local ordinance.

Hydric Soils

Table 4 lists the map unit components that are rated as hydric soils in the park. This list can help in planning land uses; however, onsite investigation is recommended to determine the hydric soils on a specific site (National Research Council, 1995; USDANRCS, 2010).

The three essential characteristics of wetlands are hydrophytic vegetation, hydric soils, and wetland hydrology (Cowardin et al., 1979; U.S. Army Corps of Engineers, 1987; National Research Council, 1995; Tiner, 1985). Criteria for all of the characteristics must be met for areas to be identified as wetlands. Undrained hydric soils that have natural vegetation should support a dominant population of ecological wetland plant species. Hydric soils that have been converted to other uses should be capable of being restored to wetlands.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). These soils, under natural conditions, are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 2010) and in the "Soil Survey Manual" (Soil Survey Division Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (USDA-NRCS, 2010).

Hydric soils are identified by examining and describing the soil to a depth of about 20 inches. This depth may be greater if determination of an appropriate indicator so requires. It is always recommended that soils be excavated and described to the depth necessary for an understanding of the redoximorphic processes. Then, using the completed soil descriptions, soil scientists can compare the soil features required by each indicator and specify which indicators have been matched with the conditions observed in the soil. The soil can be identified as a hydric soil if at least one of the approved indicators is present.

Map units that are dominantly made up of hydric soils may have small areas, or inclusions, of nonhydric soils in the higher positions on the landform, and map units dominantly made up of nonhydric soils may have inclusions of hydric soils in the lower positions on the landform.

The criteria for hydric soils are represented by codes in the table (for example, 2B3). Definitions for the codes are as follows:

1. All Histels except for Folistels and Histosols except for Folists.
2. Soils in Aquic suborders, great groups, or subgroups, Albolls suborder, Historthels great group, Histoturbels great group, Pachic subgroups, or Cumulic subgroups that:
A. are somewhat poorly drained and have a water table at the surface (0.0
feet) during the growing season, or
B. are poorly drained or very poorly drained and have either:
1) a water table at the surface (0.0 feet) during the growing season if textures are coarse sand, sand, or fine sand in all layers within a depth of 20 inches, or
2) a water table at a depth of 0.5 foot or less during the growing season if saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sat }}\right)$ is equal to or greater than $6.0 \mathrm{in} / \mathrm{hr}$ in all layers within a depth of 20 inches, or
3) a water table at a depth of 1.0 foot or less during the growing season if saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sat }}\right)$ is less than $6.0 \mathrm{in} / \mathrm{hr}$ in any layer within a depth of 20 inches.
3. Soils that are frequently ponded for periods of long or very long duration during the growing season.
4. Soils that are frequently flooded for periods of long or very long duration during the growing season.

Landform and Parent Material

Table 5 displays information about climate, landscape, landform, and parent material for each soil in the map units.

Percent of the map unit is the extent of the named soil in the map unit.
Slope is the inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100 . Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance. The table shows the low and high range of slope for the named component or soil.

Elevation is the height of an object or area on the earth's surface in reference to a fixed point, such as mean sea level. The typical low and high range of elevation is displayed for each soil.

MAP is the mean annual precipitation for areas of the soil in the map unit.
Landform is a specific shape of the earth in the area where a soil typically occurs. Examples are a mountain summit and a valley bottom.

Parent material is the material in which soils formed. Examples are the underlying geological material (including bedrock), a surficial deposit (such as volcanic ash), and organic material. Soils inherit their chemical and physical properties from the parent material.

Land Management

In table 6, parts I through IV, interpretive ratings are given for various aspects of land management. The ratings are both verbal and numerical.

Some rating class terms indicate the degree to which the soils are suited to a specified land management practice. Well suited indicates that the soil has features that are favorable for the specified practice and has no limitations. Good performance can be expected, and little or no maintenance is needed. Moderately suited indicates that the soil has features that are moderately favorable for the specified practice. One or more soil properties are less than desirable, and fair performance can be expected. Some maintenance is needed. Poorly suited indicates that the soil has one or more properties that are unfavorable for the specified practice. Overcoming the unfavorable properties requires special design, extra maintenance, and costly alteration. Unsuited
indicates that the expected performance of the soil is unacceptable for the specified practice or that extreme measures are needed to overcome the undesirable soil properties.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified land management practice (1.00) and the point at which the soil feature is not a limitation (0.00).

Rating class terms for fire damage and seedling mortality are expressed as low, moderate, and high. Where these terms are used, the numerical ratings indicate gradations between the point at which the potential for fire damage or seedling mortality is highest (1.00) and the point at which the potential is lowest (0.00).

Rating class terms for hazard of erosion are expressed as slight, moderate, severe, and very severe. Where these terms are used, the numerical ratings indicate gradations between the point at which the potential for erosion is highest (1.00) and the point at which the potential is lowest (0.00).

The paragraphs that follow indicate the soil properties considered in rating the soils for land management practices.

Planting

Ratings in the columns suitability for hand planting and suitability for mechanical planting are based on slope, depth to a restrictive layer, content of sand, plasticity index, rock fragments on or below the surface, depth to a water table, and ponding. The soils are described as well suited, moderately suited, poorly suited, or unsuited to these methods of planting. It is assumed that necessary site preparation is completed before seedlings are planted.

Ratings in the column soil rutting hazard are based on depth to a water table, rock fragments on or below the surface, the Unified classification, depth to a restrictive layer, and slope. Ruts form as a result of the operation of planting equipment. The hazard is described as slight, moderate, or severe. A rating of slight indicates that the soil is subject to little or no rutting, moderate indicates that rutting is likely, and severe indicates that ruts form readily.

Hazard of Erosion and Suitability for Roads

Ratings in the column hazard of erosion are based on slope and on soil erodibility factor K. The soil loss is caused by sheet or rill erosion in areas where 50 to 75 percent of the surface has been exposed by different kinds of disturbance. The hazard is described as slight, moderate, severe, or very severe. A rating of slight indicates that erosion is unlikely under ordinary climatic conditions; moderate indicates that some erosion is likely and that erosion-control measures may be needed; severe indicates that erosion is very likely and that erosion-control measures, including revegetation of bare areas, are advised; and very severe indicates that significant erosion is expected, loss of soil productivity and off-site damage are likely, and erosion-control measures are costly and generally impractical.

Ratings in the column hazard of erosion on roads and trails are based on the soil erodibility factor K, slope, and content of rock fragments. The ratings apply to unsurfaced roads and trails. The hazard is described as slight, moderate, or severe. A rating of slight indicates that little or no erosion is likely; moderate indicates that some erosion is likely, that the roads or trails may require occasional maintenance, and that simple erosion-control measures are needed; and severe indicates that significant erosion is expected, that the roads or trails require frequent maintenance, and that costly erosion-control measures are needed.

Ratings in the column suitability for roads (natural surface) are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification,
depth to a water table, ponding, flooding, and the hazard of soil slippage. The ratings indicate the suitability for using the natural surface of the soil for roads. The soils are described as well suited, moderately suited, or poorly suited to this use.

Site Preparation

Ratings in the column suitability for mechanical site preparation (deep) are based on slope, depth to a restrictive layer, rock fragments on or below the surface, depth to a water table, and ponding. The soils are described as well suited, poorly suited, or unsuited to this management activity. The part of the soil from the surface to a depth of about 3 feet is considered in the ratings.

Ratings in the column suitability for mechanical site preparation (surface) are based on slope, depth to a restrictive layer, plasticity index, rock fragments on or below the surface, depth to a water table, and ponding. The soils are described as well suited, poorly suited, or unsuited to this management activity. The part of the soil from the surface to a depth of about 1 foot is considered in the ratings.

Site Restoration

Ratings in the column potential for damage to soil by fire are based on texture of the surface layer, content of rock fragments and organic matter in the surface layer, thickness of the surface layer, and slope. The soils are described as having a low, moderate, or high potential for this kind of damage. The ratings indicate an evaluation of the potential impact of prescribed fires or wildfires that are intense enough to remove the duff layer and consume organic matter in the surface layer.

Ratings in the column potential for seedling mortality are based on flooding, ponding, depth to a water table, content of lime, reaction, salinity, available water capacity, soil moisture regime, soil temperature regime, aspect, and slope. The soils are described as having a low, moderate, or high potential for seedling mortality.

Recreation

The soils of the park are rated in table 7, parts I and II, according to limitations that affect their suitability for recreation. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the recreational uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the table are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season
when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in table 7 can be supplemented by other information in this survey, for example, interpretations for building site development, construction materials, and water management.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas. The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Foot traffic and equestrian trails for hiking and horseback riding should require little or no slope modification through cutting and filling. The ratings are based on the soil properties that affect trafficability and erodibility. These properties are stoniness, depth to a water table, ponding, flooding, slope, and texture of the surface layer.

Mountain bike and off-road vehicle trails require little or no site preparation. They are not covered with surfacing material or vegetation. Considerable compaction of the soil material is likely. The ratings are based on the soil properties that influence erodibility, trafficability, dustiness, and the ease of revegetation. These properties are stoniness, depth to a water table, ponding, slope, flooding, and texture of the surface layer.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, landscaping, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on the estimated data and test data in the "Soil Properties" section.

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about particle-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 7 feet of the surface, soil wetness, depth to a water table, ponding, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for septic tank absorption fields and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, ponds, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Dwellings and Small Commercial Buildings

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Table 8 shows the degree and kind of soil limitations that affect dwellings and small commercial buildings.

The ratings in the table are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost
penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a water table, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a water table, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Roads and Streets, Shallow Excavations, and Landscaping

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Table 9 shows the degree and kind of soil limitations that affect local roads and streets, shallow excavations, and landscaping.

The ratings in the table are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a water table, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred
from the AASHTO group index number), subsidence, linear extensibility (shrink-swell potential), the potential for frost action, depth to a water table, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to the seasonal high water table, flooding, and ponding may restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, depth to the water table, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Landscaping requires soils on which turf, trees, and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer.

Sewage Disposal

Table 10 shows the degree and kind of soil limitations that affect septic tank absorption fields and sewage lagoons. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Septic tank absorption fields are areas in which effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 72 inches or between a depth of 24 inches and a restrictive layer is evaluated. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sat }}\right)$, depth to a water table, ponding, depth to bedrock or a cemented pan, and flooding affect absorption of the effluent. Stones and boulders, ice, and bedrock or a cemented pan interfere with installation. Subsidence interferes with installation and maintenance. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

Some soils are underlain by loose sand and gravel or fractured bedrock at a depth of less than 4 feet below the distribution lines. In these soils the absorption field may not adequately filter the effluent, particularly when the system is new. As a result, the ground water may become contaminated.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Nearly
impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water. Considered in the ratings are slope, saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sat }}\right)$, depth to a water table, ponding, depth to bedrock or a cemented pan, flooding, large stones, and content of organic matter.

Saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sat }}\right)$ is a critical property affecting the suitability for sewage lagoons. Most porous soils eventually become sealed when they are used as sites for sewage lagoons. Until sealing occurs, however, the hazard of pollution is severe. Soils that have a $\mathrm{K}_{\text {sat }}$ rate of more than 14 micrometers per second are too porous for the proper functioning of sewage lagoons. In these soils, seepage of the effluent can result in contamination of the ground water. Ground-water contamination is also a hazard if fractured bedrock is within a depth of 40 inches, if the water table is high enough to raise the level of sewage in the lagoon, or if floodwater overtops the lagoon.

A high content of organic matter is detrimental to proper functioning of the lagoon because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and large stones can hinder compaction of the lagoon floor. If the lagoon is to be uniformly deep throughout, the slope must be gentle enough and the soil material must be thick enough over bedrock or a cemented pan to make land smoothing practical.

Source of Gravel and Sand

Table 11 gives information about the soils as potential sources of gravel and sand. Normal compaction, minor processing, and other standard construction practices are assumed.

Gravel and sand are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. Only the likelihood of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the Unified classification of the soil), the thickness of suitable material, and the content of rock fragments. If the bottom layer of the soil contains sand or gravel, the soil is considered a likely source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness. The ratings are for the whole soil, from the surface to a depth of about 6 feet.

The soils are rated good, fair, or poor as potential sources of sand and gravel. A rating of good or fair means that the source material is likely to be in or below the soil. The bottom layer and the thickest layer of the soils are assigned numerical ratings. These ratings indicate the likelihood that the layer is a source of sand or gravel. The number 0.00 indicates that the layer is a poor source. The number 1.00 indicates that the layer is a good source. A number between 0.00 and 1.00 indicates the degree to which the layer is a likely source.

Source of Reclamation Material, Roadfill, and Topsoil

Table 12 gives information about the soils as potential sources of reclamation material, roadfill, and topsoil. Normal compaction, minor processing, and other standard construction practices are assumed.

The soils are rated good, fair, or poor as potential sources of reclamation material, roadfill, and topsoil. The features that limit the soils as sources of these materials are specified in the table. Numerical ratings between 0.00 and 0.99 are given after the specified features. These numbers indicate the degree to which the features limit the soils as sources of topsoil, reclamation material, or roadfill. The lower the number, the greater the limitation.

Reclamation material is used in areas that have been drastically disturbed by surface mining or similar activities. When these areas are reclaimed, layers of soil material or unconsolidated geological material, or both, are replaced in a vertical sequence. The reconstructed soil favors plant growth. The ratings in the table do not apply to quarries and other mined areas that require an offsite source of reconstruction material. The ratings are based on the soil properties that affect erosion and stability of the surface and the productive potential of the reconstructed soil. These properties include the content of sodium, salts, and calcium carbonate; reaction; available water capacity; erodibility; texture; content of rock fragments; and content of organic matter and other features that affect fertility.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments. The ratings are for the whole soil, from the surface to a depth of about 5 feet. It is assumed that soil layers will be mixed when the soil material is excavated and spread.

The ratings are based on the amount of suitable material and on soil properties that affect the ease of excavation and the performance of the material after it is in place. The thickness of the suitable material is a major consideration. The ease of excavation is affected by large stones, depth to a water table, and slope. How well the soil performs in place after it has been compacted and drained is determined by its strength (as inferred from the AASHTO classification of the soil) and linear extensibility (shrink-swell potential).

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction, and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a water table, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a water table, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Ponds and Embankments

Table 13 gives information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas; embankments, dikes, and levees; and aquifer-fed excavated ponds. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate
gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sat }}\right)$ of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. Embankments that have zoned construction (core and shell) are not considered. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of 5 or 6 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground-water aquifer or to a depth below a permanent water table. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a permanent water table, $\mathrm{K}_{\text {sat }}$ of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Soil Properties

Data relating to soil properties are collected during the course of the soil survey.
Soil properties are ascertained by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory to determine particle-size distribution, plasticity, and compaction characteristics.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties are shown in tables. They include engineering properties, physical and chemical properties, and pertinent soil and water features.

Engineering Properties

Table 14 gives the engineering classifications and the range of engineering properties for the layers of each soil in the park.

Depth to the upper and lower boundaries of each layer is indicated.
Texture is given in the standard terms used by the U.S. Department of Agriculture.
These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement,
the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420 , and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

Physical Soil Properties

Table 15 shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the park. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sal }}\right)$, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at $1 / 3$ - or ${ }^{1 / 10-b a r ~(~} 33 \mathrm{kPa}$ or 10 kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute linear extensibility, shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water
and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Permeability $\left(K_{\text {sat }}\right)$ refers to the ability of a soil to transmit water or air. The term "permeability," as used in soil surveys, indicates saturated hydraulic conductivity ($\mathrm{K}_{\text {sat }}$). The estimates in the table indicate the rate of water movement, in inches per hour, when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Shrink-swell potential is the potential for volume change in a soil with a loss or gain in moisture. Volume change occurs mainly because of the interaction of clay minerals with water and varies with the amount and type of clay minerals in the soil. The size of the load on the soil and the magnitude of the change in soil moisture content influence the amount of swelling of soils in place. Laboratory measurements of swelling of undisturbed clods were made for many soils. For others, swelling was estimated on the basis of the kind and amount of clay minerals in the soil and on the basis of measurements of similar soils.

If the shrink-swell potential is rated moderate to very high, shrinking and swelling can cause damage to buildings, roads, and other structures. Special design is often needed.

Shrink-swell potential classes are based on the change in length of an unconfined clod as moisture content is increased from air-dry to field capacity. The classes are low, a change of less than 3 percent; moderate, 3 to 6 percent; high, 6 to 9 percent; and very high, greater than 9 percent.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In this table, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion Properties

Table 16 shows estimates of some erosion factors that affect a soil's potential for different uses. These estimates are given for each layer of every soil for K factors and are given as one rating for the entire soil for the T factor, the wind erodibility group, and the wind erodibility index. Values are reported for each soil in the park. Estimates are based on field observations and on test data for these and similar soils.

Erosion factors are shown in the table as the K factor ($K w$ and $K f$) and the T factor. Soil erosion factors Kw and Kf quantify soil detachment by runoff and raindrop impact. These erosion factors are indexes used to predict the long-term average soil loss from sheet and rill erosion under crop systems and conservation techniques. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and $\mathrm{K}_{\text {sat }}$. Values
of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

The procedure for determining the Kf factor is outlined in Agriculture Handbook 703, "Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)," USDA, Agricultural Research Service, 1997.

Depth to the upper and lower boundaries of each layer is indicated.
Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments. In horizons where total rock fragments are 15 percent or more, by volume, the Kw factor is always less than the Kf factor.

Erosion factor $K f$ indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size. Soil horizons that do not have rock fragments are assigned equal Kw and Kf factors.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook."

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Total Soil Carbon

Table 17 gives estimates of total soil carbon. Soil carbon occurs as organic and inorganic carbon.

Soil organic carbon (SOC) is carbon (C) in soil that originated from a biological source, such as plants, animals, or micro-organisms. SOC is found in both organic and mineral soil layers. The term "soil organic carbon" refers only to the carbon occurring in soil organic matter (SOM). Soil organic carbon makes up about one-half the weight of soil organic matter. The rest of SOM is mostly oxygen, nitrogen, and hydrogen.

Soil inorganic carbon (SIC) is carbon found in soil carbonates, typically as calcium carbonate layers in the soil or as clay-sized fractions throughout the soil. Carbonates in soils are most common in areas where evaporation rates exceed precipitation, as is the case in most desert environments. Typically, the carbonates accumulated from carbonatic dust or from solution during periods of wetter climates. Soil inorganic carbon also occurs in soils that formed in marl in all regions of the country.

The SOC and SIC contents are reported in kilograms per square meter to a depth of 2 meters or to a representative depth of either hard bedrock or a cemented horizon. The SOC and SIC values are on a whole soil basis, corrected for rock fragments.

SOC can be an indicator of overall soil fertility and soil quality that affects ecosystem function. SOM is the main reservoir for most plant nutrients, such as phosphorus and nitrogen. Managing for SOC by managing for SOM increases the content of these elements and improves soil resiliency.

Soil organic matter binds soil particles together and thus increases soil porosity and water infiltration and allows better root penetration and waterflow into the soil. Greater inflow of water reduces the hazard of erosion and the rate of surface water runoff.

Greater SOC levels improve not only soil quality but also the quality of air and water. Soil acts as a filter and improves water quality. Fertile soils that support plant life remove CO_{2} from the atmosphere and increase oxygen levels through photosynthesis. Maintaining the level of soil organic carbon reduces C release into the atmosphere and thus can lessen the effects of global warming.

SIC influences the types of plants that will grow. High SIC levels are commonly associated with a higher soil pH , which limits the types of plants that will thrive.

Like SOM, soil carbonates, the source of SIC, also bind soil particles together. They fill voids in the soil and thus can reduce soil porosity. Compacted soil carbonates may restrict root penetration and waterflow into the soil.

Chemical Soil Properties

Table 18 shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the park. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Cation-exchange capacity is the total amount of extractable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Effective cation-exchange capacity refers to the sum of extractable cations plus aluminum expressed in terms of milliequivalents per 100 grams of soil. It is determined for soils that have pH of less than 5.5.

Soil reaction is a measure of acidity or alkalinity. The pH of each soil horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Calcium carbonate equivalent is the percent of carbonates, by weight, in the fraction of the soil less than 2 millimeters in size. The availability of plant nutrients is influenced by the amount of carbonates in the soil.

Water Features

Table 19 gives estimates of various soil water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from longduration storms.

The four hydrologic soil groups are:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B / D, or C / D), the first letter is for drained areas and the second is for undrained areas.

The months in the table indicate the portion of the year in which a water table, ponding, and/or flooding is most likely to be a concern.

Water table refers to a saturated zone in the soil. Table 19 indicates, by month, depth to the top (upper limit) and base (lower limit) of the saturated zone in most years. Estimates of the upper and lower limits are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors or mottles (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation. The table indicates surface water depth and the duration and frequency of ponding. Duration is expressed as very brief if less than 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, rare, occasional, and frequent. None means that ponding is not probable; rare that it is unlikely but possible under unusual weather conditions (the chance of ponding is nearly 0 percent to 5 percent in any year); occasional that it occurs, on the average, once or less in 2 years (the chance of ponding is 5 to 50 percent in any year); and frequent that it occurs, on the average, more than once in 2 years (the chance of ponding is more than 50 percent in any year).

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Duration and frequency are estimated. Duration is expressed as extremely brief if 0.1 hour to 4 hours, very brief if 4 hours to 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent. None means that flooding is not probable; very rare that it is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year); rare that it is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year); occasional that it occurs infrequently under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); frequent that it is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year); and very frequent that it is likely to occur very often under normal weather conditions (the chance of flooding is more than 50 percent in all months of any year).

The information is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Soil Features

Table 20 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The table indicates the hardness and thickness of the restrictive layer, both of
which significantly affect the ease of excavation. Depth to top is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sat }}\right)$, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

Formation and Classification of the Soils

This section relates the soils in Sleeping Bear Dunes National Lakeshore to the major factors of soil formation and describes the system of soil classification.

Factors of Soil Formation

By Susan Burlew Southard, Natural Resources Conservation Service.
Soil covers the surface of the earth as a three-dimensional body of varying thickness and is made up of different proportions of organic and mineral material, pore space with gases, and water. Soils differ in their appearance, productivity, and management requirements due to their chemical and physical properties. The characteristics and properties of soils are determined by physical and chemical processes that result from the interaction of five soil-forming factors. These factors of soil formation are interdependent, and few generalizations can be made regarding any one factor unless the effects of the other factors are known. The term "pedogenesis" is often used to connote the processes of soil formation.

The interacting soil-forming factors are parent material, climate, organisms, time, and relief or topography (Jenny, 1941). Parent material is the source material in which soils formed. Soils are influenced by the texture and structure of the parent material and its mineralogical and chemical composition. Climate is predominantly the temperature and kind and amount of precipitation. It is also seasonal distribution of temperatures and precipitation. Organisms are the plants and other organisms living in and on the soil, including humans. Time refers to how long the soil-forming factors have been operating on a particular landscape. Relief or topography is the shape and elevation of the landscape. It affects internal and external soil properties, such as soil drainage, aeration, susceptibility to erosion, and the soil's exposure to the sun and wind.

The processes of soil formation are a sequence of events, involving biogeochemical reactions that are energized by climate and spatially related to relief or topography (Buol et al., 2011). The physical and chemical properties of a soil are altered by these reactions over time. The influence of any one of these factors varies among all parks and within localities of a particular park. Soils may differ significantly from place to place in a park and within very short distances as a result of complex interactions among the five factors. In some cases, however, parks may have vast stretches of the same type of soil because of uniform soil-forming factors.

Setting of Sleeping Bear Dunes National Seashore

Understanding the setting of Sleeping Bear Dunes National Lakeshore (Sleeping Bear Dunes NL) helps in understanding the parent materials contributing to the types of soils within it. Understanding the soils of the park also helps in understanding the relationship between soils and the environment. Soil-forming processes are influenced by rock type, topographic expression, and the hydrologic properties of the area. Soil

Figure 1.-Parent materials for new soils on South Manitou are the dunes seen here at the bluffs. (Image courtesy of Lars Jensen)
formation influences soil properties and behaviors, which are used when determining best management practices.

Sleeping Bear Dunes NL is located along Lake Michigan on northwestern Michigan's lower peninsula. The park consists of 35 miles of Lake Michigan shoreline. It has prominent sand dunes rising as high as 450 feet above the lake. The park includes or borders several small inland lakes and the mouth of the Platte River at its south end. The mainland portion of the park is broken into three sections by the villages of Empire and Glen Arbor.

The park also includes North and South Manitou Islands, each about 6 miles from shore. These islands were high points of ridges that remained after the glaciers receded and were then covered by windblown sand. They are partially forested. North Manitou includes low-lying sandy regions in the southeast that rise to hills and 400 -foot-high sand dunes in the northwest (fig. 1). South Manitou features dunes in the west and a wide, concave harbor in the east.

The physical geography of the broader landscape of the State of Michigan and the Great Lakes, including the park, is the result of the erosion and deposition of materials caused by the repeated advance and retreat of glaciers over the last 2 million years. Glaciers scoured the surface of the earth, leveled hills, and altered the previous landscape. Valleys created by the river systems of the previous era were deepened and enlarged to form the basins of the Great Lakes. As the climate warmed, the glaciers retreated. Glacial retreat was followed by an interglacial period during which vegetation and wildlife returned. This cycle was repeated several times. The most important glacial advance for northwestern Michigan in terms of shaping the recent landscape, including Sleeping Bear Dunes NL, was the Wisconsin stage, which retreated from Michigan about 9,500 to 15,000 years ago (USDI-NPS website). As the glaciers retreated, meltwater formed along the front of the ice.

Because the land was greatly depressed from the weight of the glaciers, large postglacial lakes formed. These lakes were much larger than the present-day Great Lakes. Evidence of these lakes can still be seen in the form of beach ridges, eroded bluffs,
and flat plains situated hundreds of feet above present lake levels. Various soils have been identified on these landforms. Regional uplift (crustal rebound) caused dramatic changes in the depth, size, and drainage patterns of the post-glacial lakes. Evolving drainage patterns and fluctuating water velocities changed the distribution of the types and sizes of materials deposited. These changes in materials influenced the types of soils that would subsequently form from the deposits.

The steep headlands or bluffs of Sleeping Bear Dunes NL are characteristic of the Lake Michigan shoreline that resisted the force of the advancing ice and directed the ice lobes into the valleys. The ice lobes gouged debris from the valley floors, and the debris was deposited along the sides of the valleys as the ice melted, creating prominent moraines. Generally, these moraines and the valleys between them are oriented in a north-south direction. The formation of the Manistee end moraine is considered to be the climactic event of glacial processes that shaped the park area (USDI-NPS, 1961). The Manistee end moraine forms the uplands near Sleeping Bear Dunes NL.

The park lakeshore is covered by recent alluvium, dune sand, and Pleistocene glacial deposits (Handy and Stark, 1984). Sandy alluvium forms the present-day flood plains. The alluvial deposits of greatest areal extent in the park occur along the Platte River. Two levels of sand dunes occur in the lakeshore—dunes near the current level of Lake Michigan and dunes on plateaus that are old moraines set 300 feet above the lake (USDI-NPS, 2013).

Under the wave-cut bluffs east and north of the Otter Creek Lakes are a series of cold flowing springs. These springs flow southwesterly towards Otter Creek, which flows north-northwest. In this area a lake once existed, and the bed of the extinct lake is heavily underlain with marl deposits (USDI-NPS, 2013).

Parent Material

The unconsolidated mass in which soils form is called parent material. Mineral soil parent material is a product of the weathering of underlying bedrock in place or the weathering of material that has been transported. Organic soils form in place from the accumulation and decomposition of plant material, such as wood, leaves, and aquatic plants. Weathering refers to the chemical and physical disintegration and decomposition of parent material. Few soils weather directly from the underlying rocks. More commonly, soils form in materials that have been moved from elsewhere. Soils generally have a dominant kind of parent material but were influenced by other types of parent material. Material may have been moved only a few feet by gravity (colluvial parent material) or transported long distances by wind (loess or eolian parent material) or water (alluvial parent material).

Glaciofluvial deposits are parent materials deposited by glaciers that have been sorted and redeposited by water. In the northeastern and north-central parts of the United States, soil scientists make a distinction between the glacial fluvial processes of the past and the recent fluvial processes forming alluvium. Late Pleistocene deposits are often described as "outwash" or "glaciofluvial" and glaciolacustrine (glacial lake) deposits as "lacustrine," while Holocene flood-plain deposits (less than 10,000 years old) are termed "alluvium." For example, in Sleeping Bear Dunes NL, Kiva and Kaleva soils have glaciofluvial parent material, Bach soils are lacustrine, and Glendora soils on flood plains formed in sandy alluvium.

Soils are said to have residual parent material if they formed directly from underlying rocks or from an in situ plant source. Soils that formed in rock residuum may have the same general chemistry as the original rocks, depending on the degree of weathering that has occurred. No soils in Sleeping Bear Dunes NL formed entirely from residuum from rock sources although many are derived in part or predominantly from residual plant sources. Houghton soils are organic soils in depressional areas that formed in
plant residuum. Organic soils may have chemical and physical properties that are closely related to the original plants from which the soils formed.

The most common soil parent materials in Sleeping Bear Dunes NL are sandy glaciofluvial deposits, till, eolian deposits, and plant residuum. Many of the soils in the park formed in a combination of all of these parent materials. Table 5 lists the major soils in each map unit of the park and their most common landforms and parent material types.

Glaciofluvial Parent Material

Outwash or glaciofluvial deposits are stratified and sorted sediments (chiefly sand and gravel) removed or "washed out" from a glacier by meltwater streams and deposited in front of or beyond the end moraine or the margin of a glacier.

Outwash can have a variety of particle sizes. The particle-size distribution of outwash depends upon the velocity of the meltwaters carrying sediment away from the glaciers. In general, the higher the velocity of water, the larger the particle that water can transport. An outburst flood of a proglacial lake would have high velocity and energy and thus could carry larger rock fragments. Rock fragments found in outwash are more commonly subrounded to rounded because they were tumbled and polished during transport. Soils that formed from outwash may have a high rock content. Most of the soils that formed in glaciofluvial deposits in Sleeping Bear Dunes NL are sandy.

Certain landforms are associated with glaciofluvial deposits, and certain soils occur on these landforms. An outwash plain is an extensive lowland landscape of coarse textured, glaciofluvial material. It may be pitted with depressions called kettles that formed by melt-out of incorporated ice blocks of glaciers. A lake plain is a nearly level surface marking the floor of an extinct lake fill with well sorted, generally fine textured, stratified deposits. When outwash is confined within valley walls, the outwash deposit is known as a valley train. Outwash plains, lake plains, and valley trains are all identified in the park and are associated with certain soils (see table 5).

Soils that formed in glaciofluvial deposits in the park include Grattan, Covert, Coloma, Kaleva, Au Gres, Kalkaska, Mancelona, and Kiva.

Glaciolacustrine Deposits

Post-glacial lakes were formed either by the damming action of a moraine during the retreat of a melting glacier or by meltwater trapped against an ice sheet due to isostatic depression of the earth's crust. At the end of the last ice age (approximately 10,000 years ago), large post-glacial lakes were a widespread feature in the northern hemisphere.

Glaciolacustrine deposits developed in these post-glacial lakes. Lakebeds in the park formed after glacial retreat and during the post-glacial variations in the water level of Lake Michigan. The relict lake areas are now lake plains that have well sorted, generally fine textured, stratified deposits. Glaciolacustrine soils in Sleeping Bear Dunes NL commonly have a high content of silt throughout because the original deposits were silty. Figure 2 shows the relationship of soils to landscape position on lake plains along the Platte River.

Hettinger soils formed in glaciolacustrine deposits and are mapped near the southwestern edge of Lake Manitou, northwest of Narada Lake and northeast of Little Traverse Lake, south of Highway 22. Table 15 shows that Hettinger soils have a relatively high content of silt (ranging on average from 38 to 48 percent, by weight).

Many of the soils in the park formed in glacial lakes that existed just beyond the margin of an advancing or retreating glacier, generally in direct contact with the ice (USDA-NRCS, 2008). Alcona soils formed partially in this ice-margin lacustrine setting. These soils are mapped northeast of Little Traverse Lake in what would have been an extension of the lake during post-glacial times. Little Traverse Lake was cut off from

Figure 2.-Representation of the relationship of soils to landscape position along the Platte River. All of these soils formed on lake plains. Madaus soils have a high content of calcium carbonate derived from underlying marl deposits.

Lake Michigan by dunes that are identifiable by the shape and orientation of the east-to-west-running soil mapping lines north of the lake.

The soils in the area of Otter Creek formed in organic residuum over lacustrine deposits of marl. Marl is a lacustrine sediment common in post-glacial lake beds, and it commonly underlies peat bogs. It is rich in calcium carbonate and contains variable amounts of clay and silt. Soils with a high marl content are Edwards and Madaus. These soils have a high content of calcium carbonate and are neutral to alkaline in reaction. The marl is close enough to the surface of the earth to affect the properties and qualities of these soils. Other soils in the park may have buried marl deposits under them but the deposits are buried deep enough to not influence the soil properties at the depth typically observed by soil scientists. Boyer, Shavenaugh, Adrian, Spinks, Fern, Milnichol, and Nessen soils have marl influences in their deepest soil horizons, as evidenced by zones of calcium carbonate accumulation. Table 18 shows the distribution of calcium carbonate in soil horizons and gives pH for the major soils of each map unit in the park.

Till
Till is soil parent material transported and deposited directly by glaciers. It is dominantly unsorted and unstratified material deposited directly by a glacier without subsequent reworking by meltwater. It consists of a heterogeneous mixture of clay, silt, sand, gravel, cobbles, stones, and boulders. Till may have rock fragments of various lithologies that are imbedded within a finer matrix that can range from clay to sand (USDA-NRCS, 2008). The rock fragments generally are angular but can also
be subrounded or rounded. The composition of the till depends on the geology of the area over which the ice passed before the till was deposited. The till in turn affects the properties of the soils, such as kind and amount of rock fragments, color, texture, mineralogy, and pH . The material in the lower part of soils derived from till may be relatively unchanged from when it was deposited.

Different tills are on different landforms. In the park, drumlins are a common landform that formed from till. Drumlins occur in areas where the ice advanced over previously formed till plains. They are elongate in the direction of ice movement. Some tills in the park were deposited as till plains composed of either ground moraines or recessional moraines. A till plain is a broad landscape that forms when a sheet of ice melts in place and deposits the sediments it carried. It is an extensive, flat to gently undulating area underlain predominantly by till and bounded on the distal end by recessional or end moraines. An end terminal moraine is commonly the distal end of a moraine (USDA-NRCS, 2008).

Till-derived and partially till-derived soils in Sleeping Bear Dunes NL include Mollineaux, Remus, Fern, Emmet, Omena, Leelanau, Kalkaska, and Nester. These soils are associated with different moraines and, to a lesser extent, glacial till plains. For example, Fern soils have sandy glaciofluvial deposits over till, Emmet soils are on calcareous till, Omena soils are on loamy noncalcareous till, Kalkaska soils are on glaciofluvial deposits over till (fig. 3), and Nester soils are loamy over calcareous clayey and loamy till. East Lake soils are on moraines with a thick cap of windblown sands. Soils on moraines are in steeper landscape positions than most of the other soils in the park. It is difficult to closely associate soils with moraines consistently since the numerous advances and retreats of the ice left a series of moraines that were often partially or completely destroyed. Figure 4 is a representation of soils mapped on moraines and beach ridges in the park.

Eolian Material

Eolian material, such as windblown sand, is a type of parent material. Windblown loess, another type of eolian parent material, consists mainly of silt-sized particles. During interglacial periods, strong directional winds deposited silt great distances from their lacustrine or outwash origin. Soils influenced by loess have high silt contents in the upper horizons, whereas soils influenced by eolian sands have high sand contents. Windblown deposits buried till, glaciofluvial deposits, and lacustrine deposits in many areas of Sleeping Bear Dunes NL. Table 15 shows the distribution of sand, silt, and clay in the soils and can be used in conjuction with table 5 to determine what influenced the formation of individual soils.

The soils on wooded and active dunes, such as Deer Park, are almost pure eolian sand. A beach ridge is a low, essentially continuous ridge of beach and dune material that was heaped up by the action of waves and currents on the backshore of a beach, beyond the present limit of storm waves, and it occurs singly or as one of a series of approximately parallel deposits. The ridges are roughly parallel to the shoreline and represent successive positions of the retreating shoreline. Many of the higher ridges are dunes that formed due to the prevailing winds along the lakes. The dunes are either active (moving and unvegetated) or stabilized.

The soils on beach ridges and swales include excessively drained soils, such as the sandy Eastport, Deer Park, and Kalkaska soils; the poorly drained to very poorly drained Lupton and Markey muck soils; or the ponded Dair and Roscommon mucky sands. These soils are mapped as complexes due to the association of series of narrow ridges and swales, resulting from historic fluctuating lake levels, and to the formation of dune ridges and backwater sloughs. They are very pronounced in the Platte Bay area in the southwest part of the park, in the Good Harbor Bay area in the northeast part, and on the east side of South Manitou Island. These soils are home to a unique combination of very xerophytic plant communities, in areas on the dry

Figure 3.—Profile of a Kalkaska soil. Kalkaska soils are mapped extensively in Sleeping Bear Dunes National Lakeshore. They are very deep and somewhat excessively drained and formed in sandy deposits on outwash plains. The colorful profile displays some of the major soil-forming processes. Scale is in centimeters. (Image is from the soil survey of Luce County, Michigan.)
sands, and wetland plant communities, in areas of in mucky lowlands. These unique plant associations are due to the complex hydrologic regimes of the soils. The source materials for these soils are glacial outwash and till which were reworked by wind and wave action. Figure 5 shows the landscape-soil relationships in the vicinity of the park's dune climb.

Little Traverse Lake was cut off from Good Harbor Bay and Glen Lake (fig. 6) was cut off from Sleeping Bear Bay by a series of dunes. The dunes are mapped predominantly as Eastport and Deer Park soils, and the areas between the dunes in

Figure 4.-Soils mapped in the vicinity of the South Dune Highway near Day Farm Road.
the dune slack are mapped as Roscommon soils. Dune slacks are low depressions that lie between dunes where the water table is closer to the surface. This environment produces particular plant associations because of spatial variability in soil wetness and protection from high winds.

Organic Residuum

Many of the soils in the park formed largely from plant residuum. These soils are common in depressions on outwash or lake plains, on moraines, or in dune slacks (like Roscommon soils). The lower, wetter landscape positions favor hydrophilic vegetation. Plants grow and die and their decomposition is retarded by wetness and cold, resulting in overall organic accumulation in the soil.

The contents of soil organic carbon and inorganic carbon for each soil in the park are shown in table 17. Soil organic carbon (SOC) is carbon (C) in soil that originated from a biological source, such as plants, animals, or micro-organisms. SOC makes up about one-half the weight of soil organic matter. The term "soil organic carbon" refers only to the carbon occurring in soil organic matter. Soil inorganic carbon (SIC) is carbon found in soil carbonates, usually as calcium carbonate layers or as clay-sized fractions throughout the soil. Carbonates in soils are most commonly found in areas where evaporation rates exceed precipitation, as is the case in most desert environments. In these dry areas, the carbonates typically accumulated from carbonatic dust or from carbonate-containing parent material. Some of the soils in the park, such as Madaus, have high levels of inorganic carbon as calcium carbonate due to underlying marl deposits. Madaus soils also have very high levels of organic carbon because they occur in depressions on till plains. Based on current soil survey data, Madaus soils have 78 kilograms per square meter (to a depth of 2 meters) of soil organic carbon and $50 \mathrm{~kg} / \mathrm{m}^{2}$ of soil inorganic carbon. This equals $128 \mathrm{~kg} / \mathrm{m}^{2}$ of soil carbon or about 580 tons of stored carbon per acre of land where the map unit is 100 percent Madaus soil. Madaus soils are very poorly drained and mapped along the Otter Creek drainage. These soils extend along the drainage to Bass Lake. Other areas of Madaus soils are around Mud and Loon Lakes and in areas adjacent to the Platte River, which drains Loon Lake. In contrast, Nester soils have almost the same amount of soil inorganic carbon ($47 \mathrm{~kg} / \mathrm{m}^{2}$) but only $5 \mathrm{~kg} / \mathrm{m}^{2}$ of soil organic carbon. These soils formed on better drained till plains and moraines.

Soils that have the highest contents of SOC are Adrian, Houghton, Edwards, Lupton, and Lumley. Contents range from 132 to $499 \mathrm{~kg} / \mathrm{m}^{2}$. All of these soils are mapped in depressions on till plains, lake plains, and moraines. Edwards soils are organic soils that are marly throughout and mapped in depressions north of North Bar Lake, in an area south of School Lake, and in an area surrounding Bow Lake. Houghton soils have the highest content of soil organic carbon- $499 \mathrm{~kg} / \mathrm{m}^{2}$-when calculated to a depth of 2 meters.

Soils with the highest content of SIC are Nester, Madaus, Hettinger, Bach, Omena, Emmet, and Alpena. Hettinger soils, for example, formed from organic residuum over silty lacustrine materials. They are mapped in depressions north of Narada Lake and southwest of Lake Manitou (on North Manitou Island).

As carbon levels in soil increase, carbon is "withdrawn" from the atmosphere and "secluded" in the soil. This is carbon sequestration. CO_{2} and CH_{4} are greenhouse gases. The process of soil carbon sequestration transfers CO_{2} from the atmosphere into the soil.

One way SOC becomes sequestered is in a process called humification. In this process, soil organic matter (SOM), such as leaves, wood, roots, and animals, is decomposed and converted to humic substances. Humic substances are broadly defined products of organic matter decomposition that are relatively resistant to further microbial decomposition. Humic substances with high carbon contents can persist in the soil for hundreds to thousands of years. Examples are humic and fulvic acids and humins. Humification is a common soil-forming process in depressions in the park.

Water can transport both SOC and SIC in soil through the process of eluviation and illuviation. Eluviation is the lateral or downward movement of dissolved or suspended

Figure 5.-Deer Park soils are mapped in dune areas that have become stabilized by grasses. The moraines and drumlins in the distance are at the highest elevations in the park. Wetter soils that have a high content of organic soil carbon occur in depressions, while Mancelona and East Lake soils are in the higher landscape positions on outwash plains.

Figure 6.-Glen Lake is surrounded by sandy soils, such as Kalkaska, Mancelona, and East Park. (Image courtesy of Lars Jenson)
material in soil when rainfall exceeds evaporation. An illuviated zone is where the substances accumulate. Eluviation is a common soil-forming process in the sandy, humid, forested soils of Sleeping Bear Dunes NL.

Soil carbon can also be buried. Burial of SOC occurs in different ways. Burial of carbon-containing soil layers limits exposure of the carbon to the atmosphere and microbial degradation, thus preserving organic carbon in the soil. Floods along the Platte River can episodically bury, cover, and preserve old soil surface horizons with new sediment. Landslides along the bluffs can also bury SOC.

Erosion is a natural process in soils. Removal of soil from one place often results in burial of soil in another place. Burial of soil horizons that contain soil organic matter sequesters that carbon in the soil. Burial of carbon by dunes or landslides is a common process in the park.

Recent Alluvium

Alluvium is the type of parent material deposited by running water. It can have different textures, depending on whether the water moves quickly or slowly. The type of rocks occurring in the source region of the streams and rivers also determine the characteristics of the alluvium. Fast-moving water deposits gravel, cobbles, and sand. Slow-moving water leaves finer textured deposits (clay and silt) when sediments in the water settle out. In Sleeping Bear Dunes NL, Glendora soils formed in recent alluvium. These soils are of minor extent in the park and are only mapped in the corridor between Rush Lake and Long Lake.

Climate

Differences in climate can result in differences in soils. Temperature and moisture influence soil formation and are the two most commonly measured features of soil climate. Weathering is most active when soils are moist and warm because these soil conditions are conducive to rapid chemical reactions and increased biological activity in the soil. Cooler temperatures result in slower chemical reactions. While average temperatures and amounts of precipitation are important in determining soil
properties, the extremes of climate in any given locale also play a major role in soil formation.

The climate in Sleeping Bear Dunes NL is cool and humid. It is presumably similar to the climate under which the soils formed once the glaciers receded. Present-day climate variations are the result of topography and relief and distance from the lakes. The general climate is uniform throughout the area, but microclimates are modified locally by the proximity to Lake Michigan. Table 5 gives the mean annual precipitation of the soils in the area, and table 19 lists the occurrence of soil saturation or wetness (i.e., depth to water table) for each of the soils. Probable occurrences of flooding and ponding are also listed in table 19.

During periods of rainfall or snowmelt, water carrying dissolved or suspended solids moves through the soil in a process called leaching. Leaching becomes active with the onset of rainfall or snowmelt. Different temperatures and moisture amounts cause different patterns of weathering and leaching in the soil. Colder temperatures result in less weathering because of decreased microbial growth, decreased vegetation, and possibly frozen soil. Seasonal and daily changes in temperature affect moisture effectiveness, biological activity, rates of chemical reactions, and the kinds of vegetation.

Fluctuations in temperature and moisture affect the rate of organic matter production, decomposition, and accumulation and the weathering of minerals. These fluctuations can result in frost action.

A few of the soils in the park have a high potential for frost action, and many have a moderate potential. Frost heave is a natural pedogenic process that mixes and breaks up the soil surface. Table 20 lists the potential for frost heave (also referred to as frost action) as low, moderate, or high. Soils that have a high potential for frost action in the park are the poorly drained and very poorly drained Adrian, Houghton, Richter, Bach, Hettinger, Tonkey, Lupton, and Markey soils. Silty and loamy soils in certain soil temperature regimes are also frost-susceptible soils.

Frost heave can result in road potholes and cracked pavements and foundations. Table 9 lists the map units and soils that have a limitation for roads and streets due to frost action. This limitation results in higher maintenance costs for park roads and parking lots. Frost heave results from ice forming beneath the surface of soil during atmospheric freezing conditions. The ice grows in the direction of heat loss, which is vertically toward the surface, starting at the freezing boundary in the soil. A water supply is needed to keep the ice crystals growing. The growing ice is restrained by overlying soil, which applies a load that limits its vertical growth and promotes the formation of a lens-shaped area of ice within the soil (see figure 7). The processes of frost heave were more intense during past glacial times than today.

Organisms

Plants, animals, micro-organisms, and humans affect the formation and shape of soils. Plants capture solar energy via photosynthesis and transfer that energy to the soil, energy that is a fundamental driver of many soil processes. Abandoned animal burrows commonly are filled with loose material from the overlying horizons and transmit water more readily than the surrounding undisturbed soil material. Fungi and bacteria are the primary organisms that decompose organic matter and add nutrients to the soil. Organisms decompose leaves and mix them with the upper part of the soil, resulting in the cycling of nutrients and energy back to vegetation. Micro-organisms affect chemical exchanges between roots and soil. Animals and micro-organisms mix soils and form burrows and pores.

Humans also mix the soil extensively with land management practices or by creating, maintaining, and using roads and trails. Soils in the park were plowed and mixed for agriculture in the past.

Air: Freezing Temperatures

Frozen layer: Upward thrust of Ice Layer displaces soil or fractures overlying rock

Figure 7.-Diagram illustrating ice lens formation in soils, which results in frost heave or frost action. (Image is from Williamborg [2009].)

The sand dunes of the park provide a distinctive environment for vegetation. Long roots and dense rhizomatous growth of dune grasses seek out water and help hold the dunes together. Grass roots are fibrous and decompose easily, adding organic matter and nitrogen to the soil. Thistles, bearberries, and other drought-resistant plants also contribute to dune stability.

Plant roots also help to develop soil structure and aggregate stability. Beach grass and sand cherry are among the first plants to grow on newly formed dunes. Juniper and jack pine can also root in the sand. These plants play an important role in dune development. They help build dunes by acting as obstacles that slow sand-laden wind and force it to drop the sand. If a strong wind succeeds in stripping plants from a dune, a bowl-shaped blowout may form in the exposed area. Some dunes migrate, pushed by the wind, and sometimes the shifting sands bury trees. As the dunes move on, "ghost forests" of dead trees are exposed (fig. 8).

Farther inland where the soil is more stable and has a higher water-holding capacity, beech/maple hardwood forests with some hemlock, basswood, and black cherry have taken over. Oak and white pine also grow slightly inland from the beach. These large plants of the forested ecosystem of Sleeping Bear Dunes NL affect soil formation. The trees help break up till with their growing roots, resulting in channels that increase water penetration. Besides the mechanical breaking of rocks by large tree roots, the trees capture energy and substance through photosynthesis and then, by the decomposition of plant residue, form organic-mineral complexes that are recycled many times within the ecosystem (Buol et al., 2011).

Differences in natural soil drainage and in parent material affect the composition of forests. In general, well drained upland soils, such as Grattan and Kaleva, were
covered with red oak and white pine. Wetter soils were covered with cedar, black spruce, and aspen. Leaf litter, whether leaves or needles, helps prevent nutrient loss, conserves soil moisture, reduces raindrop impact, and limits frost penetration. Vegetation increases soil stability by protecting the surface against wind and water erosion.

Native vegetation depends on climate, topography, and biological factors plus many soil factors, such as soil density, depth, chemistry, temperature, and moisture. The plant life on South Manitou Island is fairly representative of what the mainland was like before farming and deer grazing. The trees are mostly beech and maple, with a stand of huge white cedars in the southwest part of the island. Trillium grows on both lake islands, along with many other spring wildflowers (fig. 9).

Soils also play a large role in defining animal habitat types. The endangered piping plover nests on the sandy soils of the North Manitou shoreline, and the threatened prairie warbler nests in the mainland dunes along Lake Michigan. These birds move the sandy soils to provide shelter. Sandhill cranes can be found in some wetlands, and thrushes and warblers inhabit the drier woodlands.

Time

Time for parent material, climate, organisms, and topography to interact with the soil is also a soil-forming factor. Over time, soils exhibit features that reflect the interaction of other soil-forming factors. Recently deposited material, such as material deposited by a flood, exhibits no features from soil development activities and its properties are mostly inherited from the new material. The previous soil surface and underlying horizons become buried. The time clock resets for these soils. The different horizons in a soil profile and the degree of development can be directly related to time. Terraces above the active flood plain, while similar in origin to the flood plain, are older land surfaces of old abandoned flood plains and thus have soils with more horizon development.

Figure 8.-Migrating, unstabilized sand dunes cover and kill trees in some areas of the park. (Image courtesy of Lars Jensen)

Figure 9.-Trillium covers the forest floor in many areas of the park. (Image courtesy of Lars Jensen)

Most of the soils in the park have little soil development because they have only been forming since the last glaciation. Dair, Roscommon, Good Harbor, Coloma, and Nordhouse are the least developed soils. Where accumulation and translocation of organic material, clay, and iron have occurred, a colorful profile can develop. This development, however, is not solely a consequence of soil age but was also influenced by different weathering intensities. Well drained soils generally have better soil development than poorly drained soils because they have more water percolation through the profile. Poorer drained soils often lack the downward percolation of water, clays, iron oxides, etc.

The Wallace soil has had more intensive translocation than the Coloma soil even though both soils have existed for the same amount of time. Differences in the landforms on which these soils occur, the soil chemistry, and the soil hydrologic regimes probably account for the differences in the soil weathering between the two soils. Wallace soils are well drained forested soils that formed in sandy deposits on dunes, lake plains, and outwash plains with cemented material called orstein (see table 20). These soils occur on the Upper Peninsula of Michigan and in the northern part of the Lower Peninsula. In Sleeping Bear NL, they are mapped on both lake islands and in scattered areas in the northern part of the peninsula, but mostly just north of Little Traverse Lake. In the park, Coloma soils are also mapped between Crystal and Platt Lakes, south of Platt Road.

Topography and Relief

Topography refers to the shape of the landscape, and relief refers to differences in elevation. The overall landscape in a park, whether it consists of pitted outwash plains, hummocky dune hills, or level lake terraces, is the result of erosional and depositional processes. These processes may have occurred in response to changes in climate, fluctuating sea levels, glaciations, tectonic activities, and/or isostatic rebound. Isostatic rebound is the rise of the land surface after the ice formed during glacial periods recedes from the area. Cyclic periods of landscape stability and instability influence the types of soils that form on the landscape.

Development of the current landscape in the park took place during and after the last glaciation, approximately 10,000 years ago. The age of soils can be estimated
from the age of the geomorphic surfaces, such as the age of tills and outwash. The youngest geomorphic surfaces generally are flood plains, such as those associated with the Platte River and Otter Creek, where sandy alluvium has been deposited (fig. 10). Soils on flood plains, where flooding often occurs, are commonly hydric (see table 4). The location of hydric soils is influenced by topography and relief. Hydric soils in the park are on low-relief depressions, on flood plains, and in marshes.

Areas of stabilized older dunes have a rolling topography. This topograhy is evident along the Stocking Pierce Scenic Drive (fig. 11).

Slope shape and aspect of the overall landscape can affect the moisture and temperature of the soil. Steep slopes on moraines or drumlins facing the sun are warmer than those facing away from the sun. Steep soils may be eroded and lose their surface horizons as they form. Thus, steep soils may be shallower than the more nearly level ones that receive deposits from areas upslope, such as along some of the landslide areas of the park. Thicker, darker soils, such as Dair and Adrian, are common on bottom land or in depressions on lake plains or moraines. Relief and topography also influence the location of prime farmland map units. Table 3 list the map units considered prime farmland or farmland of local importance in the park. Generally, prime farmland soils are in level or gently rolling areas and are thick.

Figure 12 is a stylized diagram illustrating soils in relation to landscape and relief in the southern part of the park.

Processes of Soil Horizon Differentiation

A soil profile reflects the activities of the five soil-forming factors. A succession of layers or horizons is formed, extending from the surface down to the parent material.

Figure 10.-Sandy alluvium along Otter Creek eventually will become parent material for new soils if, for example, lake levels drop or water courses change. The alluvium will become stabilized by plants, and weathering processes will intensify as the stability of the landscape increases.

Figure 11.-Soils mapped along the Stocking Pierce Scenic Drive include sandy soils that formed in dunes, such as Leelanau, Deer Park, and Kalkaska. (Image courtesy of Lars Jensen)

The horizons differ in one or more properties, such as thickness, color, texture, structure, consistence, porosity, and reaction (pH).

Several major processes are involved in the formation of soil horizons in Sleeping Bear Dunes National Lakeshore. The main soil-forming processes are illuviation, eluviation, podzolization, enrichment, decomposition, humification, and cumulization.

Illuviation is the movement of material into a horizon from another horizon while eluviation is the movement of material from a portion of the soil or horizon.

Podzolization is another process of illuvation and eluviation in which aluminum and iron and/or organic matter are moved, or translocated, through the profile. Podzolization includes the translocation of Al and Fe (due to the presence of acidic organic compounds, such as humic and fulvic acids) that results in the chelating of the metallic ions into organo-metallic complexes. The humus-metal complexes are concentrated into an illuviated horizon. Concentration of silica may occur in the layer eluviated (Buol et al., 2011). The acidic pine litter is key to podzol formation in northern sandy soils. A large percentage of the soils identified in the park have podzolization as a major soil-forming process. This soil-forming process is identified in the soil classification and by the chemical and physical properties.

Enrichment is the process of additions to the soil and is often used in describing organic matter enrichment to the soil surface.

Decomposition is the breakdown of mineral and organic materials to weathering by-products.

Humification is the transformation of organic matter into humic substances. Humic substances are broadly defined products of organic matter decomposition that are relatively resistant to further microbial decomposition. Humification is a type of decomposition.

Cumulization is the process of additions of mineral particles to the soil. An example is the cumulization of eolian material to the soils in the park.

An excellent example for the discussion of soil-forming processes is the Kalkaska series. Kalkaska is mapped extensively in the park and has also been named the
official State Soil of Michigan. Kalkaska soils are classified as Spodosols. Spodosols are extensive in the United States in areas that have cool, humid climates and quartzrich sands, and they may have fluctuating water tables. They also may have snow cover, which during a spring thaw flushes the soil with water. Most areas are covered by coniferous vegetation or a mix of hardwoods and conifers. Kalkaska soils formed in sandy outwash deposits and occur mostly on outwash plains. The soil-forming processes discussed above are shown in italics in the following paragraphs.

In the Kalkaska soil shown in figure 3, the 5 centimeters of surface soil has been enriched by organic material. Below the organic surface is a horizon that has been eluviated. This is evidenced by the light gray zone that extends to a depth of about 20 centimeters. This light-colored zone is called an albic horizon. Some of the gray material is in tongue-shaped pockets that extend to greater depths. Any organics that have been decomposed and humified in this eluviated zone have been moved to an illuviation zone. In figure 3, the illuviation zone has the darkest colors and a tongue morphology at depth. The tongue of spodic material that is visible in the left side of the image extends below a depth of 1 meter. The illuviated material is called spodic material and forms a spodic horizon below a depth of 20 centimeters. The tongues of albic and spodic material may have resulted from old tree roots or rodent burrows or from preferential flow paths along mineral material of contrasting pore size. In Kalkaska soils, some of the spodic materials have become cemented into orstein. These soils have a small of amount weakly cemented orstein. However, other soils of the park, such as Wallace, may have orstein that is continuous enough to restrict roots. Wallace soils, which are mapped in various locations in the park, have moderately cemented orstein that forms a continuous layer. The Kalvea soil has the same processes of horizon differentiation as Kalkaska and Wallace soils.

Soil profiles consist commonly of five major horizons-O, A, E, B, and C horizons. The O horizon consists of decomposing organic materials. The A horizon is a mineral horizon that has a content of organic matter that is higher than that of underlying

Figure 12.-Soils such as Benona, Spinks, and Grattan are on moraines and outwash plains in the southern portion of the park. Gorvan and Houghton soils are on flood plains. Houghton soils formed in residual plant material, while Gorvan soils formed in silty and clayey alluvium over sandy glaciofluvial deposits. Covert soils are in sandy glaciofluvial deposits on lake and outwash plains.
horizons but lower than that of overlying O horizon. The A horizon may be the surface layer if there is no O horizon.

The E horizon is a zone of maximum eluviation of materials. E horizons usually occur in wetter climates or wetter soil conditions on certain landscapes and may overlie a B horizon. The E horizon is often pale or white, having been stripped of all soil constituents that provide color.

The B horizon is a zone of accumulation of clay, iron, aluminum, or organic matter. B horizons are common in the park. Color plays an important part in distinguishing these horizons. The B horizon is the horizon of maximum accumulation of dissolved or suspended materials, such as iron, clay, or organic materials.

The C horizon is in the bottom part of a soil profile, is little affected by soil-forming processes, and is the horizon most related to the parent material.

Below is a description of the Kalkaska series. Although the location of the described pedon is outside the park boundary, descriptions of Kalkaska soils in the park are similar.

Kalkaska Series

The Kalkaska series consists of very deep, somewhat excessively drained soils that formed in sandy deposits on outwash plains, valley trains, moraines, and stream terraces. Slope ranges from 0 to 70 percent. Mean annual precipitation is about 762 millimeters (30 inches), and mean annual temperature is about 6.1 degrees C (43 degrees F).

Taxonomic Class

Sandy, isotic, frigid Typic Haplorthods

Typical Pedon Location

Kalkaska sand; in Kalkaska County, Michigan; on a west-facing, 1 percent slope in a forested area about 4 miles northwest of Darragh, 1,900 feet north and 100 feet east of the southwest corner of sec. 13, T. 28 N., R. 7 W., Rapid River Township; USGS Westwood topographic quadrangle; lat. 44 degrees 49 minutes 13 seconds N. and long. 85 degrees 6 minutes 35 seconds W. (Colors are for moist soil unless otherwise stated.)

Oi-0 to 2 centimeters (0 to 1 inch); partially decomposed forest litter; strongly acid.
A-2 to 5 centimeters (1 to 2 inches); black (7.5YR 2.5/1) sand, black (10YR 2/1) dry; weak fine granular structure; very friable; many fine and few medium and coarse roots; about 5 percent fine gravel; strongly acid; abrupt smooth boundary. (0 to 10 centimeters, or 4 inches, thick)
E-5 to 13 centimeters (2 to 5 inches); brown (7.5YR 5/2) sand, gray (10YR 6/1) dry; weak fine granular structure; very friable; common fine and few medium and coarse roots; about 5 percent fine gravel; strongly acid; clear irregular boundary. (5 to 33 centimeters, or 2 to 13 inches, thick)
Bhs-13 to 18 centimeters (5 to 7 inches); dark reddish brown (5YR 3/3) sand; weak fine granular structure; very friable; common fine and few medium and coarse roots; about 5 percent fine gravel; moderately acid; clear irregular boundary. (2 to 58 centimeters, or 1 to 23 inches, thick)
Bs1-18 to 56 centimeters (7 to 22 inches); dark brown (7.5YR 3/4) sand; weak fine granular structure; very friable; few fine and medium roots; about 5 percent fine gravel; moderately acid; clear wavy boundary.
Bs2-56 to 91 centimeters (22 to 36 inches); strong brown (7.5YR 4/6) sand; weak fine granular structure; very friable; few fine roots between ortstein columns; columns of weakly cemented, dark reddish brown (5YR 2.5/2) ortstein 8 to 13 centimeters
(3 to 5 inches) wide extend through this horizon into BC horizon; ortstein columns are 48 to 61 centimeters (19 to 24 inches) apart; ortstein occupies 7 percent of this horizon; about 5 percent fine gravel; slightly acid; gradual wavy boundary. (Combined thickness of the Bs horizon is 0 to 76 centimeters, or 30 inches.) BC-91 to 130 centimeters (36 to 51 inches); yellowish brown (10YR 5/6) sand; weak fine granular structure; very friable; few fine roots between ortstein columns; columns of weakly cemented, dark reddish brown (5YR 2.5/2) ortstein 8 to 13 centimeters (3 to 5 inches) wide extend into this horizon from the Bs2 horizon; ortstein columns are 48 to more than 100 centimeters (19 to more than 40 inches) apart; ortstein occupies 11 percent of the horizon; about 5 percent fine gravel; slightly acid; gradual wavy boundary. (0 to 53 centimeters, or 21 inches, thick) C-130 to 203 centimeters (51 to 80 inches); light yellowish brown (10YR 6/4) sand; single grain; loose; about 5 percent fine gravel; slightly acid.

Classification of the Soils

Soils are named and classified on the basis of physical and chemical properties in their horizons (layers). Color, texture, structure, and other properties of the soil to a depth of 2 meters are used to key the soil into a classification system. This system helps people to use soil information and also provides a common language for scientists.

Soils and their horizons differ from one another, depending on how and when they formed. Soil scientists use the five soil-forming factors to help predict where different soils may occur. The degree and expression of the soil horizons reflect the extent of interaction of the soil-forming factors with one or more of the soil-forming processes (Simonson, 1959).

When mapping soils, a soil scientist looks for areas with similar soil-forming factors to find similar soils. The properties of the soils are described. Soils with the same kind of properties are given taxonomic names. Soils are classified, mapped, and interpreted on the basis of various kinds of soil horizons and their arrangement. The distribution of soil orders corresponds with the general patterns of the soil-forming factors within the park.

The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1999 and 2010). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. The categories are defined in the following paragraphs.

ORDER. Soil taxonomy at the highest hierarchical level identifies 12 soil orders. The names for the orders and taxonomic soil properties relate to Greek, Latin, or other root words that reveal something about the soil. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Spodosol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. Sixty-four suborders are recognized at the next level of classification. The last syllable in the name of a suborder indicates the order. An example is Orthod (Orth meaning common, plus od, from Spodosol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. There are about 300 great groups. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Haplorthods (Hapl,
meaning minimal horizonation, plus Orthod, the suborder of the Spodisols that is common).

SUBGROUP. There are more than 2,400 subgroups. Each great group has a typic subgroup. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Other subgroups are intergrades or extragrades. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective Typic identifies the subgroup that typifies the great group. An example is Typic Haplorthods.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties for family placement are those of horizons below a traditional agronomic plow depth. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is sandy, mixed, frigid Typic Haplorthods.

SERIES. The soil series is the lowest category in the soil classification system. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile. An example is the Kalkaska series, which is classified as sandy, mixed, frigid Typic Haplorthods.

Most parks are mapped to the series level. The names of soil series are selected by the soil scientists during the course of mapping. The series names are commonly geographic place names or are coined. Because of access limitations and soil variability, soils in some remote areas are classified at the great group or subgroup level.

Table 21 indicates the order, suborder, great group, subgroup, and family of the soil series in the park. Table 22 displays the classification as a key sorted by order.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Buol, S.W., R.J. Southard, R.C. Graham, and P.A. McDaniel. 2011. Soil genesis and classification. 6th edition.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Handy, A.H., and J.R. Stark. 1984. Water resources of Sleeping Bear Dunes National Lakeshore, Michigan. U.S. Geological Survey Water-Resources Investigations Report 83-4253.

Jenny, Hans. 1941. Factors of soil formation.
National Research Council. 1995. Wetlands: Characteristics and boundaries.
Simonson, Roy W. 1959. Outline of a generalized theory of soil genesis. Soil Science Society of America Proceedings 23:152-156.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/ technical/

United States Department of Agriculture, Natural Resources Conservation Service. PLANTS database. National Plant Data Center. http://plants.usda.gov

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296.

United States Department of Agriculture, Natural Resources Conservation Service. 2008. Soil survey of Benzie and Manistee Counties, Michigan.

United States Department of Agriculture, Natural Resources Conservation Service. 2010. Field indicators of hydric soils in the United States, Version 7.0. L.M. Vasilas, G.W. Hurt, and C.V. Noble, eds. USDA-NRCS in cooperation with the National Technical Committee for Hydric Soils.

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

United States Department of Agriculture, Soil Conservation Service. 1973. Soil survey of Leelanau County, Michigan.

United States Department of the Interior, National Park Service. Park website at http://www.nature.nps.gov/geology/parks/slbe/index.cfm.

United States Department of the Interior, National Park Service. 1961. A proposed Sleeping Bear National Lakeshore natural history report.

United States Department of the Interior, National Park Service. 2013. Natural features and ecosystems. http://www.nps.gov/vafo/naturescience/ naturalfeaturesandecosystems.htm

Williamborg. December 2009. http://en.wikipedia.org/wiki/File:Freezing air ice lens formation.jpg

Glossary

Aeration, soil. The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.
Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
Alkali (sodic) soil. A soil having so high a degree of alkalinity (pH 8.5 or higher) or so high a percentage of exchangeable sodium (15 percent or more of the total exchangeable bases), or both, that plant growth is restricted.
Alluvial fan. The fanlike deposit of a stream where it issues from a gorge upon a plain or of a tributary stream near or at its junction with its main stream.
Alluvium. Material, such as sand, silt, or clay, deposited on land by streams.
Alpha,alpha-dipyridyl. A dye that when dissolved in 1 N ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction indicates a type of redoximorphic feature.
Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.
Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay. Aspect. The direction in which a slope faces.
Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the amount at wilting point. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 60 -inch profile or to a limiting layer is expressed as:

Very low	. 0 to 3
Low	3 to 6
Moderate	. 6 to 9
High	9 to 12
Very high	han 12

Base saturation. The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K), expressed as a percentage of the total cation-exchange capacity.
Bedrock. The solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.
Canopy. The leafy crown of trees or shrubs. (See Crown.)
Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
Cation-exchange capacity. The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.
Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.

Claypan. A slowly permeable soil horizon that contains much more clay than the horizons above it. A claypan is commonly hard when dry and plastic or stiff when wet.
Climax plant community. The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.
Coarse textured soil. Sand or loamy sand.
Colluvium. Soil material or rock fragments, or both, moved by creep, slide, or local wash and deposited at the base of steep slopes.
Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Control section. The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.
Corrosion. Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
Crown. The upper part of a tree or shrub, including the living branches and their foliage.
Culmination of the mean annual increment (CMAI). The average annual increase per acre in the volume of a stand. Computed by dividing the total volume of the stand by its age. As the stand increases in age, the mean annual increment continues to increase until mortality begins to reduce the rate of increase. The point where the stand reaches its maximum annual rate of growth is called the culmination of the mean annual increment.
Depth, soil. Generally, the thickness of the soil over bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.
Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized-excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Drainage, surface. Runoff, or surface flow of water, from an area.
Ecological site. An area where climate, soil, and relief are sufficiently uniform to produce a distinct natural plant community. An ecological site is the product of all the environmental factors responsible for its development. It is typified by an association of species that differ from those on other ecological sites in kind and/or proportion of species or in total production.
Eluviation. The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.
Eolian soil material. Earthy parent material accumulated through wind action; commonly refers to sandy material in dunes or to loess in blankets on the surface.
Erosion. The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep. Erosion (geologic). Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building
up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.
Erosion (accelerated). Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.
Escarpment. A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Synonym: scarp.
Fertility, soil. The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.
Fill slope. A sloping surface consisting of excavated soil material from a road cut. It commonly is on the downhill side of the road.
Fine textured soil. Sandy clay, silty clay, or clay.
Flood plain. A nearly level alluvial plain that borders a stream and is subject to flooding unless protected artificially.
Fluvial. Of or pertaining to rivers; produced by river action, as a fluvial plain.
Forb. Any herbaceous plant not a grass or a sedge.
Forest cover. All trees and other woody plants (underbrush) covering the ground in a forest.
Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.
Gravel. Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.

Gravelly soil material. Material that has 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches (7.6 centimeters) in diameter.
Ground water. Water filling all the unblocked pores of the material below the water table.
Hard bedrock. Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.
Hill. A natural elevation of the land surface, rising as much as 1,000 feet above surrounding lowlands, commonly of limited summit area and having a well defined outline; hillsides generally have slopes of more than 15 percent. The distinction between a hill and a mountain is arbitrary and is dependent on local usage.
Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey Manual." The major horizons of mineral soil are as follows:
O horizon.-An organic layer of fresh and decaying plant residue. A horizon.-The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon. E horizon.-The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.
B horizon.-The mineral horizon below an A horizon. The B horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these.

C horizon.-The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2, precedes the letter C .
Cr horizon.-Soft, consolidated bedrock beneath the soil.
R layer.-Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.
Hydrologic soil groups. Refers to soils grouped according to their runoff potential.
The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.
Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.
Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.
Infiltration capacity. The maximum rate at which water can infiltrate into a soil under a given set of conditions.
Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
Intake rate. The average rate of water entering the soil under irrigation. Most soils have a fast initial rate; the rate decreases with application time. Therefore, intake rate for design purposes is not a constant but is a variable depending on the net irrigation application. The rate of water intake, in inches per hour, is expressed as follows:

Less than 0.2 .	low
0.2 to 0.4	low
0.4 to 0.75 .	..moderately low
0.75 to 1.25 .	moderate
1.25 to 1.75	.moderately high
1.75 to 2.5 high
More than 2.5.	.very h

Ksat. Saturated hydraulic conductivity. (See Permeability.)
Leaching. The removal of soluble material from soil or other material by percolating water.
LEP. See Linear extensibility percent.
Linear extensibility (LE). Refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. Linear extensibility is used to determine the shrink-swell potential of soils. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension (33kPa or 10 kPa tension) and oven dryness. Volume change is influenced by the amount and type of clay minerals in the soil. The volume change is the percent change for the whole soil. If it is expressed as a fraction, the resulting value is COLE, coefficient of linear extensibility.
Linear extensibility percent. Refers to the percent change in linear extensibility.
Liquid limit. The moisture content at which the soil passes from a plastic to a liquid state.
Loam. Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.

Loess. Fine grained material, dominantly of silt-sized particles, deposited by wind.
Low strength. The soil is not strong enough to support loads.
Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
Miscellaneous area. An area that has little or no natural soil and supports little or no vegetation.
Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.
Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
Organic matter. Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:

Very low	less than 0.5 percent
Low 0.5 to 1.0 percent
Moderately low.	. 1.0 to 2.0 percent
Moderate	2.0 to 4.0 percent
High	4.0 to 8.0 percent
	more than 8.0 perce

Pan. A compact, dense layer in a soil that impedes the movement of water and the growth of roots. For example, hardpan, fragipan, claypan, plowpan, and traffic pan.
Parent material. The unconsolidated organic and mineral material in which soil forms.
Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet (1 square meter to 10 square meters), depending on the variability of the soil.
Percolation. The movement of water through the soil.
Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as "permeability." Terms describing permeability, measured in inches per hour, are as follows:

Extremely	0.0 to 0.01 inch
Very slow	0.01 to 0.06 inch
Slow.	. 0.06 to 0.2 inch
Moderately slow.	. 0.2 to 0.6 inch
Moderate.	. 0.6 inch to 2.0 inches
Moderately rapid	2.0 to 6.0 inches
Rapid	6.0 to 20 inches
ery rapid.	more than 20 inches

Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.
pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)
Plasticity index. The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.
Plastic limit. The moisture content at which a soil changes from semisolid to plastic.

Plowpan. A compacted layer formed in the soil directly below the plowed layer.
Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.
Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.
Potential native plant community. See Climax plant community.
Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.
Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.
Rangeland. Land on which the potential natural vegetation is predominantly grasses, grasslike plants, forbs, or shrubs suitable for grazing or browsing. It includes natural grasslands, savannas, many wetlands, some deserts, tundras, and areas that support certain forb and shrub communities.
Reaction, soil. A measure of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

Ultra acid	less than 3.5
Extremely acid	3.5 to 4.4
Very strongly acid	4.5 to 5.0
Strongly acid .	5.1 to 5.5
Moderately acid	5.6 to 6.0
Slightly acid.	6.1 to 6.5
Neutral	... 6.6 to 7.3
Slightly alkaline	7.4 to 7.8
Moderately alkaline	7.9 to 8.4
Strongly alkaline	8.5 to 9.0
Very strongly alkalin	9.1 and higher

Redoximorphic concentrations. Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation.
Redoximorphic depletions. Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed. These zones are indications of the chemical reduction of iron resulting from saturation.
Redoximorphic features. Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha,alpha-dipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation.
Relief. The elevations or inequalities of a land surface, considered collectively.
Residuum (residual soil material). Unconsolidated, weathered or partly weathered mineral material that accumulated as consolidated rock disintegrated in place.
Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.
Root zone. The part of the soil that can be penetrated by plant roots.
Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called groundwater runoff or seepage flow from ground water.
Saline soil. A soil containing soluble salts in an amount that impairs growth of plants. A saline soil does not contain excess exchangeable sodium.

Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.
Sandstone. Sedimentary rock containing dominantly sand-sized particles.
Saprolite. Unconsolidated residual material underlying the soil and grading to hard bedrock below.
Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
Sedimentary rock. Rock made up of particles deposited from suspension in water. The chief kinds of sedimentary rock are conglomerate, formed from gravel; sandstone, formed from sand; shale, formed from clay; and limestone, formed from soft masses of calcium carbonate. There are many intermediate types. Some wind-deposited sand is consolidated into sandstone.
Series, soil. A group of soils that have profiles that are almost alike. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
Shale. Sedimentary rock formed by the hardening of a clay deposit.
Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay (0.002 millimeter) to the lower limit of very fine sand (0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
Siltstone. Sedimentary rock made up of dominantly silt-sized particles.
Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.
Site index. A designation of the quality of a forest site based on the height of the dominant stand at an arbitrarily chosen age. For example, if the average height attained by dominant and codominant trees in a fully stocked stand at the age of 50 years is 75 feet, the site index is 75 .
Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100. Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance.
Sodic (alkali) soil. A soil having so high a degree of alkalinity (pH 8.5 or higher) or so high a percentage of exchangeable sodium (15 percent or more of the total exchangeable bases), or both, that plant growth is restricted.
Sodicity. The degree to which a soil is affected by exchangeable sodium. Sodicity is expressed as a sodium adsorption ratio (SAR) of a saturation extract, or the ratio of Na^{+}to $\mathrm{Ca}^{++}+\mathrm{Mg}^{++}$. The degrees of sodicity and their respective ratios are:

Sodium adsorption ratio (SAR). A measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the $\mathrm{Ca}+\mathrm{Mg}$ concentration.
Soft bedrock. Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.
Soil. A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief over periods of time.
Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:

Ve	2.0 to 1.0
Coarse sand	1.0 to 0.5
Medium sand	0.5 to 0.25
Fine sand	0.25 to 0.10
Very fine sand	0.10 to 0.05
Silt	0.05 to 0.002
	ss than 0.002

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the A, E, and B horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
Stone line. A concentration of coarse fragments in a soil. Generally, it is indicative of an old weathered surface. In a cross section, the line may be one fragment or more thick. It generally overlies material that weathered in place and is overlain by recent sediment of variable thickness.
Stones. Rock fragments 10 to 24 inches (25 to 60 centimeters) in diameter if rounded or 15 to 24 inches (38 to 60 centimeters) in length if flat.
Stony. Refers to a soil containing stones in numbers that interfere with or prevent tillage.
Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are—platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grain (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).
Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.
Substratum. The part of the soil below the solum.
Subsurface layer. Any surface soil horizon (A, E, AB, or EB) below the surface layer.
Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches (10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.
Taxadjuncts. Soils that cannot be classified in a series recognized in the classification system. Such soils are named for a series they strongly resemble and are designated as taxadjuncts to that series because they differ in ways too small to be of consequence in interpreting their use and behavior. Soils are recognized as taxadjuncts only when one or more of their characteristics are slightly outside the range defined for the family of the series for which the soils are named.
Terrace. An embankment, or ridge, constructed across sloping soils on the contour or at a slight angle to the contour. The terrace intercepts surface runoff so that water soaks into the soil or flows slowly to a prepared outlet. A terrace in a field generally is built so that the field can be farmed. A terrace intended mainly for drainage has a deep channel that is maintained in permanent sod.
Terrace (geologic). An old alluvial plain, ordinarily flat or undulating, bordering a river, a lake, or the sea.
Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.

Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.
Upland. Land at a higher elevation, in general, than the alluvial plain or stream terrace; land above the lowlands along streams.
Weathering. All physical and chemical changes produced in rocks or other deposits at or near the earth's surface by atmospheric agents. These changes result in disintegration and decomposition of the material.
Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.

Tables

Table 1.-Soil Legend

Table 1.-Soil Legend-Continued

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	$\begin{aligned} & \text { I Percent } \\ & \text { of } \\ & \text { I map unit } \end{aligned}$	
	I	I	
190795:	I	1	
Emmet-Leelanau complex, 6 to 12 percent slopes	\| Emmet	60	
	\|	1	
	\|Leelanau	30	
	,	1	
	\|East Lake	5	
	\\|	I	
	\|Nester	5	
		1	
190796:	1	1	
Emmet-Leelanau complex, 12 to 18 percent slop	\| Emmet	50	
	I	130	
	\|Leelanau	30	
	1	I	
	\|East Lake	5	
	\|	,	
	\|Kalkaska	5	
	\|	I	
	\| Nester	13	
		I	
	\|Wallace	13	
		I	
	\|Alcona	12	
	I	I	
	\|Richter	12	
	I		
190797:	1	I	
Emmet-Leelanau complex, 18 to 25 percent slopes----------\|Emmet		150	
	1		
	\| Leelanau	130	
	,	I	
	\|East Lake	I 10	
	I		
	\| Nester	I 10	
	I	,	
190799:	,	I	
Emmet-Leelanau complex, 25 to 50 percent slopes	\|Emmet	1 45	
	1	I	
	\|Leelanau	130	
	1		
	\|East Lake	I 13	
	1	I	
	\|Nester	\| 12	
	1	I	
190801:	I	I	
Emmet-Mancelona gravelly sandy loams, 4 to 12 percent		,	
	\|Emmet	170	
	1	I	
	\| Mancelona	1 25	
		I	
	\| Nester	13	
	I	I	
	\|Kiva	12	
	I	1	

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	$\|$Percent of map unit	
	I	I	
190803:	I	I	
Emmet-Mancelona gravelly sandy loams, 18 to 35 percent slopes	I	I	
	\| Emmet	\| 60	
	1	I	
	\| Mancelona	130	
	\|	I	
	\|Alpena	12	
	\|	I	
	\| Kiva	12	
	,	1	
	\| Lupton	12	
	I	I	
	\| Markey	12	
	1	I	
	\| Nester	12	
	I	I	
190805:	\|	I	
Emmet-Omena sandy loams, 2 to 6 percent slope	- Emmet	150	
	1	I	
	I Omena	I 45	
	I	I	
	\| Kiva	12	
	I	I	
	\| Leelanau	12	
	I	I	
	\| Nester	11	
	I	I	
190806:	I	1	
Emmet-Omena sandy loams, 6 to 12 percent slop	- Emmet	150	
		I	
	I Omena	145	
	I	I	
	\| Hettinger	$1 \quad 1$	
	1	I	
	\| Kiva	I 1	
	\|	,	
	\|Leelanau	\| 1	
	I	I	
	\| Nester	11	
	1	I	
	\|Tonkey	I 1	
	1	I	
190807:	I	I	
Emmet-Omena sandy loams, 12 to 18 percent slop	- Emmet	150	
	I	I	
	I Omena	I 45	
	1	I	
	\| Kiva	12	
	\|	I	
	\| Leelanau	12	
	\\|	I	
	\| Nester	\| 1	
	I	I	
190808:	I	I	
Emmet-Omena sandy loams, 18 to 25 percent slopes	- Emmet	150	
	1	I	
	I Omena	I 45	
	I	I	
	\| Kiva	12	
	\|	I	
	\| Leelanau	12	
		I	
	\| Nester	11	
	1	1	

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	Percent	
	I	I	
190809:	I	1	
Emmet-Omena sandy loams, 25 to 50 percent sl	\| Emmet	150	
	I	I	
	IOmena	45	
	\|	1	
	\|Kiva	12	
	\|	1	
	\|Leelanau	12	
	I	I	
	\|Nester	11	
	\|	1	
190811:	I	1	
Hettinger-Muck complex	\| Hettinger	145	
	I	1	
	\|Muck	130	
	\|	I	
	\|Kiva	5	
	,	,	
	\|Lupton	15	
	I	1	
	\| Mancelona	5	
	,	1	
	\|Markey	13	
	1	,	
	\|Tonkey	3	
	\|	1	
	\| Edwards	12	
	\|	1	
	\| Roscommon	12	
	I	1	
190812 :	\|	,	
Hettinger-Tonkey loa	\| Hettinger	45	
		1	
	\|Tonkey	130	
	1	1	
	\| Mancelona	15	
	i	1	
	\|Markey	5	
	,	1	
	\| Munuscong	15	
	I	,	
	\|Roscommon	5	
	I	1	
	\|Lupton	13	
	1	,	
	\|Epoufette	12	
	\|	1	
190814:	I	1	
Kalkaska sand, 0 to 6 percent slopes	\|Kalkaska	185	
	\\|	1	
	\|Au Gres	13	
	I	1	
	\|East Lake	13	
	\|	1	
	\|Iosco	13	
	1	1	
	\| Mancelona	12	
	\|	1	
	\| Munuscong	12	
	\|	1	
	\|Tonkey	12	
	I	1	

Table 1.-Soil Legend-Continued

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	$\begin{aligned} & \hline \text { Percent } \\ & \text { of } \\ & \text { map unit } \end{aligned}$	
	\\|	I	
190821:	1	1	
Kiva-Mancelona gravelly sandy loams, 6 to 12 percent slopes	I	1	
	\| Kiva	50	
	,	1	
	\| Mancelona	30	
	I	1	
	\|Alcona	5	
	\|	1	
	\|Alpena	5	
	1	1	
	\| Emmet	5	
	,	1	
	\|Richter	5	
	I	1	
190823:	1	1	
Kiva-Mancelona gravelly sandy loams, 18 to 25 percent slopes	I	1	
	\| Kiva	150	
	I		
	\| Mancelona	130	
	1	1	
	\|Alpena	110	
	I		
	\| Leelanau	10	
	1	1	
190824:	I	,	
Lake beaches-	\|Lake beaches	I 100	
	1	1	
190825:	1	,	
Lake bluffs	\|Lake bluffs	I 100	
	1	I	
190826:Leelanau-East Lake loamy sands, 0 to 6 percent slopes			
	\| Leelanau	160	
	1		
	\| East Lake	30	
		I	
	\|Alcona	14	
	\|	,	
	\| Kalkaska	13	
	I		
	\| Mancelona	13	
	I	I	
$190827 \text { : }$		I	
Leelanau-East Lake loamy sands, 6 to 12 percent slopes	\| Leelanau	65	
	1	,	
	\| East Lake	125	
	1	I	
	\| Mancelona	13	
	1	I	
	\|Alcona	12	
	1	I	
	\| Kalkaska	12	
	\\|	I	
	\| Nester	$1 \quad 1$	
	I	I	
	\| Richter	11	
	\|	I	
	\| Tonkey	\| 1	
	\|	1	

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	```Percent of map unit```	
	I !		
Leelanau-East Lake loamy sands, 12 to 18 percent slopes--	I \|		
	\|Leelanau		65
	1		
	\|East Lake		25
	\|		
	\|Alcona		3
	1 \|		
	\|Kalkaska		3
	\|		
	\| Mancelona		2
	\|		
	\| Nester		2
	1 \|		
190829 :	1 \|		
Leelanau-East Lake loamy sands, 18 to 25 percent slopes-	- Leelanau \|	50	
	1 \|		
	\|East Lake		35
	1 \|		
	\|Kalkaska		4
	I \|		
	\| Mancelona		4
	\|		
	\| Nester		4
	1 \|		
	\|Alcona		3
	1 \|		
$190830 \text { : }$	1 \|		
Leelanau-East Lake loamy sands, 25 to 45 percent slopes-	\|Leelanau		50
	\|		
	\|East Lake		35
	1		
	\|Alcona		3
	\|		
	\|Kalkaska		3
	1		
	\| Mancelona		3
	I \|		
	\| Nester		3
	1 ।		
	\|Wind eroded land		3
	1 \|		
190831 :	1 \|		
Lupton-Markey mucks	\| Lupton		60
	1 \|		
	\| Markey		30
	I		
	\| Edwards		5
	1 I		
	\| Roscommon		5
	1 I		
190832: 0 , 0 do	1 \|		
Mancelona sandy loam, 0 to 6 percent slopes	\| Mancelona		90
	I		
	\|East Lake		4
	1 \|		
	\|Kiva		3
	1 \|		
	\|Nester		3
	1 l		

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	$\begin{aligned} & \mid \text { Percent } \\ & \text { of } \\ & \text { map unit } \end{aligned}$	
	\\|	1	
190833 :	\|	I	
Mancelona sandy loam, 6 to 12 percent slopes---------------\|	\| Mancelona	190	
	I	I	
	\| East Lake	14	
	\|	1	
	\| Kiva	13	
	\|	1	
	\|Leelanau	13	
	1	1	
190834: \|	1	1	
Mancelona-East Lake loamy sands, 0 to 6 percent slopes----\|	\| Mancelona	160	
	I	I	
	\| East Lake	130	
	\\|	,	
	\| Kalkaska	13	
	1	,	
	\| Kiva	3	
		,	
	\| Leelanau	12	
		1	
	\|Sanilac	12	
	\|	I	
190835: \|	1	1	
Mancelona-East Lake loamy sands, 6 to 12 percent slopes---\|	\| Mancelona	55	
		I	
	\| East Lake	135	
		,	
	\|Alpena	13	
	1	I	
	\| Kalkaska	13	
	\|	1	
	\| Kiva	13	
	I	1	
	\| Tonkey	\| 1	
	1	I	
$190836 \text { : }$		I	
Mancelona-East Lake loamy sands, 12 to 18 percent slopes--	\| Mancelona	150	
	1	I	
	\| East Lake	130	
	\|		
	\| Kalkaska	110	
	,	I	
	\|Kiva	110	
	।	I	
190837: \|	1	I	
Mancelona-East Lake loamy sands, 18 to 25 percent slopes--\|	\| Mancelona	145	
		I	
	\| East Lake	130	
		I	
	\| Kalkaska	110	
	i	I	
	\| Kiva	110	
		1	
	\|Adrian	13	
	,	I	
	\| Houghton	12	
	1	1	

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	```Percent of map unit```	
	I \|		
190838:	1 \|		
	Mancelona \|	50	
Mancelona-East Lake loamy sands, 25 to 45 percent slope	I		
	\|East Lake		30
	I		
	\| Emmet		5
	I		
	\|Kalkaska		5
	I		
	\|Kiva		5
	I \|		
	\|Leelanau		5
	\|		
190839 :	1 I		
Mancelona-Richter gravelly sandy loams, 0 to 6 percent slopes	I		
	Mancelona \|	70	
	I		
	\|Richter		25
	1 \|		
	\|Epoufette		2
	I I		
	\| Tonkey		2
	1		
	\|Wallace		1
	I		
190840:Nester silt loam, 2 to 6 percent slopes	I		
	\|Nester		90
	I \|		
	\| Emmet		4
	I		
	\|Kalkaska		3
	1		
	\|Sanilac		3
	\|		
190841:Nester silt loam, 6 to 12 percent slopes	1		
	\| Nester		90
Nester silt loam, 6 to 12 percent slopes	I		
	\| Emmet		4
	I \|		
	\|Leelanau		3
	\|		
	IOmena \|	3	
	1 \|		
190842: 12 to 18 percent	I		
Nester silt loam, 12 to 18 percent slope	\|Nester		90
	I \|		
	\| Emmet		3
	I \|		
	\|Kalkaska		2
	1		
	\|Leelanau		2
	I \|		
	\|Omena	2	
	I		
	\|Wind eroded land		1
	I I		
$190843 \text { : }$	1 \|		
Nester silt loam, 18 to 25 percent slopes	\|Nester		90
	1 \|		
	\| Emmet		4
	1		
	\| Leelanau		3
	I \|		
	IOmena \|	3	
	1		

Table 1.-Soil Legend-Continued

Table 1.-Soil Legend-Continued

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	$\begin{gathered} \text { Percent } \\ \text { of } \\ \text { map unit } \\ \hline \end{gathered}$	
	\|	\|	
193256:	I	I	
Spinks-Coloma sands, 6 to 12 percent slopes	\|Spinks	150	
	I		
	\| Coloma	40	
	\|		
	\| Shavenaugh	I 4	
		I	
	\|Benona	3	
	\|		
	\|Tekenink, sandy	13	
	\| substratum		
	,		
193257:	I		
Spinks-Coloma sands, 12 to 18 percent slopes	\|Spinks	155	
	\| Coloma	35	
	I	I	
	\| Shavenaugh	14	
	1		
	\|Benona	13	
	\|Tekenink, sandy	substratum	3
193258:	I		
Spinks-Coloma sands, 18 to 35 percent slopes	\|Spinks	50	
	I		
	\|Coloma	140	
	I		
	\|Benona	15	
	I		
		5	
	\| substratum		
	I		
193260:Copemish sand, 3 to 12 percent slopes			
	\| Copemish	195	
Copemish sand, 3 to 12 percent slope	I		
	\|Covert	12	
	\|Grattan	12	
	I		
	\|Saugatuck	11	
	1		
193262 :	I		
Kaleva sand, 0 to 6 percent slope	\|Kaleva	1 95	
	\|Benzonia	2	
	,		
	\|Nessen	12	
	I		
	\|Grattan	11	
	I	I	
$193263:$	1	I	
Kaleva sand, 6 to 12 percent slopes	\|Kaleva	195	
	I	I	
	\|Benzonia	12	
		I	
	\| Nessen	12	
	I	I	
	\|Grattan	11	
	1	1	

Table 1.-Soil Legend-Continued

Table 1.-Soil Legend-Continued

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	Percent of map unit	
	I		
193349:	I		
Spinks-Coloma sands, 35 to 70 percent slop	\|Spinks		50
	\|		
	\| Coloma	40	
	।		
	\| Benona		5
	\|		
	\|Tekenink, sandy substratum	5	
	\| substratum		
193351:Benona sand, 18 to 35 percent slope	1		
	\|Benona		95
	I \|		
	\| Coloma		3
	1		
	\| Fogg		2
	\|		
193354:	I		
Dune land-Quartzipsamments complex, undulatin	\|Dune land	50	
	I		
	\|Quartzipsamments		40
	I		
	\| Nordhouse		4
	1 \|		
	\| Goodharbor	3	
	I		
	\| Platteriver		3
	\|		
193357:Shavenaugh sand, 18 to 35 percent slopes	1 \|		
	\| Shavenaugh		85
Shavenaugh sand, 18 to 35 percent slop	I \|		
	\| Nessen		5
	I		
	\| Boyer		4
	1 \|		
	\|Grattan	3	
	I		
	\|Kaleva		3
	I		
193359: 12	I		
Shavenaugh sand, 6 to 12 percent slope	\| Shavenaugh		85
	1 \|		
	\| Nessen	5	
	I		
	\| Boyer		4
	I \|		
	\|Grattan		3
	\|		
	\| Kaleva	3	
	I		
193360 :	1 \|		
Shavenaugh sand, 0 to 6 percent slopes	\| Shavenaugh		85
	I \|		
	\| Nessen		5
	i		
	\|Boyer		4
	1		
	\|Grattan		3
	I \|		
	\|Kaleva		3
	I \|		

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	$\begin{aligned} & \hline \text { Percent } \\ & \text { of } \\ & \text { map unit } \end{aligned}$	
	I	I	
193362:	I	I	
Benzonia sand, 18 to 35 percent slopes	\|Benzonia	90	
	I	1	
	\| Benona	3	
	I	I	
	\| Coloma	3	
	\|	I	
	\| Fogg	12	
	I	I	
	\|Grattan	2	
	I	1	
193363:	I	1	
Benzonia sand, 12 to 18 percent slopes	\|Benzonia	190	
	I	1	
	\| Benona	15	
	I	1	
	\| Coloma	13	
	1	I	
	\| Fogg	12	
	\|	1	
193364:Benzonia sand, 6 to 12 percent slopes	I	1	
	\|Benzonia	190	
Benzonia sand, 6 to 12 percent slopes	1	I	
	\| Benona	13	
	1	I	
	\|Kaleva	13	
	I	I	
	\|Coloma	12	
	1	I	
	\| Nessen	12	
	I	I	
193365:Benzonia sand, 0 to 6 percent slopes	I	I	
	\| Benzonia	190	
Benzonia sand, 0 to 6 percent slopes	1		
	\|Benona	13	
	I	I	
	\|Kaleva	13	
	I	,	
	\|Coloma	12	
	I	I	
	\| Nessen	12	
	1	I	
193371:	I	I	
Dair-Pipestone complex, 0 to 2 percent slopes	\|Dair	150	
Dair-Pipestone complex, 0 to 2 percent slopes	\|	,	
	\| Pipestone	140	
	i	I	
	\| Covert	15	
	।	I	
	\| Houghton	15	
	I	I	
193372:	I	I	
Access Denied-	- Access Denied	I 100	
	I	I	
193423:	I	I	
Benona sand, 35 to 70 percent slopes	- Benona	195	
	I	I	
	IColoma	13	
	I	I	
	\| Fogg	12	
	\|	I	
193484:	I	I	
Pits, sand and gravel	-\|Pits, sand and	gravel	\| 100
	I	1	

Table 1.-Soil Legend-Continued

Table 1.-Soil Legend-Continued

Map unit symbol and map unit name	Components in map unit	Percent of map unit	
	I		
894063:	I		
Remus-Spinks complex, 12 to 18 percent slope	\| Remus	50	
	I		
	\|Spinks	40	
	\|		
	IColoma	4	
	\|		
	\| Benzonia	3	
	\|		
	\|Tekenink, sandy	3	
	\| substratum		
	I		
894064:	I		
Fern-Remus complex, 6 to 12 percent slopes	\| Fern	50	
	\|		
	\| Remus	40	
	1		
	\| Coloma	5	
	I		
	\|Marlette	5	
	1		
894065:	I		
Fern-Remus complex, 0 to 6 percent slop	\| Fern	50	
	\|		
	\| Remus	40	
	I		
	\| Coloma	5	
	1		
	\|Marlette	5	
	I		
894104:	I		
Mollineaux-Remus complex, 18 to 35 percent slopes	\|Mollineaux	50	
	\|		
	\| Remus	40	
	1		
	IColoma	5	
	\|		
	\| Benzonia	3	
	\|		
	IOnekama	2	
	1		
894105:	I		
Mollineaux-Remus complex, 12 to 18 percent slopes	\|Mollineaux	50	
	\|		
	\| Remus	40	
	I		
	IColoma	5	
	\|		
	\|Benzonia	3	
	1		
	IOnekama	2	
	I		
894165:	I		
Spinks-Tekenink, sandy substratum, complex, 35 to 50 percent slopes	1		
	\|Spinks	50	
	1		
	\|Tekenink, sandy	substratum	40
	\\|		
	\|Coloma	4	
	I		
	\| Remus	3	
	I		
	\| Shavenaugh	3	
	I		

Soil Survey of Sleeping Bear Dunes National Lakeshore, Michigan

Table 1.-Soil Legend-Continued

Table 2.-Land Capability Classification
(Land capability classification is a system of grouping soils primarily on the basis of their capability to produce common cultivated crops and pasture plants without deteriorating over a long period of time. Only the soils suitable for cultivation are listed. Capability is given for nonirrigated areas)

Map unit symbol and component name	Land \|capability
	I
190775:	I
Adrian	6w
	I
Houghton-	6w
190777:	I
Alcona-	2s
	I
Richter	2w
	1
190778:	1
Alcona	2 e
	1
Richter-	2 e
	1
190779:	,
Alpena-	$6 s$
	1
190780:	I
Au Gres	4w
	1
Kalkaska-	4s
	\|
190781:	I
Bach-	5w
	1
190782 :	1
Deer Park-	7s
	,
190783:	,
Deer Park-	7s
	,
190784:	1
Deer Park	7 s
	I
Roscommon-	\| 6w
	,
190787:	1
East Lake-	4s
	,
190788:	1
East Lake-	$6 s$
	I
190789:	I
East Lake-	$6 s$
	I
190790:	1
East Lake-	7s
	1
190791:	I
Eastport-	16 s
	,
190792 :	I
Edwards--------------------------------------	1 6w
	1
Marl beds---------------------------------1-	\| 7w
	1

Table 2.-Land Capability Classification-Continued

Table 2.-Land Capability Classification-Continued

Table 2.-Land Capability Classification-Continued

Map unit symbol and component name	$\begin{aligned} & \hline \text { I } \\ & \text { I capability } \\ & \text { \| } \end{aligned}$
	I
190831 :	I
Lupton	6w
	1
Markey	5w
	I
190832 :	I
Mancelona-	3 s
	1
190833 :	I
Mancelona	3 e
	1
190834 :	I
Mancelona	3s
	1
East Lake	4s
	1
190835 :	I
Mancelona	3 e
	1
East Lake-	$6 s$
	1
190836 :	,
Mancelona	4 e
	1
East Lake-	$6 s$
	I
190837 :	I
Mancelona-	$6 e$
	1
East Lake-	7 s
	1
190838 :	I
Mancelona	$7 e$
	1
East Lake-	$7 s$
	I
190839 :	1
Mancelona-	--
	1
Richter	$2 e$
	1
190840:	I
Nester	2 e
	1
190841:	I
Nester	13 l
	,
190842 :	1
Nester-	4 e
	,
190843 :	I
Nester	6 e
	I
190844:	I
Nester-	\| 7e
	I
190847:	I
Richter-------------------------------------	\| 2w
	,
Alcona--------	\| 2s
	1

Table 2.-Land Capability Classification-Continued

Map unit symbol and component name	$\begin{aligned} & \text { I } \\ & \text { I capability } \\ & \text { lable } \end{aligned}$
	I
190848:	1
Richter	2 e
	1
Alcona-	2 e
	I
190849 :	,
Roscommon-	6w
Markey	5w
	I
190850:	1
Sanilac	2 e
	1
190851:	I
Tonkey	5w
	1
Munuscong-	5w
	1
Iosco	3w
	1
190852 :	1
Tonkey-	5w
	1
Munuscong-	5w
	1
Iosco	3w
	1
190854:	1
Wallace-	$6 s$
	1
Kalkaska-	$6 s$
	I
193237:	1
Thompsonville	4s
	I
Milnichol-	4w
	I
193255:	I
Spinks	3s
	1
Coloma	4s
	\|
193256:	I
Spinks	3 e
	I
Coloma-	$6 s$
	1
193257:	I
Spinks	4 e
	1
Coloma	$6 s$
	I
193258:	I
	16 e
	1
Coloma	17 s
	I
193260 :	I
Copemish-------------------------------------	6s
	I
193262 :	I
Kaleva----------	\| 4s

Table 2.-Land Capability Classification-Continued

Map unit symbol and component name	Land \|capability
	I
193263 :	,
Kaleva-	$6 s$
	I
193265 :	I
Grattan	\| 4s
	I
193266:	I
Grattan	$6 s$
	I
193267:	1
Grattan-	$6 s$
	1
193269 :	,
Grattan-	$7 s$
	I
193270:	,
Covert-	4s
	1
193271:	,
Pipestone-	4w
	I
193272 :	I
Dair-	5w
	,
193277:	,
Benona	4s
	,
193278:	I
Benona	$6 s$
	I
193279:	I
Benona-	16 s
	1
193284:	I
Udorthents-	$7 e$
	1
Udipsamments	17 s
	I
193285 :	I
Lumley-----	6w
	I
Makinen-	6w
	I
193286:	I
Histosols	\| 8w
	I
Aquents	\| 8w
	,
193287:	I
Quartzipsamments-	---
	,
193288:	I
Udipsamments-	17 s
	I
193342 :	I
Gorvan-----	\| 6w
	,
Houghton-----	\| 5w
	,
Glendora----------------------------------	6w
	1

Soil Survey of Sleeping Bear Dunes National Lakeshore, Michigan

Table 2.-Land Capability Classification-Continued

Map unit symbol and component name	Land \|capability
	I
193349 :	,
Spinks	- 7e
	I
Coloma-	7s
	,
193351 :	I
Benona-	7s
	1
193354:	1
Quartzipsamments-	\| --
	,
193357 :	I
Shavenaugh	- 7s
	I
193359 :	I
Shavenaugh	\| 6s
	I
193360 :	I
Shavenaugh	\| 4s
	I
193362 :	I
Benzonia	- 7s
	1
193363:	I
Benzonia	\| 6s
	I
193364 :	1
Benzonia	$6 s$
	,
193365:	1
Benzonia	\| 4s
	I
193371:	I
Dair	\| 5w
	1
Pipestone-	- 4w
	I
193423 :	I
Benona-	- 7s
	,
193494 :	1
Nordhouse-	\| 7s
	I
193496:	I
Nordhouse-	- 7s
	I
193497:	I
Nordhouse-	\| 4s
	I
193498 :	1
Nordhouse-	- 4s
	I
Platteriver-	- 4s
	I
Dair	- 5w
	I
193503:	I
Spinks--	- 3s
	1 -
Shavenaugh--------------------------------	4s

Table 2.-Land Capability Classification-Continued

Map unit symbol and component name	$\begin{aligned} & \text { Land } \\ & \text { \|capability } \end{aligned}$
	I
193504 :	1
Spinks	13 l
	I
Shavenaugh-	$6 s$
	I
193505 :	I
Spinks	4 e
	,
Shavenaugh-	$16 s$
	1
193506:	,
Spinks	$6 e$
	1
Shavenaugh-	$7 s$
	I
193507:	I
Spinks	$7 e$
	1
Shavenaugh-	$7 s$
	1
193508 :	I
Madaus	5w
	I
193509:	I
Boyer-	3 s
	I
Shavenaugh-	4s
	1
193510:	I
Boyer	3 e
	I
Shavenaugh-	$6 s$
	,
193511:	I
Boyer	$7 e$
	1
Shavenaugh-	7s
	1
193513 :	I
Dair	5w
	1
Adrian-	5w
	I
193514:	1
Platteriver-	4s
	I
Pipestone	\| 4w
	,
202010 :	,
Houghton------	\| 5w
	I
Adrian-	5w
	I
202016:	I
Spinks	13 s
	1
Tekenink, sandy substratum-	12 e
	,
631170:	1
	7s
	1
Benzonia-----------------------------------	$7 s$
	1

Soil Survey of Sleeping Bear Dunes National Lakeshore, Michigan

Table 2.-Land Capability Classification-Continued

Table 2.-Land Capability Classification-Continued

Map unit symbol and component name		$\begin{aligned} & \text { Land } \\ & \text { \|capability } \end{aligned}$
	I	
894063:	,	
Remus		4 e
Spinks-		4 e
894064:	I	
Fern		3 e
Remus-		3 e
894065:	I	
Fern		3s
Remus-		2 e
	I	
894104:		
Mollineaux-		$7 e$
Remus-		$7 e$
894105:	,	
Mollineaux-	-	4 e
Remus-		4 e
894165:		
		$7 e$
Tekenink, sandy substratum-		$7 e$
899682:		
Kaleva-	1	7s
899722 :		
Goodharbor-		$6 s$
	I	
899731:		
Covert		4s
	I	
Pipestone	-	4w
899733:	1	
Covert	1	4s
	I	
Dair-		5w
	1	
899734:	1	
	-1	7s
	1	

Table 3.-Prime and Other Important Farmland
(Only the soils considered prime or important farmland are listed. Urban or built-up areas of the soils listed are not considered prime or important farmland. If a soil is prime or important farmland only under certain conditions, the conditions are indicated in the column "Farmland Classification")

| | \| | | I |
| :---: | :---: | :---: |
| Map unit symbol | Map unit name | \| Farmland classification |
| | 1 | 1 |
| | \| ${ }^{\text {a }}$ | |
| 190777 | \|Alcona-Richter sandy loams, 0 to 2 percent slopes | \|Prime farmland if drained |
| 190778 | \|Alcona-Richter sandy loams, 2 to 6 percent slopes | \|Prime farmland if drained |
| 190781 | \|Bach loam | \|Prime farmland if drained |
| 190794 | \|Emmet-Leelanau complex, 2 to 6 percent slopes | \|All areas are prime farmland |
| 190795 | \|Emmet-Leelanau complex, 6 to 12 percent slopes | \|Farmland of local importance |
| 190796 | \mid Emmet-Leelanau complex, 12 to 18 percent slopes | \|Farmland of local importance |
| 190801 | \|Emmet-Mancelona gravelly sandy loams, 4 to 12 percent slopes| | \|Farmland of local importance |
| 190805 | \|Emmet-Omena sandy loams, 2 to 6 percent slopes | \|All areas are prime farmland |
| 190806 | \|Emmet-Omena sandy loams, 6 to 12 percent slopes | \|Farmland of local importance |
| 190807 | \|Emmet-Omena sandy loams, 12 to 18 percent slopes | \|Farmland of local importance |
| 190812 | \|Hettinger-Tonkey loams | \| Prime farmland if drained |
| 190820 | \|Kiva-Mancelona gravelly sandy loams, 2 to 6 percent slopes | \|Farmland of local importance |
| 190821 | \|Kiva-Mancelona gravelly sandy loams, 6 to 12 percent slopes | \|Farmland of local importance |
| 190826 | \|Leelanau-East Lake loamy sands, 0 to 6 percent slopes | \|Farmland of local importance |
| 190827 | \|Leelanau-East Lake loamy sands, 6 to 12 percent slopes | \|Farmland of local importance |
| 190839 | \|Mancelona-Richter gravelly sandy loams, 0 to 6 percent | slopes | \|Farmland of local importance |
| 190840 | \|Nester silt loam, 2 to 6 percent slopes | \|All areas are prime farmland |
| 190841 | \|Nester silt loam, 6 to 12 percent slopes | \|Farmland of local importance |
| 190842 | \|Nester silt loam, 12 to 18 percent slopes | \|Farmland of local importance |
| 190847 | \mid Richter-Alcona sandy loams, 0 to 2 percent slopes | \|Prime farmland if drained |
| 190848 | \mid Richter-Alcona sandy loams, 2 to 6 percent slopes | \|Prime farmland if drained |
| 190850 | \|Sanilac silt loam, 0 to 6 percent slopes | \|Prime farmland if drained |
| 190851 | \|Tonkey-Munuscong-Iosco sandy loams, 0 to 2 percent slopes | \|Prime farmland if drained |
| 190852 | \|Tonkey-Munuscong-Iosco sandy loams, 2 to 6 percent slopes | | \|Prime farmland if drained |

Table 4.-Hydric Soils
(This report lists only those map unit components that are rated as hydric. Definitions of hydric criteria codes are included at the end of the report)

Map unit symbol and map unit name	\| Component	\| Percent\| of map\| unit	I Landform	Hydric soils criteria			
				$\begin{gathered} \text { Hydric } \\ \text { criteria } \\ \text { code } \end{gathered}$	\| Meets\| saturation\| criteria	\| Meets\mid flooding \mid\|criteria	Meetspondingcriteria
$190775 \text { : }$ Adrian-Houghton mucks	I	I	I	I	I	1	\|
	1	I	I	I	I	I	
	\|Adrian	\| 55	\|depressions on	3, 1	I No	I No	Yes
	1	I	\| outwash	1	I	1 I	
	I	I	\| plains,	I	I	I	
	1	I	\| depressions on	1	I	I	
	I	I	\| moraines	I	I	I	
	I	I	I	I	I	I	
	\| Houghton	\| 45	\|depressions on	3, 1	1 No	I No	Yes
	I	I	\| lake plains,	1	I	I	
	I	I	\| depressions on	1	I	1	
	I	I	\| outwash plains	1	I	I	
	I	I	I	I	1	1 I	
190777:	I	I	I	1	I	,	
Alcona-Richter sandy loams, 0 to 2 percent slopes	\| Hettinger	\| 15	\|depressions on	3, 2B3	I Yes	I No	Yes
		I	\| lake plains	1	1	I	
	I	I	I	I	I	I	
	I	I	I	I	I	I	
190780:	I	I	I	1	I	I	
Au Gres-Kalkaska sands, 0 to 4 percent slopes	\| Markey	\| 10	\|depressions on	1, 3	I No	I No	Yes
		I	\| outwash	\|	I	I	
	I	I	\| plains,	1	I	I	
	I	I	\| depressions on	1	I	I	
	I	I	\| lake plains,	1	I	I	
	I	I	\| depressions on	I	I	1	
	I	I	\| moraines	I	I	I	
	I	I		1 ,	I	I	
	\| Roscommon	\| 10	\|depressions on	2B1, 3	I Yes	I No	Yes
	I	I	\| lake plains,	I	I	I	
	I	I	\| depressions on	1	I	I	
	I	I	\| outwash plains	1	I	I	
	I	I	\|	1	I	I	
190781: Bach loam	I	I	I	1	I	I	
Bach loam	\| Bach	\| 90	\|depressions,	2B3, 3	I Yes	I No	Yes
	I	I	\| lake plains	1	1	I	
	I	I	I	1	I	I	
	\| Edwards	15	\|depressions on	3, 1	1 No	I No	Yes
	I	I	\| moraines,	1	I	I	
	I	I	\| depressions on	1	1	1	
	I	I	\| outwash plains	1	I	I	
	I	I	I	I	I	I	
190784:	I	I	I	1	I	I	
Deer Park-Roscommon sands, 0 to 6 percen slopes	\| Roscommon	\| 25	\|depressions on	2B1, 3	1 Yes	I No	Yes
		I	\| lake plains,	1	1	1	
	I	I	\| depressions on	1	I	I	
	I	I	\| outwash plains	1	1	1	
	I	I		1	I	I	
	\| Markey	15	\|depressions on	1, 3	I No	I No	Yes
	I	I	\| outwash	1	I	I	
	I	I	\| plains,	1	I	1	
	I	I	\| depressions on	1	I	1	
	I	I	\| lake plains,	1	I	I	
	I	I	\| depressions on	,	1	1	
	I	I	\| moraines	1	1	1	
	1	1	1	1	1	1 I	

Table 4.-Hydric Soils-Continued

Map unit symbol and map unit name	\| Component		Landform	Hydric soils criteria				
				$\begin{gathered} \text { Hydric } \\ \text { criteria } \\ \text { code } \\ \hline \end{gathered}$	$\begin{aligned} & \mid \text { Meets } \\ & \text { \|saturation } \\ & \mid \text { criteria } \end{aligned}$	Meets	Meetsponding\|criteria	
						\|flooding		
						\|criteria		
	I	I	I	I	I	\|	I	
190788:	1	I	I	I	I	I	I	
East Lake loamy sand,	\|Munuscong	12	\|depressions on	I 2B3, 3	I Yes	I No	Yes	
6 to 12 percent	\|	I	\| lake plains,		1	I	I	1
slopes	1	I	\| depressions on		1	I	I	1
	I	I	\| outwash plains		1	I	1	I
	1	I	1	I	I	I	1	
	\|Tonkey	12	\|outwash plains,	I 2B3, 3	I Yes	I No	I Yes	
	I	I	\| depressions on			1	1	1
	1	I	\| lake plains,		I	1	I	
	I	I	\| depressions on		1	I	I	I
	I	I	\mid glacial \|	1	I	I	I	
	I	I	\| drainageways	I	I	I	I	
	I	I	1	I	I	I	I	
190792 :	1	I	1 \|	,	I	I	,	
Edwards muck-Marl beds	\| Edwards	I 70	\|depressions on	I 1, 3	I No	I No	1 Yes	
complex	I	I	\| moraines,	1	I	I	1	
	I	I	\| depressions on			I	I	I
	I	I	\| outwash plains			1	I	I
	,	1		I	I	1	I	
	\|Marl beds	I 20	\|depressions	I 3, 2B3	1 Yes	I No	1 Yes	
	I	I	I \|		I	1	1	
	\| Lupton	15	\|depressions on		I 3, 1	I No	I No	Yes
	I	I	\| lake terraces,		1	I	I	I
	I	I	\| moraines, till			I	I	I
	I	I	\| plains			I	I	I
	,	I		I	I	1	I	
	\|Markey	15	\|depressions on		I 3, 1	1 No	I No	1 Yes
	1	I	\| outwash plains,			I	1	,
	,	I	\| depressions on			I	I	I
	I	I	\| lake plains,		1	I	I	I
	I	I	\| depressions on			I	I	I
	I	I	\| moraines			I	I	I
	I	I	1	1	I	1	I	
190803:	I	I	1 \|	1	I	1	,	
Emmet-Mancelona	\|Lupton	12	\|depressions,	I 3, 1	I No	I No	Yes	
gravelly sandy loams,		I	\| lake terraces,		1	I	I	I
18 to 35 percent	I	I	\| moraines, till		1	I	1	I
slopes	I	I	\| plains		1	I	I	
	I	I	I		1	1	I	
	\|Markey	12	\|depressions on	I 1, 3	I No	I No	Yes	
	1	I	\| outwash		I	I	I	
	I	I	\| plains,		1	I	1	I
	I	I	\| depressions on		1	1	1	I
	1	I	\| lake plains,		1	1	1	1
	I	I	\| depressions on			I	I	I
	I	I	\| moraines		1	1	1	I
	I	I	I \|	1	1	1	I	
190806:	1	1	1 \|	1	1	1	,	
Emmet-Omena sandy	\| Hettinger	\| 1	\|depressions on		I 3, 2B3	I Yes	I No	I Yes
loams, 6 to 12	\|	I	\| lake plains		1	I	I	I
percent slopes	I	1		1	1	1	I	
	\|Tonkey	\| 1	\|outwash plains,		I 2B3, 3	I Yes	I No	I Yes
	\|	1	\| depressions on			I	I	I
	I	1	\| lake plains,			I	I	I
	I	I	\| depressions on			I	1	I
	I	1	\| glacial		1	1	1	I
	I	1	\| drainageways			I	I	I
	1	1	I I	1	1	1	1	

Table 4.-Hydric Soils-Continued

Map unit symbol and map unit name	Component	\| Percent\| of map\| unit	I Landform	Hydric soils criteria				
				Hydric criteria code	$\begin{aligned} & \mid \text { Meets } \\ & \text { \|saturation } \\ & \text { \| criteria } \end{aligned}$	\| Meets	Meetspondingcriteria	
						\|flooding		
						\|criteria		
		I	I	I	I	I	-	
190811:		I	I	1 -	1	I	I	
Hettinger-Muck complex\|	ettinger	\| 45	\|depressions on	2B3, 3	I Yes	I No	Yes	
		I	\| lake plains	I	I	1	1	
\|		I	\|	1	1	I		
	uck	I 30	\|depressions	1, 3	I No	I No	Yes	
		1	I	1	I	I		
	upton	15	\|depressions on	3, 1	I No	I No	Yes	
I		I	\| lake terraces,	I	I	I	I	
I		I	\| moraines, till	I	I	I	,	
I		I	\| plains	1	1	1		
I		I	I	I	I	I		
	arkey	13	\|depressions on	3, 1	1 No	1 No	Yes	
		I	\| outwash	1	I	I		
I		I	\| plains,	1	1	I		
I		I	\| depressions on	1	I	I		
I		I	\| lake plains,	1	I	I	,	
I		I	\| depressions on	1	1	I		
I		I	\| moraines	I	I	I		
1		I	1	,	1	1		
	onkey	13	\|outwash plains,	I 2B3, 3	1 Yes	1 No	Yes	
		I	\| depressions on	1	I	I		
I		I	\| lake plains,	1	1	1		
1		I	\| depressions on	1	I	I		
I		I	\| glacial	I	1	I		
I		I	\| drainageways	I	1	1		
I		I	1	1	1	I		
	dwards	12	\|depressions on	I 1, 3	I No	I No	Yes	
		I	\| moraines,	1	I	I	I	
I		I	\| depressions on	1	1	I	,	
1		I	\| outwash plains	1	1	I		
		I	1	1	1	1		
	oscommon	12	\|depressions on	I 3, 2B1	1 Yes	1 No	Yes	
I		I	\| lake plains,	1	1	I	\|	
I		I	\| depressions on	1	I	I	,	
		I	\| outwash plains	1	1	1		
		1	1	1	1	1	,	

Table 4.-Hydric Soils-Continued

Table 4.-Hydric Soils-Continued

Map unit symbol and map unit name	I Component	I \| Percent	\| Landform	Hydric soils criteria						
				Hydric criteria code	\| Meets\| saturation\| criteria	I Meet	Meetsponding\|criteria			
		\| Percent	of map	unit				\| flooding		
						\|criteria				
	I	I	I	I	1	I	I			
190831:	I	I	I	I	I	I				
Lupton-Markey mucks	\| Lupton	1 60	\|depressions on	\| 1, 3	I No	I No	Yes			
	1	I	\| lake terraces,		1	1	1			
	I	I	\| moraines, till			1	I	I		
	1	I	\| plains		I	1	I			
	I	I	I	1	I	I				
	\| Markey	130	\|depressions on		I 3, 1	I No	No	Yes		
	1	I	\| outwash		1	I				
	1	I	\| plains,		1	I				
	1	I	\| depressions on		1	I	I	I		
	I	I	\| lake plains,			I	I	I		
	I	I	\| depressions on		I	I	1			
	I	I	\| moraines		I	I	I			
	I	I		,	I	I				
	\| Edwards	15	\|depressions on	I 3, 1	I No	I No	Yes			
	\|	I	\| moraines,	\|	1	,				
	I	I	\| depressions on			1	,			
	I	I	\| outwash plains			I	I	I		
	I	I	I		1	$1 \quad 1$				
	\| Roscommon	I 5	\|depressions on		\| 2B1, 3	I Yes	No	Yes		
	\|	I	\| lake plains,		I	I	,			
	I	I	\| depressions on			I	I			
	I	I	\| outwash plains			1	I			
	I	I	I	,	I	I				
190835:	1	I	1	1	I	,				
Mancelona-East Lake	\| Tonkey	11	\|outwash plains,		I 3, 2B3	1 Yes	1 No	Yes		
loamy sands, 6 to 12	\|	I	\| depressions on		I	I	1			
percent slopes	I	I	\| lake plains,		1	I	1			
	I	I	\| depressions on			1	I			
	I	I	\| glacial			1	I			
	I	I	\| drainageways		1	1	I			
	1	I	1		1	I				
190837:	1	I	1		I	I				
Mancelona-East Lake	\| Adrian	13	\|depressions on	I 3, 1	I No	I No	Yes			
loamy sands, 18 to 25		I	\| moraines,		1	I	I			
percent slopes		I	\| depressions on			1	I			
percent slop	I	I	\| outwash plains			1	I			
	1	I			1	I				
	\| Houghton	12	\|depressions on		\| 1, 3	I No	I No	Yes		
	I	I	\| outwash		I	I				
	I	I	\| plains,			1	I			
	I	I	\| depressions on		1	1	I			
	I	I	\| lake plains			1	I			
	I	I	I \|		1	,				
190839 :	1	I	I	I	I	I				
Mancelona-Richter	\| Epoufette	12	\|depressions on		1 3, 2B2	I Yes	I No	Yes		
gravelly sandy loams		I	\| lake plains		1	1				
0 to 6 percent slopes		I	\|		1	1	I			
	\| Tonkey	12	\|outwash plains,		I 2B3, 3	I Yes	I No	Yes		
	1	I	\| depressions on		1	I				
	1	I	\| lake plains,			1	I			
	1	I	\| depressions on			I	I			
	1	I	\| glacial		1	1	I	I		
	1	I	\| drainageways			1	1			
	1	I	1 \|		I	I				
190847:	1	1	1 \|	I	1	I				
Richter-Alcona sandy	\| Tonkey	\| 15	\|outwash plains,		I 3, 2B3	I Yes	I No	Yes		
loams, 0 to 2 percent		I	\| depressions on			I	I			
slopes	1	I	\| lake plains,			1	I			
	1	I	\| depressions on			I	I	I		
	1	I	\| glacial			I	I	,		
	1	I	\| drainageways			I	I			
	1	I	1		1	1				

Table 4.-Hydric Soils-Continued

Map unit symbol and map unit name	\| Component	$\begin{aligned} & \mid \text { \| } \\ & \text { \| Percent\| } \\ & \text { \| of map\| } \\ & \text { \| unit } \end{aligned}$	I Landform	Hydric soils criteria				
				\qquad	\| Meets\| saturation\| criteria	Meets \| Meets\|flooding	ponding\|criterialcriteria	
	I	I	I		\|	\|	I	
190848:	1	I	I		,	I	1	
Richter-Alcona sandy loams, 2 to 6 percent slopes	\|Tonkey	\| 10	\|outwash plains,	3, 2B3	I Yes	No	I Yes	
		I	\| depressions on		I	I	I	
	1	I	\| lake plains,		I	I	I	
	1	I	\| depressions on		I	I	I	
	I	I	\| glacial		I	I	I	
	,	I	\| drainageways		I	I	1	
	I	I	,		I	I	I	
190849:	I	I	1		I	1	I	
Roscommon sand-Markey muck	\|Roscommon	\| 50	\|depressions on	3, 2B1	I Yes	No	Yes	
	,	I	\| lake plains,		I	1	1	
	I	I	\| depressions on		I	I	I	
	I	I	\| outwash plains		I	I	I	
	,	I	,		I	I	I	
	\|Markey	I 30	\|depressions on	3, 1	I No	I No	Yes	
	I	I	\| outwash		I	I	I	
	I	I	\| plains,		I	I	I	
	I	I	\| depressions on		I	1	I	
	I	I	\| lake plains,		I	I	I	
	I	I	\| depressions on		I	I	I	
	I	I	\| moraines		I	I	I	
	I	I	I		I	I	I	
190850:	I	I	1		I	I	I	
Sanilac silt loam, 0 to 6 percent slopes	\| Bach	\| 4	\|lake plains,	2B3, 3	I Yes	I No	Yes	
	I	I	\| depressions		I	1	1	
	I	I			I	I	I	
	\|Epoufette	13	\|depressions on	2B2, 3	I Yes	I No	Yes	
	I	I	\| lake plains		I	I	I	
	I	I	I		I	,	I	
	\| Hettinger	12	\|depressions on	2B3, 3	I Yes	I No	I Yes	
	I	I	\| lake plains		I	I	,	
	I	I	1		I	I		
	\|Edwards	\| 1	\|depressions on	1, 3	I No	I No	Yes	
	\|	I	\| moraines,		I	I	,	
	\|	I	\| depressions on		I	I	1	
	I	I	\| outwash plains		I	I	I	
	I	I	1		I	I	I	
190851:	1	I	I		I	1		
Tonkey-Munuscong-Iosco sandy loams, 0 to 2 percent slopes	\|Tonkey	\| 40	\|outwash plains,	3, 2B3	I Yes	I No	Yes	
	I	I	\| depressions on		1	1	1	
	1	I	\| lake plains,		1	1	I	
	1	I	\| depressions on		I	1	I	
	I	I	\| glacial		I	1	I	
	I	I	\| drainageways		1	1	I	
	I	I	I		I	I	1	
	\|Munuscong	\| 25	\|depressions on	3, 2B3	I Yes	I No	Yes	
	I	I	\| lake plains,		I	1	1	
	1	1	\| depressions on		I	1	1	
	1	1	\| outwash plains		I	1	1	
	I	1	\|			1	1	I

Table 4.-Hydric Soils-Continued

Map unit symbol and map unit name	Component		i Landform	Hydric soils criteria				
				Hydric criteria code	\| Meets\| saturation\| criteria	\mid Meets \|\mid flooding \|\|criteria		Meetspondingcriteria
,		I	I		I	I	I	
190852: \|		I	I		1	I	1	
Tonkey-Munuscong-Ioscol'	nkey	\| 35	\|outwash plains,	2B3, 3	I Yes	I No	Yes	
sandy loams, 2 to 6 \|		I	\| depressions on		I	1	\|	
percent slopes \|		I	\| lake plains,		I	1	I	
I		I	\| depressions on		1	1	I	
1		I	\| glacial		1	I	I	
I		I	\| drainageways		I	I	I	
I		I	I		I	,	I	
	nuscong	I 30	\|depressions on	2B3, 3	I Yes	No	Yes	
I		I	\| lake plains,		1	1	1	
I		I	\| depressions on		I	1	I	
I		I	\| outwash plains			1	I	I
I		I	I		1	1		
	ttinger	13	\|depressions on	2B3, 3	I Yes	I No	Yes	
,		I	\| lake plains		1	1	1	
I		I	I		1	1	I	
193271: \|		I	I		1	,	I	
Pipestone sand, 0 to 4\\|	air	13	\|depressions on	3, 2B3	I Yes	I No	Yes	
percent slopes \|		I	\| outwash		1	1	1	
I		I	\| plains,		1	I	I	
I		I	\| depressions on		1	,	I	
1		I	\| lake plains,		1	I	I	
I		I	\| depressions on		1	I	I	
I		I	\| beach ridges		1	I	I	
I		I	I		1	,	I	
193272: \|		I	I		I	I		
Dair muck \|D	air	\| 90	\|depressions on	2B3, 3	I Yes	I No	I Yes	
,		I	\| lake plains,		1	I	1	
I		I	\| drainageways		1	I	I	
1		I	\| on lake		1	I	I	
I		I	\| plains,		1	I	I	
I		I	\| drainageways		1	I	I	
I		I	\| on outwash		1	,	I	
I		I	\| plains,		1	I	I	
I		I	\| depressions on			1	I	I
I		I	\| outwash plains			1	I	I
,		I	1		1	,		
	drian	15	\|drainageways on	3, 1	I No	I No	Yes	
I		1	\| lake plains,		1	I	1	
1		I	\| depressions on			1	I	I
1		I	\| lake plains,			1	I	1
I		I	\| drainageways		1	I	I	
1		1	\| on outwash		1	I	I	
I		I	\| plains,		1	I	,	
I		1	\| depressions on			1	I	I
I		I	\| outwash plains			I	I	I
I		I	1 \|		I	I	I	
193285: \|		1	\|		1	I		
Lumley-Makinen complex\|	unley	\| 55	\|depressions on	1, 3	I No	I No	I Yes	
I		I	\| lake plains,		I	I	I	
I		I	\| depressions on			I	I	I
I		1	\| moraines,		1	I	I	
I		I	\| depressions on			I	I	I
I		I	\| outwash plains			I	I	I
I		I	1		1	I		
	akinen	I 40	\|depressions on		3, 1	I No	I No	I Yes
I		I	\| lake plains,			I	I	I
I		I	\| depressions on			I	I	I
I		1	\| moraines,			1	I	I
I		I	\| depressions on			I	I	I
I		I	\| outwash plains			I	I	I
I		1			I	1 \|	1	

Table 4.-Hydric Soils-Continued

Map unit symbol and map unit name		I Landform	Hydric soils criteria			
			\qquad	$\begin{aligned} & \hline \text { Meets } \\ & \text { \|saturation } \\ & \text { \| criteria } \\ & \hline \end{aligned}$	Meets\|flooding\|criteria	Meetspondingcriteria
,	,	I		,	\|	\|
193286: \|	I	I		I	1	I
Histosols and Aquents, \|Histosols	\| 55	\|marshes	3, 1	I No	No	I Yes
ponded \|	1	I		I	1	1
\|Aquents	\| 45	\|marshes	2B3, 3	I Yes	No	Yes
I	I	I		I	1	1
193342: \|	I	1		I	I	I
Gorvan-Houghton- \|Gorvan	\| 35	\|flood plains	3, 2B3, 4	I Yes	Yes	Yes
Glendora complex, \|	I	\|		I	1	
frequently flooded \|Houghton	I 30	\|flood plains	3, 4, 1	I No	Yes	Yes
\|	1			I	1	
\|Glendora	\| 20	\|flood plains	4, 2B2, 3	\| Yes	Yes	Yes
\|	I	I		I	1	
\|Adrian	\| 5	\|flood plains	3, 1	1 No	No	Yes
\|	I	\|		I	1	
\|Dair	13	\|flood plains	3, 2B3	1 Yes	No	I Yes
I	I	I		I	1	
\|Aquents	12	\|flood plains	3, 2B3	I Yes	No	Yes
1	I	I		I	1	1
193371: \|	1	1		I	I	
Dair-Pipestone \|Dair	\| 50	\|depressions on	2B3, 3	1 Yes	No	Yes
complex, 0 to 2 \|	I	\| lake plains,		I	1	I
percent slopes \|	I	\| depressions on		I	I	I
1	I	\| outwash plains		I	I	I
1	I			I	I	1
\| Houghton	\| 5	\|depressions on	3, 1	1 No	No	Yes
I	1	\| lake plains,		I	1	1
1	I	\| depressions on		I	1	I
I	I	\| outwash plains		I	1	I
I	I			I	1	I
193496: \|	I	I		I	I	I
Nordhouse sand, 6 to \|Dair	12	\|depressions on	3, 2B3	1 Yes	No	I Yes
18 percent slopes \|	I	\| dunes,		I	1	1
I	I	\| depressions on		I	I	I
1	I	\| beach ridges		I	I	I
1	I	I		I	1	,
193497: \|	I	1		I	1	
Nordhouse sand, 0 to 6/Dair	12	\|depressions on	2B3, 3	1 Yes	No	Yes
percent slopes \|	I	\| beach ridges,		I	1	,
\|	I	\| depressions on		I	1	I
1	I	\| dunes,		I	,	I
1	I	\| depressions on		I	1	I
1	I	\| lake plains		I	,	I
I	1	I		I	1	
193498: \|	I	I		I	1	I
Nordhouse-Platteriver-\|Dair	\| 25	\|depressions on	2B3, 3	I Yes	No	I Yes
Dair complex, 0 to 6 I	I	\| lake plains,		I	1	I
percent slopes \|	I	\| depressions on		I	1	I
I	I	\| dunes,		I	1	I
I	I	\| depressions on		I	1	I
I	I	\| beach ridges		I	1	I
1	1			I	1	1

Table 4.-Hydric Soils-Continued

Table 4.-Hydric Soils-Continued

Map unit symbol and map unit name	I Component		Landform	Hydric soils criteria				
				Hydriccriteriacode	$\begin{aligned} & \text { Meets } \\ & \text { \| saturation } \end{aligned}$	\\| Meets	I Meets	
		$\begin{aligned} & \mid \text { Percent\| } \\ & \mid \text { of map } \\ & \mid \text { unit } \end{aligned}$				\|flooding	ponding	
					\| criteria	\|criteria	\|criteria	
	I	I	I	I	I	\|	\|	
202010:	I	I	I	I	1	I	I	
Houghton-Adrian mucks	\| Houghton	\| 55	\|depressions on	I 3, 1	I No	I No	1 Yes	
	I	I	\| lake plains,	1	I	I	,	
	I	I	\| depressions on	1	1	1	,	
	I	I	\| moraines,	1	I	1	I	
	I	I	\| depressions on	I	I	I	I	
	I	I	\| outwash	I	I	I	I	
	I	I	\| plains, flood	I	I	1	I	
	I	I	\| plains	I	1	I	I	
	I	I	\|	1	1	I	I	
	\|Adrian	I 40	\|depressions on	I 1, 3	1 No	I No	1 Yes	
	I	I	\| lake plains,	1	I	1	1	
	I	I	\| depressions on	I	I	I	I	
	I	I	\| moraines,	I	I	I	I	
	1	I	\| depressions on	1	I	,	1	
	I	I	\| outwash	,	I	,	,	
	I	I	\| plains, flood	I	I	I	I	
	I	I	\| plains	I	I	I	I	
	I	I	\|	I	I	I	I	
	\| Dair	15	\|depressions on	I 2B3, 3	1 Yes	I No	1 Yes	
	I	I	\| lake plains,	I	I	I	I	
	1	I	\| depressions on	1	I	I	I	
	I	I	\| moraines,	1	1	I	I	
	I	I	\| depressions on	I	I	I	I	
	I	I	\| outwash	I	I	I	I	
	I	I	\| plains, flood	I	1	I	I	
	I	I	\| plains	I	1	I	1	
	I	I	I	I	I	I	I	
899731:	I	I	I	,	1	I	,	
Covert-Pipestone	\|Dair	15	\|depressions on	I 3, 2B3	I Yes	I No	1 Yes	
sands, 0 to 6 percent		I	\| lake plains,	1	I	I	I	
slopes	I	I	\| depressions on	1	I	I	I	
	I	I	\| outwash plains	I	1	I	1	
	I	I	I	I	I	I	I	
899733:	I	I	I	I	I	I	I	
Covert-Dair complex,	\|Dair	145	\|depressions on	3, 2B3	1 Yes	I No	1 Yes	
0 to 6 percent slopes		I	\| outwash plains	1	I	I	I	
	1	I	I	,	1	I	I	
	\| Houghton	12	\|depressions on	3, 1	I No	I No	1 Yes	
	I	I	\| outwash plains	1	1	1	1	
	1	1	1	1	1	1	1	

Explanation of hydric criteria codes

1. All Histels (except for Folistels), and Histosols (except for Folists), which are, by definition, saturated.
2. Soils in Aquic suborders, great groups, or subgroups, Albolls suborder, Historthels great group, Histoturbels great group, Pachic subgroups, or Cumulic subgroups that:
A. are somewhat poorly drained and have a water table at the surface (0.0 feet) during the growing season, or
B. are poorly drained or very poorly drained and have either:
1.) a water table at the surface (0.0 feet) during the growing season if textures are coarse sand, sand, or fine sand in all layers within a depth of 20 inches, or
2.) a water table at a depth of 0.5 foot or less during the growing season if permeability is equal to or greater than $6.0 \mathrm{in} / \mathrm{hr}$ in all layers within a depth of 20 inches, or
3.) a water table at a depth of 1.0 foot or less during the growing season if permeability is less than $6.0 \mathrm{in} / \mathrm{hr}$ in any layer within a depth of 20 inches.
3. Soils that are frequently ponded for periods of long or very long duration during the growing season.
4. Soils that are frequently flooded for periods of long or very long duration during the growing season.

Table 5.-Landform and Parent Material
(Miscellaneous nonsoil components are not displayed in this report. Component percents may not add up to 100. MAP is the mean annual precipitation)

Map unit symbol and soil name	\mid Percent\| \mid of map \| \mid unit \mid	Slope	Elevation	I	MAP	Landform	Parent material	
	I Pct I	Pct	Ft		In	I	I	
	1 1					1	I	
190775:	I					1	I	
Adrian	\| 55		0-2	600-1499	I	25-35	\|Depression	\|16 to 51 inches of
	I					\| on lake plain	\| organic material	
	1 I			I		I	\| over sandy	
	1 I			I		I	\| glaciofluvial	
	I			I		I	\| deposits	
	I					1	\\|	
Houghton-	\| 45		0-2	600-1401		27-34	\|Depression	\|More than 51 inches
	,					\| on lake plain	\| of organic material	
	1			I		I	i	
190777:	1 I					1	I	
Alcona-	\| 55		0-2	600-1601	I	28-34	\|Lake plain	\|Stratified sandy
	1					I	\| and loamy	
	1					I	\| glaciofluvial	
	1			I		I	\| deposits and/or	
	1 I			I		I	\| glaciolacustrine	
	1			I		I	\| deposits	
	1 I					I	1	
Richter	130 I	0-2	600-1401	1	27-33	\|Lake plain	125 to 40 inches of	
	1					I	\| sandy and/or loamy	
	1 I			I		I	\| material over	
	1 I			I		I	\| stratified,	
	11			I		I	\| calcareous sandy	
	1			I		I	\| and silty	
	1					I	\| glaciofluvial	
	1			I		1	\| deposits	
	1 I					I	I	
190778:	1					I	1	
Alcona	\| 65		2-6	600-1601		28-34	\|Lake plain	\|Stratified sandy
	1 I					I	\| and loamy	
	1			1		I	\| glaciofluvial	
	1					I	\| deposits and/or	
	1					I	\| glaciolacustrine	
	1 I					I	\| deposits	
	1 I					I	i	
Richter	I 25 \|	2-6	600-1401		27-33	\|Lake plain	125 to 40 inches of	
	1 I					I	\| sandy and/or loamy	
	11			1		I	\| material over	
	1					I	\| stratified,	
	11			I		I	\| calcareous sandy	
	1 I			I		I	\| and silty	
	11			I		1	\| glaciofluvial	
	11			I		I	\| deposits	
	1 I			I		I	I	
190779:	11			I		I	1	
Alpena-	190 I	0-12	600-699		28-31	\|Glacial lake	14 to 10 inches of	
	1					\| beache	\| sandy and loamy	
	1			I		I	\| material over	
	1			I		I	\| calcareous sandy	
	11			I		I	\| and gravelly	
	1			1		I	\| glaciofluvial	
	1			I		I	\| deposits	
	1 I			I		1	1	

Table 5.-Landform and Parent Material-Continued

Table 5.-Landform and Parent Material-Continued

Map unit symbol and soil name		Slope	Elevation	1	MAP	Landform	Parent material
	1 Pct	Pct	Ft		In	I	I
	I					1	I
190838 :	I					1	\|
Mancelona--------	150	25-45	600-1001		27-32	\|Outwash plain	118 to 40 inches of
	I					I	\| sandy and/or
	I					I	\| gravelly material
	I			I		I	\| over calcareous
	I			I		I	\| sandy and gravelly
	I			I		I	\| glaciofluvial
	I					1	\| deposits
	I					1	1 l
East Lake-	130	25-45	600-1001	I	27-32	\|Outwash plain	120 to 40 inches of
	I					I	\| sandy material
	I			I		I	\| over calcareous
	I			I		I	\| sandy and gravelly
	I			I		I	\| glaciofluvial
	I					1	\| deposits
	I					I	I
190839 :	I			I		I	I
Mancelona-	170	0-6	600-1001		27-32	\| Moraine	118 to 40 inches of
	I					1	\| sandy and/or
	I			I		1	\| gravelly material
	I			I		I	\| over calcareous
	I					I	\| sandy and gravelly
	I					I	\| glaciofluvial
	I			I		1	\| deposits and till
	I					1	,
Richter	\| 25	0-6	600-1401		27-33	\| Moraine	125 to 40 inches of
	I					I	I sandy and/or loamy
	I			I		I	\| material over
	I					I	\| stratified,
	I					I	\| calcareous sandy
	I			I		1	\| and silty
	I			I		I	\| glaciofluvial
	I					I	\| deposits and till
	I					I	1 l
190840 :	I					I	I
Nester-	190	2-6	600-1401		27-32	\| Moraine	120 to 36 inches of
	I					I	\| loamy and clayey
	I					I	\| material over
	I			I		I	\| calcareous loamy
	I			I		1	\| and clayey till
	1					I	1 l
190841:	I					1	I
Nester-	190	6-12	600-1401	I	27-32	\| Moraine	120 to 36 inches of
	I					I	\| loamy and clayey
	I			I		I	\| material over
	1			I		1	\| calcareous loamy
	I			I		1	\| and clayey till
	1			I		I	I
$190842 \text { : }$	I			I		1	1
Nester	\| 90	12-18	600-1401	1	27-32	\| Moraine	120 to 36 inches of
	I			I		I	\| loamy and clayey
	1			I		I	\| material over
	1			I		I	\| calcareous loamy
	1			I		I	\| and clayey till
	I			I		I	I
190843 :	I			I		I	1
Nester-----------	190	18-25	600-1401	I	27-32	\| Moraine	120 to 36 inches of
	1			I		I	\| loamy and clayey
	1			I		I	\| material over
	1			I		I	\| calcareous loamy
	1			I		I	\| and clayey till
	1			I		1	1

Table 5.-Landform and Parent Material-Continued

Table 5.-Landform and Parent Material-Continued

Map unit symbol and soil name		Slope	Elevation	\|	MAP	Landform	Parent material
	1 Pct	Pct	1 Ft		In	I	I
	1					,	I
190851:	I		I			I	I
Tonkey	\| 40	0-2	\| 600-1601	I	27-34	\| Depression	\|Stratified loamy
	1					\| on moraine	\| and sandy
	I		I	I		I	\| glaciofluvial
	I		I	I		I	\| deposits
	I		I			I	I
Iosco-	\| 25	0-2	600-1401	I	28-32	\| Moraine	\| 20 to 40 inches of
	I		I			I	\| sandy
	I		I	I		I	\| glaciofluvial
	I		I	I		I	\| deposits over
	I		I	I		I	\| loamy till or
	I		I	I		I	\| glacialacustrine
	I		I	I		I	\| deposits
	1					1	1)
Munuscong	125	0-2	600-801	I	28-34	\| Depression	\| 20 to 40 inches of
	1		1			I on moraine	\| loamy material
	I		I	I		I	\| over clayey
	1		,	I		I	\| lacustrine deposits
	1		I	I		I	I
190852 :	I		I	I		I	1
Tonkey	1 35	0-2	\| 600-1601	I	27-34	\| Depression	\|Stratified loamy
	I					I	\| and sandy
	I		I	I		I	\| glaciofluvial
	1		I	I		I	\| deposits
	I		I			I	
Munuscong-	130	0-2	\| 600-801	I	28-34	\| Depression	120 to 40 inches of
	I		1			I on moraine	\| loamy material
	1		1	I		I	\| over clayey
	1		I			I	\| lacustrine deposits
	1		,			I	1 l
Iosco-	120	0-6	\| 600-1401	I	28-32	\| Moraine	\| 20 to 40 inches of
	I		\|			I	\| sandy
	1		I	I		I	\| glaciofluvial
	I		I	I		I	\| deposits over
	1		1	I		I	\| loamy till or
	I		I	I		I	\| glacialacustrine
	1		I	I		I	\| deposits
	1		I	I		I	I
190854:	I		I	I		1	1
Wallace-	150	2-12	\| 600-1601		27-34	\|Lake plain	\|Sandy deposits with
	1					I	\| ortstein on
	1		1	I		1	\| glaciofluvial,
	1		1	I		I	\| eolian and/or
	I		I	I		I	\| glaciolacustrine
	1		I	I		I	\| deposits
	1		1			1	1
Kalkaska-	I 45	2-12	\| 600-1900		27-34	\|Lake plain	\|Sandy glaciofluvial
	1		1			I	\| deposits
	1		I	I		I	I
193237 :	1		I	1		1	1
Thompsonville-----	150	0-3	\| 577-1119	1	28-38	\|Lake plain	140 to 60 inches of
	1		,			I	\| sandy
	I		1	I		1	\| glaciofluvial
	1		I	I		I	\| deposits over
	I		I	I		I	\| stratified loamy
	1		I	I		I	\| and silty materials
	I		I	I		I	1
Milnichol---------	140	0-3	\| 577-1119	I	28-38	\|Lake plain	140 to 60 inches of
	I		I	I		I	\| sandy
	1		1	I		1	\| glaciofluvial
	1		1	I		I	\| deposits over
	1		1	I		I	\| loamy alluvium
	1		1	I		1	1

Table 5.-Landform and Parent Material-Continued

Table 5.-Landform and Parent Material-Continued

Map unit symbol and soil name		Slope	Elevation	1	MAP	Landform	Parent material	
	1 Pct I	Pct	Ft	1	In	I	I	
	I			1		I	I	
193270:	1			1		I	I	
Covert	190	0-6	577-1119	1	28-38	\|Lake plain	\|Sandy glaciofluvial	
	I			1		,	\| deposits	
	I			I		I	I	
193271:	I			,		1	I	
Pipestone	190	0-4	577-1119	1	28-38	\|Glacial	\|Sandy glaciofluvial	
	I			I		\| drainage	\| deposits	
	I			1		\| channel	1	
	I			1		I	I	
193272 :	I			1		1	I	
Dair	190	0-2	577-1119	1	28-38	\| Depression	14 to 8 inches of	
	I			1		I on outwash	\| organic material	
	I			1		\| plain	\| over sandy	
	I			1		I	\| glaciofluvial	
	I			1		I	\| deposits	
	I			1		I	I	
193277:	,			1		I	I	
Benona	190	0-6	577-1119	1	28-38	\| Moraine	\|Sandy glaciofluvial	
	I			1		I	\| deposits or till	
	I			1		I	I	
193278 :	I			1		I	I	
Benona-	190	6-12	577-1119	1	28-38	\| Moraine	\|Sandy glaciofluvial	
	I			I		I	\| deposits or till	
	I			1		1	I	
193279 :	I			1		I	I	
Benona-	I 90	12-18	577-1119	I	28-38	\| Moraine	\|Sandy glaciofluvial	
	I			\|		I	\| deposits or till	
	I			I		I	I	
193284 :	I			I		I	I	
Udorthents-	1 55	35-70	577-1119	I	28-38			
	I			I		1	\| material	
	I			I		I	I	
Udipsamments---	1 35	35-70	577-1119	I	28-38	1 ---	\|Sandy material	
	I			I		I		
193285 :	I			1		1		
Lumley-	155	0-2	577-1119	I	28-38	\| Depression	\|More than 51 inches	
	I			I		\| on lake plain	\| of acid organic	
	I			I		i	\| material	
	I			I		1	1	
Makinen-	\| 40		0-2	577-1119	,	28-38	\| Depression	\|16 to 51 inches of
	I			I		\| on lake plain	\| organic material	
	I			I		I	\| over sandy	
	I			I		1	\| glaciofluvial	
	1 I			I		1	\| deposits	
	1 I			I		I	।	
193286:	I			I		I	1	
Histosols--	I 55 \|	0-2	577-1119	I	28-38	\| Marsh	116 to more than 51	
	I			I		I	\| inches of organic	
	1 I			I		I	\| material	
	1 I			1		1	\|	
Aquents---	\| 45		0-2	577-1119	I	28-38	\| Marsh	\|Wet glaciofluvial
	1 I			I		1	\| deposits and/or	
	1 I			I		1	\| glaciolacustrine	
	1 I			I		1	\| deposits	
	1 I			I		I	I	
193287:	$1 \quad 1$		577-1119	1		1	1	
Quartzipsamments--	I 40 I	35-70	577-1119	I	28-38	\| Dunes	\|Sandy eolian	
	1 I			I		I	\| deposits and/or	
	1 I			I		I	\| glaciofluvial	
	$1 \quad 1$			1		I	\| deposits	
	1 I			1		I	1	

Table 5.-Landform and Parent Material-Continued

Table 5.-Landform and Parent Material-Continued

Map unit symbol and soil name		Slope	Elevation	1	MAP	Landform	Parent material	
	\| Pct		Pct	Ft	I	In	I	I
	1					,	1	
193363 :	I		,			,	I	
Benzonia-	190	12-18	577-1119	I	28-38	\| Moraine	\|Sandy glaciofluvial	
	I		-			I	\| deposits or till	
	I		,	I		I	I	
193364:	I		,	1		I	I	
Benzonia-	190	6-12	577-1119	I	28-38	\| Moraine	\|Sandy glaciofluvial	
	I					,	\| deposits or till	
	I		,	I		I	I	
193365 :	I		,	I		1	I	
Benzonia-	190	0-6	577-1119	I	28-38	\| Moraine	\|Sandy glaciofluvial	
	,					I	\| deposits or till	
	I		I	I		I	I	
193371:	I		I	I		I	I	
Dair	150	0-2	577-1119	I	28-38	\| Depression	\|4 to 8 inches of	
	I			I		\| on lake plain	\| organic material	
	I		I	I		1	\| over sandy	
	I		I	I		I	\| glaciofluvial	
	I			I		I	\| deposits	
	I		\|	I		I		
Pipestone-	140	0-2	577-1119	I	28-38	\|Lake plain	\|Sandy glaciofluvial	
	I					I	\| deposits	
	1 I		I	I		I	I	
193423 :	I		I	1		I	I	
Benona-	\| 95		35-70	577-1119	I	28-38	\| Moraine	\|Sandy glaciofluvial
	I					I	\| deposits or till	
	1 I		,	I		I	I	
193494:	I		,	I		I	I	
Nordhouse-	I 100	18-70	577-1119	I	28-38	\| Dunes	\|Sandy eolian	
	I					,	\| deposits	
	1 I		I	I		I	I	
193496:	I		I	I		I	I	
Nordhouse-	\| 95		6-18	\| 577-1119	I	28-38	\| Dunes	\|Sandy eolian
	I					I	\| deposits	
	1 I		I	I		I	I	
193497 :	I		I	I		I	I	
Nordhouse-	\| 95		0-6	\| 577-1119	I	28-38	\| Dunes	\|Sandy eolian
	1 I		,			I	\| deposits	
	1 I		I	I		I	I	
193498:	1 I		I	1		I	I	
Nordhouse-	I 40 \|	0-6	\| 577-1119	I	28-38	\| Dunes	\|Sandy eolian	
	I		\|			1	\| deposits	
	1 I		,			I	\\|	
Platteriver-	\| 35		0-6	\| 577-1119	I	28-38	\| Dunes	\|Sandy glaciofluvial
	1 I					I	\| deposits	
	1 I		1			I	I	
Dair-	I 25 \|	0-2	\| 577-1119	I	28-38	\| Depression	14 to 8 inches of	
	1 I		I			\| on lake plain	\| organic material	
	1 I		1	I		1	\| over sandy	
	1 I		1	I		I	\| glaciofluvial	
	1 I		1	I		I	\| deposits	
	1 I		I	I		I	I	
193503:	1 I		I	I		I	I	
Spinks-	150	0-6	\| 577-1119	I	28-38	\| Moraine	\|Sandy glaciofluvial	
	1 I		I	I		I	\| deposits, till, or	
	1 I		1	I		I	\| eolian deposits	
	1 I		1	1		I	1	
Shavenaugh--------	I 40 I	0-6	\| 577-1119	I	28-38	\| Moraine	130 to 50 inches of	
	$1 \quad 1$		I	I		1	\| sandy material	
	1 I		I	I		I	\| over calcareous	
	$1 \quad 1$		I	I		I	\| sandy and gravelly	
	$1 \quad 1$		I	I		I	\| glaciofluvial	
	1 I		1	I		I	\| deposits or till	
	1 I		1	I		I	1	

Table 5.-Landform and Parent Material-Continued

| Map unit symbol and soil name | \mid \| | orcent | | of map | | unit | | Slope | Elevation | 1 | MAP | Landform | Parent material |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | I Pct I | Pct | Ft | I | In | I | I |
| | 1 - 1 | | | 1 | | , | , |
| 193504: | 1 | | | , | | I | I |
| Spinks--------------\| | \| 50 l | 6-12 | 577-1119 | I | 28-38 | \|Moraine | \|Sandy glaciofluvial |
| | 1 | | | I | | , | \| deposits, till, or |
| | 1 | | | I | | I | \| eolian deposits |
| I | 1 | | | I | | 1 | , |
| Shavenaugh---------\| | \| 40 | | 6-12 | 577-1119 | , | 28-38 | \|Moraine | \| 30 to 50 inches of |
| | 1 | | | I | | I | \| sandy material |
| | 1 | | | I | | 1 | \| over calcareous |
| | 1 | | | I | | I | \| sandy and gravelly |
| | 1 | | | I | | I | \| glaciofluvial |
| | 1 | | | I | | I | \| deposits or till |
| \| | 1 | | | I | | I | I |
| 193505: | 1 | | | , | | I | , |
| Spinks-------------1 | 50 I | 12-18 | 577-1119 | 1 | 28-38 | \|Moraine | \|Sandy glaciofluvial |
| | 1 | | | I | | I | \| deposits, till, or |
| 1 | 1 | | | I | | I | \| eolian deposits |
| \| | 1 | | | , | | I | |
| Shavenaugh--------- - | I 40 I | 12-18 | 577-1119 | 1 | 28-38 | \|Moraine | 130 to 50 inches of |
| | 1 | | | I | | I | \| sandy material |
| 1 | 1 | | | I | | 1 | \| over calcareous |
| | 1 | | | I | | I | \| sandy and gravelly |
| | 1 | | | 1 | | 1 | \| glaciofluvial |
| | 1 | | | 1 | | I | \| deposits or till |
| | 1 | | | I | | 1 | i |
| 193506: | 1 | | | 1 | | I | I |
| Spinks-------------\| | I 50 I | 18-35 | 577-1119 | I | 28-38 | \|Moraine | |
| | 1 | | | | | I | \| deposits, till, or |
| | $1 \quad 1$ | | | I | | I | \| eolian deposits |
| | 1 l | | | 1 | | 1 | i |
| Shavenaugh---------\| | \| 40 | | 18-35 | 577-1119 | I | 28-38 | \|Moraine | \| 30 to 50 inches of |
| | 1 I | | | , | | \| | \| sandy material |
| | 1 I | | | I | | I | \| over calcareous |
| | 1 I | | | I | | I | \| sandy and gravelly |
| | $1 \quad 1$ | | | I | | I | \| glaciofluvial |
| | 1 I | | | 1 | | I | \| deposits or till |
| | 1 I | | | 1 | | I | 1 |
| $193507 \text { : }$ | 1 | | | I | | I | I |
| Spinks | 150 l | 35-50 | 577-1119 | I | 28-38 | \|Moraine | \|Sandy glaciofluvial |
| | 1 I | | | I | | I | \| deposits, till, and |
| | 1 I | | | I | | I | \| eolian deposits |
| | 1 I | | | I | | 1 | |
| Shavenaugh--------- | \| 40 | | 35-50 | 577-1119 | I | 28-38 | \|Moraine | \| 30 to 50 inches of |
| | 11 | | | I | | 1 | \| sandy material |
| | $1 \quad 1$ | | | I | | I | \| over calcareous |
| | 11 | | | I | | 1 | \| sandy and gravelly |
| | $1 \quad 1$ | | | I | | I | \| glaciofluvial |
| | 1 I | | | I | | I | \| deposits or till |
| | 1 I | | | I | | I | I |
| 193508: | 1 I | | | I | | I | I |
| Madaus-------------\| | \| 90 | | 0-2 | 577-1119 | I | 28-38 | \|Depression | \|Less 16 inches of |
| | 1 I | | | I | | \| on lake plain | \| organic material |
| | 11 | | | I | | I | \| over silty marl |
| | 11 | | | I | | I | \| over sandy |
| | 11 | | | I | | 1 | \| glaciofluvial |
| | 1 I | | | I | | I | \| deposits over |
| | 1 I | | | I | | I | \| clayey lacustrine |
| | 11 | | | I | | I | \| deposits |
| | 1 I | | | 1 | | 1 | , |

Table 5.-Landform and Parent Material-Continued

Table 5.-Landform and Parent Material-Continued

Table 5.-Landform and Parent Material-Continued

| Map unit symbol and soil name | \mid \| | orcent| of map | | unit | | Slope | Elevation | 1 | MAP | Landform | Parent material |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \| Pct | | Pct | Ft | I | In | I | I |
| | 1 - 1 | | | , | | 1 | I |
| 631172 : | 1 I | | | 1 | | I | I |
| Fogg | 150 \| | 12-18 | 577-1119 | 1 | 28-38 | \| Moraine | 140 to 60 inches of |
| | 1 I | | | 1 | | I | \| sandy |
| | 1 I | | | 1 | | I | \| glaciofluvial |
| | 1 I | | | 1 | | I | \| deposits over |
| | 1 | | | 1 | | I | \| loamy till over |
| | 1 | | | 1 | | I | \| sandy |
| | 1 | | | 1 | | I | \| glaciofluvial |
| | 1 I | | | 1 | | I | \| deposits |
| | 1 I | | | 1 | | 1 | \| |
| Benzonia- | 140 \| | 12-18 | 577-1119 | 1 | 28-38 | \| Moraine | \|Sandy glaciofluvial |
| | 1 I | | | I | | I | \| deposits or till |
| | 1 I | | | 1 | | I | i |
| 631173: | 1 I | | | I | | I | I |
| Fogg- | 150 I | 6-12 | 577-1119 | 1 | 28-38 | \| Moraine | 140 to 60 inches of |
| | 1 | | | I | | I | \| sandy |
| | 1 I | | | I | | I | \| glaciofluvial |
| | 11 | | | 1 | | I | \| deposits over |
| | 1 I | | | I | | I | \| loamy till over |
| | 1 | | | I | | I | \| sandy |
| | 1 | | | I | | I | \| glaciofluvial |
| | 1 | | | 1 | | I | \| deposits |
| | 1 I | | | I | | I | \\| |
| Benzonia- | 140 \| | 6-12 | 577-1119 | 1 | 28-38 | \| Moraine | \|Sandy glaciofluvial |
| | 1 I | | | I | | I | \| deposits |
| | 1 I | | | I | | I | I |
| 631174 : | $1 \quad 1$ | | | 1 | | 1 | I |
| Fogg- | 150 I | 0-6 | 577-1119 | I | 28-38 | \| Moraine | 140 to 60 inches of |
| | 1 I | | | I | | I | \| sandy |
| | 1 | | | I | | I | \| glaciofluvial |
| | 1 I | | | I | | I | \| deposits over |
| | 1 I | | | I | | I | \| loamy till over |
| | 11 | | | I | | I | \| sandy |
| | 11 | | | I | | I | \| glaciofluvial |
| | 1 I | | | 1 | | 1 | \| deposits |
| | 1 I | | | I | | I | I |
| Benzonia- | 140 \| | 0-6 | 577-1119 | I | 28-38 | \| Moraine | \|Sandy glaciofluvial |
| | 1 I | | | I | | I | \| deposits or till |
| | 1 | | | 1 | | I | I |
| 680939 : | 1 I | | | I | | 1 | 1 |
| Fern-- | 150 I | 6-12 | 577-1119 | I | 28-38 | \| Moraine | 120 to 40 inches of |
| | 1 I | | | I | | I | \| sandy |
| | 11 | | | 1 | | I | \| glaciofluvial |
| | 1 I | | | I | | I | \| deposits over |
| | 1 I | | | 1 | | I | \| loamy till |
| | 1 I | | | 1 | | 1 | 1 |
| Spinks------------ | 140 \| | 6-12 | 577-1119 | I | 28-38 | \| Moraine | \|Sandy glaciofluvial |
| | 1 I | | | 1 | | I | \| deposits, till, |
| | 1 | | | 1 | | I | \| or eolian deposits |
| | 1 | | | 1 | | I | 1 |
| 680943: | 1 I | | | I | | 1 | I |
| Milnichol-------- | 190 \| | 0-4 | 577-1119 | I | 28-38 | \|Lake plain | 140 to 60 inches of |
| | 1 | | | I | | I | \| sandy |
| | 1 | | | 1 | | 1 | \| glaciofluvial |
| | 1 I | | | 1 | | I | \| deposits or till |
| | 1 | | | 1 | | 1 | \| over loamy alluvium |
| | 1 | | | 1 | | I | 1 |

Table 5.-Landform and Parent Material-Continued

Map unit symbol and soil name	\mid Percent\| \mid of map \| \mid unit \mid	Slope	Elevation	MAP	Landform	Parent material	
	\| Pct		Pct	Ft	In	I	I
	I				1	,	
680945 :	1 l				I	I	
Fern	190 I	6-12	577-1119	28-38	\| Moraine	\| 20 to 40 inches of	
	1 I				I	\| sandy	
	1 I				I	\| glaciofluvial	
	11				I	\| deposits over	
	1 I				I	\| loamy till	
	1 I				I	I	
680946 :	I				I	1	
Fern-	190	0-6	577-1119	28-38	\| Moraine	\| 20 to 40 inches of	
	1				I	\| sandy	
	I				I	\| glaciofluvial	
	I				I	\| deposits over	
	1 I				I	\| loamy till	
	1 I				I	I	
680971 :	1 I				I	1	
Nessen-	150 \|	18-35	577-1119	28-38	\|Outwash plain	\| 40 to 55 inches of	
	1 I				I	\| sandy material	
	1 I				I	\| over calcareous	
	1				I	\| sandy and gravelly	
	1				I	\| glaciofluvial	
	1				I	\| deposits	
	I				I	1	
Kaleva	40 \|	18-35	577-1119	28-38	\|Outwash plain	\|Sandy glaciofluvial	
	1 I				I	\| deposits	
	1 I				I	I	
680972 :	1				I	1	
Nessen-	150 \|	12-18	577-1119	28-38	\|Outwash plain	\| 40 to 55 inches of	
	,				I	\| sandy material	
	1				I	\| over calcareous	
	1				I	\| sandy and gravelly	
	1				I	\| glaciofluvial	
	1				I	\| deposits	
	1 l				I		
Kaleva-	140 l	12-18	577-1119	28-38	\|Outwash plain	\|Sandy glaciofluvial	
	,				I	\| deposits	
	1 I				I	I	
680973 :	1				1		
Nessen-	150 I	6-12	577-1119	28-38	\|Outwash plain	\| 40 to 55 inches of	
	1				I	\| sandy material	
	1				I	\| over calcareous	
	1 I				I	\| sandy and gravelly	
	1				I	\| glaciofluvial	
	1				I	\| deposits	
	1 l				I		
Kaleva-	140 I	6-12	577-1119	28-38	\|Outwash plain	\|Sandy glaciofluvial	
	1				1	\| deposits	
	1				I	1	
680974 :	1 I				1	1	
Nessen-	150 I	0-6	577-1119	28-38	\|Outwash plain	\| 40 to 55 inches of	
	1				I	\| sandy material	
	11				I	\| over calcareous	
	1				I	\| sandy and gravelly	
	1				I	\| glaciofluvial	
	1				I	\| deposits	
	1 I				I	1	
Kaleva------------	140 1	0-6	577-1119	28-38	Outwash plain	\|Sandy glaciofluvial	deposits
	1 1				I	I	

Table 5.-Landform and Parent Material-Continued

Map unit symbol and soil name		Slope	Elevation	I	MAP	Landform	Parent material
	1 Pct	Pct	Ft	I	In	I	I
	1			I		I	,
893251 :	I			1		1	I
Boyer------------	150	12-18	577-1119	I	28-38	\|Outwash plain	\| 20 to 40 inches of
	1			1		I	\| loamy and sandy
	I			I		I	\| material over
	I			I		1	\| calcareous sandy
	1			I		I	\| and gravelly
	I			I		1	\| glaciofluvial
	I			I		1	\| deposits
	I			I		I	I
Shavenaugh-	140	12-18	577-1119	I	28-38	\|Outwash plain	\|30 to 50 inches of
	I			I		1	\| sandy material
	I			I		1	\| over calcareous
	I			I		I	\| sandy and gravelly
	I			I		1	\| glaciofluvial
	I			I		I	\| deposits
	I			I		I	I
894062 :	I			,		1	I
Remus-	150	18-35	577-1119	I	28-38	\| Moraine	\| 40 to more than 60
	I			I		I	\| inches of loamy
	I			I		I	\| material over
	I			I		1	\| calcareous loamy
	I			I		I	\| till
	I			I		i	
Spinks-	140	18-35	577-1119	I	28-38	\| Moraine	\|Sandy glaciofluvial
	I			I		I	\| deposits, till, or
	I			I		1	\| eolian deposits
	I			I		I	I
894063 :	I			I		1	I
Remus-	150	12-18	577-1119	1	28-38	\| Moraine	140 to more than 60
	I			I		I	\| inches of loamy
	1			I		I	\| material over
	I			I		1	\| calcareous loamy
	I		,	I		I	\| till
	I		-	1		I	1
Spinks	140	12-18	577-1119	I	28-38	\| Moraine	\|Sandy glaciofluvial
	I			,		I	\| deposits, till, or
	I		I	I		I	\| eolian deposits
	1			I		1	I
894064 :	I			I		1	I
Fern--	150	6-12	577-1119	1	28-38	\| Moraine	\|20 to 40 inches of
	I			I		I	\| sandy
	I		,	I		1	\| glaciofluvial
	I		,	I		1	\| deposits over
	I		I	I		1	\| loamy till
	I			I		I	1
Remus	140	6-12	577-1119	I	28-38	\| Moraine	140 to more than 60
	I		I	I		1	\| inches of loamy
	I		,	I		I	\| material over
	I		,	I		1	\| calcareous loamy
	I			I		I	\| till
	I		I	I		1	I
894065 :	I			I		1	1
Fern-------------	150	0-6	577-1119	I	28-38	\| Moraine	120 to 40 inches of
	I		I	I		1	\| sandy
	I		I	I		I	\| glaciofluvial
	I		,	I		I	\| deposits over
	I		,	I		1	\| loamy till
	1		I	I		1	I

Table 5.-Landform and Parent Material-Continued

Table 5.-Landform and Parent Material-Continued

Table 6.-Land Management, Part I (Planting)
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)

Table 6.-Land Management, Part I (Planting)-Continued

Table 6.-Land Management, Part I (Planting)-Continued

Map unit symbol and soil name	I\|Pct.I ofImapI unit	Suitability for hand planting		Suitability for mechanical planting				Soil rutting hazard		
		Rating class and	$\begin{aligned} & \text { \|Value } \\ & \text { \| } \end{aligned}$		Rating class and limiting features	Value		Rating class limiting feat	\|Value	
	I	1	I	I		1			1	
190835 :	I	1	,	I	\|	I			,	
Mancelona---------	55	\|Well suited	1		\| Moderately suited	1	\| Moderate		1	
	I	I	I		\| Slope	10.50		Low strength	10.50	
	1 I	1	I			1			1	
East Lak	35	\|Well suited	I		\| Moderately suited	I	\| Moderate			
	I	I	I		\| Slope	10.50		Low strength	10.50	
	1 I	1	1	1		I			I	
	I		I	I	\|	I			I	
Mancelona---------	50	\|Well suited	I		\| Moderately suited	1				
	11	,	I		\| Slope	10.50		Low strength	10.50	
	I	1	I	1		1			I	
East Lake	30	\|Well suited	I		\| Moderately suited	I	\| Moderate		I	
		I I			\| Slope	10.50		Low strength	10.50	
		1	I	1		1			I	
190837:	1 I	1	I	I		I			I	
Mancelona---------	45	\|Well suited	I		Poorly suited	1		Moderate	1	
			I		\| Slope	10.75		Low strength	10.50	
			I			I			I	
East Lake	30	\|Well suited	I		Poorly suited	1		Moderate	1	
		।	I		\| Slope	10.75		Low strength	10.50	
			I	1	-	I			1	
190838:	1 I	1	I	1	I	I			I	
Mancelona---------	50	\|Moderately suited	Slope	1		Unsuited	,		Moderate	1
			10.50		Slope	11.00		Low strength	10.50	
			i			I				
East Lake	30	\|Moderately suited	1		Unsuited	I		Moderate	1	
			10.50		Slope	11.00		Low strength	10.50	
			1	,		1			I	
190839 :	1		I			I			I	
Mancelona---------	70	\|Well suited	I		\|Well suited	I		Moderate	1	
			1	1		I		Low strength	10.50	
			,			I		,		
Richter-----------	25	\|Well suited	I		\|Well suited	I	\| Moderate			
		I	I			I		Low strength	10.50	
		1	I			I			I	
190840:	1 I		I	I		I			I	
Nester------------	90	\|Moderately suited				Moderately suited	i	\| Severe		1
					Stickiness; high	10.50		Low strength	11.00	
		\| plasticity index			plasticity index\|					
		1	I		plasticity index	I			I	
190841:	1 1		I	I		I			I	
Nester------------	90				\| Moderately suited	1	\| Severe		I	
	1 I	\|Moderately suited				\| Slope	10.50		Low strength	11.00
	I	\| plasticity index			\| Stickiness; high	10.50			I	
	11	I plasticity index	1		\| plasticity inde				I	
	I	1	1		I plasticity index	I			I	
190842 :	1 1	,	I			I			I	
Nester------------	90	\|Moderately suited			\|Moderately suited		\| Severe			
	1 \|	\| Stickiness; high	10.50		Slope	10.50		Low strength	11.00	
	1 I	\| plasticity index			\| Stickiness; high	10.50			I	
	11	1	1		\| plasticity inde	1	,		I	
	11	,	I	I		I	I		I	
190843:	1 1	1	I	I		I	,		I	
Nester------------	90	\|Moderately suited	1		Poorly suited	1		Severe	I	
	1 \|	\| Stickiness; high	10.50		Slope	10.75		Low strength	11.00	
	11	\| plasticity index			\| Stickiness; high	10.50	I		I	
	11		I		\| plasticity inde		I		I	
	11		I	1	1	1	1		1	

Table 6.-Land Management, Part I (Planting)-Continued

Table 6.-Land Management, Part I (Planting)-Continued

Map unit symbol and soil name	I\|Pct.I of\| map\|unit	Suitability for hand planting		Suitability for mechanical planting			Soil rutting hazard		
		\| Rating class and	\|Value I	\| Rating class and	$\begin{aligned} & \text { \|Value } \\ & \text { \| } \end{aligned}$		Rating class and limiting features	\|Value I	
193507:	$\begin{array}{ll}1 & \\ 1 & \\ 1 & \\ \text { l }\end{array}$	\| Moderately suited	I	I	I			I	
			I	I	I			I	
Spinks-			1	\| Unsuited	,		Moderate	1	
	1 I	\|Moderately suited \| Slope	10.50	\| Slope	11.00		Low strength	10.50	
	1 I	\| Sandiness	10.50	\| Sandiness	10.50			I	
	1 I	$1 \quad 1$		1	I			I	
Shavenaugh--------	40	\|Moderately suited	1	\| Unsuited	I	\|Moderate		,	
	1	\| Slope	10.50	\| Slope	11.00		Low strength	10.50	
	1 I	\| Sandiness	10.50	\| Sandiness	10.50			I	
	1 I		I	I	I			I	
193508 :	1 I	1	I	I	I			I	
Madaus	$\begin{array}{ll}1 & 90 \\ 1 \\ 1 & \\ 1 & \\ & \end{array}$	\|Moderately suited	1	\| Poorly suited	1		Severe	1	
		Wetness	10.50	I Wetness	10.75		Low strength	11.00	
		1			I		Wetness	10.50	
		I	1	I	I			I	
193509 :	1	I	I	I	1			I	
Boyer-	50	\|Well suited	I	\| Moderately suited			Moderate	1	
			I	\| Rock fragments	10.50		Low strength	10.50	
		1	1	I	I			I	
Shavenaugh	140		1	\|Moderately suited			Moderate		
		\|Moderately suited	Sandiness	10.50	\| Sandiness	10.50		Low strength	10.50
			I	I	I			I	
193510 :	1	1	I	I	1			I	
Boyer	50	\|Well suited	I	\|Moderately suited	1		Moderate		
			I	\| Slope	10.50		Low strength	10.50	
			1	\| Rock fragments	10.50			I	
			I	\|	I			I	
Shavenaugh	40		1	\|Moderately suited	1		Moderate		
			10.50	\| Slope	10.50		Low strength	10.50	
		Sandiness	I	\| Sandiness	10.50			I	
			I	I	I	I		I	
193511:	1 I	1	I	I	I	1		I	
Boyer-	50	\|Well suited	I	\| Unsuited	I	\|Moderate		1	
			I	\| Slope	11.00		Low strength	10.50	
		I		\| Rock fragments	10.50	I		I	
		1	I	I	I			I	
Shavenaugh--------	40	\|Moderately suited	Sandiness	1	\| Unsuited	I	\|Moderate		
			10.50	\| Slope	11.00		Low strength	10.50	
		I	1	\| Sandiness	10.50			1	
			I		I	I		I	
$\begin{gathered} 193513: \\ \text { Dair- } \end{gathered}$	1 1		I		1	I		I	
	50	\| Moderately suited	I	\|Moderately suited	1		Severe	I	
	1 I	\| Wetness	10.50	\| Wetness	10.50		Low strength	11.00	
	11	1	1	I	1		Wetness	10.50	
	1 I	1	I		1			I	
Adrian------------	45	\| Moderately suited	1	\|Moderately suited	1	\|Severe		I	
	1	\| Wetness	10.50	I Wetness	10.50		Low strength	11.00	
	1	I	I	1	1		Wetness	10.50	
	1 I		I	I	1			I	
193514:	1 I	I	I	1	1	I		I	
Platteriver-------	55	\|Moderately suited	1	\|Moderately suited	1	\|Moderate		1	
		\| Sandiness	10.50	\| Sandiness	10.50		Low strength	10.50	
	1 1	I	I	I	I				
Pipestone---------	40	\| Moderately suited	1	\|Moderately suited	1	\|Moderate		10.50	
		\| Sandiness	10.50	\| Sandiness	10.50		Low strength		
		\| Sandiness	I	I	1				
202010:	1 I	I	I	I	1			I	
Houghton----------	55	\|Moderately suited	1	\|Moderately suited	1		Severe	I	
		\| Wetness	10.50	\| Wetness	10.50		Low strength	11.00	
		I	I	I	I		Wetness	10.50	
		1	I	1	1			I	
Adrian-	140	\|Moderately suited Wetness	1	\|Moderately suited	1		Severe		
			10.50	\| Wetness	10.50		Low strength	11.00	
			I	I	I		Wetness	10.50	
			1	I	I			1	

Table 6.-Land Management, Part I (Planting)-Continued

Map unit symbol and soil name		Suitability for hand planting		Suitability for mechanical planting		Soil rutting hazard			
	\|map	unit	\| Rating class and	\|Value 1	\| Rating class and	\|Value I		Rating class and limiting features	\|Value I
	1 \|	\|	,	I	I			1	
202016:	I	1	I	I	I			I	
Spinks	\| 50	\|Moderately suited	1	\|Moderately suited	1		Moderate	1	
	I	\| Sandiness	10.50	\| Sandiness	10.50		Low strength	10.50	
Tekenink, sandy substratum	I	I	1	I	1			1	
	I	1	I	I	I			I	
	\| 40	\|Well suited	I	\|Well suited	I		Moderate	1	
	I	I	I	I	I		Low strength	10.50	
	I	I	I	I	I			1	
631170 :	I	1	1	I	I			I	
Fogg--	150	\|Moderately suited	1	\| Unsuited	I		Moderate	1	
	I	\| Slope	10.50	\| Slope	11.00		Low strength	10.50	
	I	\| Sandiness	10.50	\| Sandiness	10.50	I		I	
	I	I	1	I	1			I	
Benzonia	\| 40	\|Moderately suited		\| Unsuited	1		Moderate	1	
	I	\| Slope	10.50	\| Slope	11.00		Low strength	10.50	
	I	\| Sandiness	10.50	\| Sandiness	10.50			I	
	I	I	I	I	I	I		I	
631171 :	I	I	1	I	1			I	
Fogg-	\| 50	\|Moderately suited	1	\| Unsuited	I		Moderate	1	
	I	\| Sandiness	10.50	\| Slope	11.00		Low strength	10.50	
	I	I	I	\| Sandiness	10.50	1		I	
	I		1	1				I	
Benzonia	\| 40	\|Moderately suited	1	\| Unsuited	I		Moderate	1	
	I	\| Sandiness	10.50	\| Slope	11.00		Low strength	10.50	
	I	I	I	\| Sandiness	10.50	1		I	
	I	I	I	I	I	I		I	
631172 :	I	1	1	I	I			I	
Fogg-	\| 50	\|Moderately suited		\|Moderately suited			Moderate		
	I	\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50	
	I	I	1	\| Sandiness	10.50			1	
	I	1	1	I	1			I	
Benzonia	\| 40	\|Moderately suited		\|Moderately suited	I		Moderate		
	I	\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50	
	I		1	\| Sandiness	10.50			I	
	I	,	I	I	I			I	
631173:	I		I	I	1			I	
Fogg-	150	\|Moderately suited	1	\|Moderately suited	1		Moderate	I	
	I	\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50	
	I	,	I	\| Sandiness	10.50			I	
	I		1	I	1			I	
Benzonia	140	\|Moderately suited	1	\|Moderately suited	1		Moderate	1	
	I	\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50	
	I	I	1	\| Sandiness	10.50			I	
	I	I	I	I	1			I	
631174:	I	I	1	I	1			I	
Fogg-	150	\|Moderately suited		\| Moderately suited			Moderate		
	I	\| Sandiness	10.50	\| Sandiness	10.50		Low strength	10.50	
	I	I	1	I	1			I	
Benzonia	\| 40	\|Moderately suited		\|Moderately suited			Moderate		
	I	\| Sandiness	10.50	\| Sandiness	10.50		Low strength	10.50	
	I	I	1	I	1			I	
680939 :	I	I	1	I	1			I	
Fern--	\| 50	\|Moderately suited		\|Moderately suited	1		Moderate		
	1	\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50	
	I	I	1	\| Sandiness	10.50			I	
	I	1	1	1	1			I	
Spinks	140	\|Moderately suited	1	\|Moderately suited	1		Moderate	1	
	I	\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50	
	I	I	1	\| Sandiness	10.50			I	
	I	1	1	1	1	I		I	

Table 6.-Land Management, Part I (Planting)-Continued

Map unit symbol and soil name		Suitability for hand planting		\| $\begin{gathered}\text { Suitability for } \\ \text { mechanical planting }\end{gathered}$			Soil rutting hazard				
	\|map	unit	\| Rating class and	Value		\| Rating class and	Value			Rating class and \|Valuelimiting features \|	
	$\begin{array}{lll}1 & \\ 1 & \\ 1 & \\ \text { l }\end{array}$	\|	I	I	I			I			
		1	I	1	I			I			
Milnichol---------		\|Well suited	I	\|Well suited	I	\|Moderate		1			
	1 I	I	I	I	I	\| Low strength		10.50			
	I	I	I	1	I			I			
680945 :	1 I	I		I	I	1		1			
Fern-	190	\|Moderately suited	1	\|Moderately suited	1	\|Moderate		1			
		\| Sandiness	10.50	\| Slope	10.50	I Low strength		10.50			
			I	\| Sandiness	10.50			I			
		I	I	1	I			I			
680946 :	1	,	I	I	1			1			
Fern-	190	\|Moderately suited	1	\| Moderately suited	1	\|Moderate		1			
		\| Sandiness	10.50	\| Sandiness	10.50		Low strength	10.50			
			I	I	I			1			
680971 :	1	1	I	I	I			I			
Nessen	150	\|Moderately suited\| Sandiness	1	\| Unsuited	I	\|Moderate		1			
			10.50	\| Slope	11.00		Low strength	10.50			
				\| Sandiness	10.50						
			I	1	I			I			
Kaleva------------	\| 40	\|Moderately suited	Sandiness	i	\| Unsuited	I	\|Moderate				
			10.50	\| Slope	11.00		Low strength	10.50			
		I Sandiness	I	\| Sandiness	10.50			I			
		I	I	I	1			I			
680972 :	1 I	,	I	I	I			I			
Nessen	\| 50	\| Moderately suited	1	\| Moderately suited	1	\|Moderate		I			
		Sandiness	10.50	\| Slope	10.50		Low strength	10.50			
			I	\| Sandiness	10.50	,		I			
			1	I	I			I			
Kaleva	140		1	\| Moderately suited	1	\|Moderate		,			
		\|Moderately suited	Sandiness	10.50	\| Slope	10.50	Low strength		10.50		
			I	\| Sandiness	10.50			I			
		I	I	1		I		I			
680973: \|			1	I	I	I			I		
Nessen	50		i	\|Moderately suited	1	\|Moderate					
		\|Moderately suited	Sandiness	10.50	\| Slope	10.50		Low strength	10.50		
		\|	1	\| Sandiness	10.50			\|			
			1	I	I			I			
Kaleva------------	40		i	\|Moderately suited	I	\|Moderate					
		\|Moderately suited	Sandiness	10.50	\| Slope	10.50		Low strength	10.50		
		\| Sandiness	I	\| Sandiness	10.50			I			
		I	I	I	I			I			
680974: \|			I	I	I	I			I		
Nessen	50		I	\| Moderately suited	1	\|Moderate		10.50			
		\|Moderately suited	Sandiness	10.50	\| Sandiness	10.50	I Low strength				
		I	I	I	1			I			
Kaleva------------	40	\| Moderately suited	I	\| Moderately suited	1		Moderate	I			
		\| Sandiness	10.50	\| Sandiness	10.50		Low strength	10.50			
		,	I	I	I			I			
893251 :	11	,	I	I	I			I			
Boyer-	150	\|Well suited	I	\|Moderately suited	1	\|Moderate		I			
		I	I	\| Slope	10.50		Low strength	10.50			
		I	I	\| Rock fragments	10.50			I			
			1	I	1			I			
Shavenaugh	40	\| Moderately suited	1	\|Moderately suited	1	\|Moderate		1			
		\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50			
		,	I	Sandiness	10.50			I			
		,	I		I	,		I			
894062 :	1 I	I	1	1	I			I			
Remus Spinks	150		I	\| Unsuited	I	\|Moderate					
			I	\| Slope	11.00		Low strength	10.50			
		```\|	Sandiness```	I	1	I			I		
	140		1	\| Unsuited	1		Moderate				
			10.50	\| Slope	11.00		Low strength	10.50			
		Sandiness	I	\| Sandiness	10.50			I			
			1	1	1			I			

Table 6.-Land Management, Part I (Planting)-Continued

Map unit symbol and soil name		Suitability for hand planting		Suitability for mechanical planting			Soil rutting hazard				
	\| map	unit	\| Rating class and	Value		Rating class and \|Value\| limiting features				Rating class and   \| limiting features	\|Value 1
	I	I	I	I	1			1			
894063:	I	I	I	I	I			I			
Remus-	\| 50	\|Well suited	I	\|Moderately suited	1		Moderate	1			
	I	।	I	\| Slope	10.50		Low strength	10.50			
	I	1	I	I	1			I			
Spink	\| 40	\|Moderately suited	I	\|Moderately suited	1		Moderate	1			
	I	\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50			
	I	I	I	\| Sandiness	10.50			1			
	I	I	I	I	1			I			
$894064:$Fern--	I	I	1	I	1			I			
	150	\|Moderately suited	I	\|Moderately suited	1		Moderate	1			
	I	\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50			
	I	I	I	\| Sandiness	10.50			I			
	I	I	I	I	1			1			
Remus	\| 40	\|Well suited	I	\| Moderately suited	I		Moderate	1			
	I	I	I	\| Slope	10.50		Low strength	10.50			
	I	I	I	I	1			I			
894065 :	I	I	I	I	1			I			
Fern--	\| 50	\|Moderately suited	1	\|Moderately suited	1		Moderate	1			
	I	\| Sandiness	10.50	\| Sandiness	10.50		Low strength	10.50			
	I		1	I	1			I			
Remus	140	\|Well suited	I	\|Well suited	1		Moderate				
	I	I	I	I	I		Low strength	10.50			
	I	I	I	I	1			1			
894104 :	I	1	I	I	I	I		I			
Mollineaux	\| 50	\|Moderately suited	I	\| Unsuited	I		Moderate	1			
	I	\| Sandiness	10.50	\| Slope	11.00		Low strength	10.50			
	I	I	1	\| Sandiness	10.50			I			
	I		I	1	1			I			
Remus	\| 40	\|Well suited	I	\| Unsuited	I		Moderate	1			
	I	I	I	\| Slope	11.00		Low strength	10.50			
	I	I	I	I	1			I			
894105 :	I	I	I	I	1			I			
Mollineaux--------	150	\|Moderately suited	1	\|Moderately suited	1		Moderate	I			
	I	\| Sandiness	10.50	\| Slope	10.50		Low strength	10.50			
	I	,	1	\| Sandiness	10.50			I			
	I	,	I	I	1			I			
Remus	140	\|Well suited	I	\|Moderately suited			Moderate	1			
	I	,	I	\| Slope	10.50		Low strength	10.50			
	I	,	I	1	1			I			
894165 :	I	1	I	1	1			I			
Spinks	\| 50	\|Moderately suited		\| Unsuited			Moderate				
	I	\| Slope	10.50	\| Slope	$11.00$		Low strength	10.50			
	I	\| Sandiness	10.50	\| Sandiness	10.50			I			
	I	I	I	I	1			I			
Tekenink, sandy substratum-	I		I	I	I			I			
	\| 40	\|Moderately suited	I	\| Unsuited	I		Moderate				
	I	\| Slope	10.50	\| Slope	11.00		Low strength	10.50			
	I	\|	1	I	1			I			
899682 :	1	1	I	1	1			I			
Kaleva	190	\|Moderately suited	1	\| Unsuited	I		Moderate	I			
	I	\| Slope	10.50	\| Slope	11.00		Low strength	10.50			
	I	\| Sandiness	10.50	\| Sandiness	10.50			I			
	I	I	I	1	1	I		I			
899722 :	I	I	I	I	1			I			
Goodharbor--------	190	\|Moderately suited	1	\| Moderately suited	1		Moderate	1			
	I	\| Sandiness	10.50	\| Sandiness	10.50		Low strength	10.50			
	I	1	I	I Slope	10.50	I		I			
	1	1	1	1	1	I		I			

Table 6.-Land Management, Part I (Planting)-Continued

Map unit symbol and soil name		Suitability for hand planting		Suitability for mechanical planting				Soil rutting hazard						
	\|map		unit		Rating class and limiting features	\|Value I	Rating class and \|Value limiting features					Rating class and \|Value limiting features		
			I					\|						
899731 :	I	I	I					I						
Covert	1 50	\| Moderately suited	1	\|Moderately suited		1		Moderate	$10.50$					
		\| Sandiness	10.50	\| Sandiness		$10.50$		Low strength						
		,	1			1								
Pipestone	140	\|Moderately suited	1	\| Moderately suited				$10.50$		Moderate	$10.50$			
		\| Sandiness	10.50	\| Sandiness			Low strength							
		\|	I			1			1					
899733:	1 \|	I	I			I			I					
Covert	150	\| Moderately suited	1	\| Moderately suited		1	\|Moderate		1					
		\| Sandiness	10.50	\|Moderately suited	Sandiness		10.50		Low strength	10.50				
		1	1	\| Sandiness		1			1					
Dair	\| 45	\| Moderately suited	1	\| Moderately suited		1		Severe	1					
		I Wetness	10.50	\| Wetness		10.50		Low strength Wetness	11.00					
		1	I			,			10.50					
		1		I	I		,			1				
899734:				I	1		I	1		1				
Benzonia	\| 90		\| Moderately suited	1	\| Unsuited		1	\|Moderate		1				
	1 I	\| Slope	10.50		Slope	11.00		Low strength	10.50					
	11	\| Sandiness	10.50		Sandiness	10.50			,					
	11	1	1	1		1	1		1					

Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued


Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued

Map unit symbol and soil name		Hazard of erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)						
	\|map	unit		\| Rating class and	Value		Rating class and \|Value limiting features		Rating class and limiting features	\|Value 1
$\begin{gathered} 190796: \\ \text { Emmet- } \end{gathered}$	\| 17	\|			I	1				
		1 I	1	1	1					
			\| Severe	\| Poorly suited	1					
Leelanau	1	\| Slope/erodibility	0.50	Slope/erodibility\|0.95		11.0010.01				
		I \|	I \|	Dusty						
		,	1 I	I	10.01					
	30	\|Moderate		\| Moderate		\|Poorly suited	11.00			
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope				
		\|		I \|		11.00				
190797:	1	1 I	1 I	\| Poorly suited	I					
Emmet-	150	\|Moderate		\|Severe			1			
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00			
		I \|	I \|	\| Dusty	10.01					
		I	1 \|	I	\|					
Leelanau	$130 \mid$	\|Moderate		\|Severe	\|Poorly suited	I				
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	Slope	11.00			
		\|		I \|						
190799:	I	1 \|	1 \|	I	,					
Emmet	$\begin{array}{lll}\mid & 45 \\ 1 & \\ 1 & \\ 1 & \\ & 1\end{array}$	\|Severe		\|Severe	\| Poorly suited	1				
		\| Slope/erodibility	0.75	\| Slope/erodibility	0.95	\| Slope	11.00			
		\|		I \|	\| Dusty	10.01				
		I	1 I	I	1					
Leelanau-	30	\|Severe		\|Severe		\| Poorly suited	I			
		\| Slope/erodibility	0.75	\| Slope/erodibility	0.95	\| Slope	11.00			
		I \|	I \|	I	I					
190801:	I	1 \|		1	1					
Emmet-	70	\|Slight		\|Moderate		\|Moderately suited	1			
		I I	\| Slope/erodibility	0.50	\| Slope	10.50				
		I	I \|	I Dusty	10.01					
		I	1 \|	\|						
Mancelona	25	\|Slight		\| Moderate	\|Moderately suited	$10.50$				
		I I	\| Slope/erodibility	0.50	\| Slope					
		I	\|		I					
190803:	I	I	1 \|	I	I					
Emmet-	$\begin{array}{ll}1 & 60 \\ 1 & \\ 1 & \\ 1 & \\ 1 & \end{array}$	\|Moderate	${ }_{\text {\| }}$ Slope/erodibility\|0.50	\|Severe		\| Poorly suited	I			
			Slope/erodibility\|0.95	\| Slope   Dusty	11.0010.01					
		\|		\|						
		1 I	1 \|							
Mancelona---------	30	\|Moderate	  \| Slope/erodibility	0.50	\|Severe		\| Poorly suited	$11.00$		
			\| Slope/erodibility	0.95	\| Slope					
		\|		\|		I				
190805:	I	1 \|	1 \|	I	I					
Emmet-	50	\|Slight		\|Moderate		\|Well suited	$10.01$			
			\| Slope/erodibility	0.50	\| Dusty					
			\|		\\|					
Omena-------------	45	\|Slight	\|Moderate   \| Slope/erodibility	0.50	\|Well suited	$10.01$				
				Dusty						
		-	\|			$10.01$				
190806:	50	$1$ $1$		,	1					
Emmet-		\|Slight			\|Moderately suited	$\begin{aligned} & 1 \\ & 10.50 \\ & 10.01 \end{aligned}$				
	50			\| Slope						
		I	I \|	\| Dusty						
		I \|	1 I	I	10.01					
Omena-	45	\|Slight		\|Severe		\| Moderately suited	$10.50$			
		\|		\| Slope/erodibility	0.95	\| Slope				
		1 I	I \|	\| Dusty	$\begin{aligned} & 10.50 \\ & 10.01 \\ & 1 \end{aligned}$					
		1 I	1 I	1						

Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued


Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued

Map unit symbol and soil name		Hazard of erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)							
	\|map		unit		\| limiting features		Rating class and \|Value	limiting features		\| Rating class and	\|Value I
190816:Kalkaska---------	\| 17	I	I	,							
		1 I	1 \|	I	I						
		\|Moderate			I						
Kalkaska----------	$\begin{array}{ll}1 & 90 \\ 1 & 1 \\ 1 & 1\end{array}$	\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Poorly suited	Slope	11.00			
		I \|	I \|	\| Sandiness	10.50						
		I	I	1	1						
190817:	1	I \|	1 \|	1	I						
Kalkaska	$\begin{array}{ll}1 & 90 \\ 1 \\ 1 & \\ 1 & \\ 1\end{array}$	\|Moderate		\|Severe		\| Poorly suited	I				
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00				
		I	I \|	\| Sandiness	10.50						
		1 I	1	1	I						
190818:	I			I	I						
Kalkaska----------	\| 90	\|Moderate	\|Severe	\| Poorly suited\| Slope							
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95		$\begin{aligned} & 11.00 \\ & 10.50 \end{aligned}$				
		I \|	\|		\| Sandiness						
		1	1	I	1						
190819:	1 I	\|	\|	I	I						
Kalkaska-------------------	\| 55	\|Slight	\|Slight	\|Well suited	1						
	\| 35	\|Slight	\|Slight	\|Well suited	1						
East Lake---------190820:											
	1 \|	\|	i	I	I						
Kiva-	\| 65	\|Slight	\|Slight	\|Well suited	I						
Mancelona---------190821:	30	\|Slight		\|Slight	\|Well suited	I					
					I						
	$1 \quad 1$	1 \|	1 \|	\|	I						
Kiva--	50	\|Slight			\|Moderately suited	,					
		I \|	\| Slope/erodibility	0.50	\| Slope						
		I	\|		\| Dusty	10.01					
			1 I		i						
Mancelona---------	30	\|Slight		\|Moderate	\| Moderately suited						
			\| Slope/erodibility	0.50	\| Slope	10.50					
			I \|	I	I						
190823:	1 I	I i	\| Severe	1 l	I						
Kiva-	1 50	\|Moderate			\| Poorly suited	1					
			\|Severe		Slope/erodibility	0.95	\| Slope	$\begin{aligned} & 11.00 \\ & 10.01 \end{aligned}$			
		, Slope/erodibility\|0.50	\| Slope/erodibility	0.95							
		,		Dusty	$\mid 0.01$						
Mancelona---------	30	\|Moderate	\|Severe		\|Poorly suited	$11.00$					
			\| Slope/erodibility	0.95	Slope						
		I \|	I \|								
190824:	1	1 l	1	Slope	i						
Lake beaches	\| 100	Not rated		\| Not rated I	i						
			\| Not rated	1							
190825:	1	I		I i	I	I					
Lake bluffs	$100 \mid$ Not rated		\| Not rated	\| Not rated	I						
			$1$	I	I						
190826:	1 1	\|		1 \|	I	I					
Leelanau-	\| 60		\|Slight		\|Slight		\|Well suited	I			
	1	। \|	\|		\|	I					
East Lake	\| 30		\|Slight		\|Slight		\|Well suited	I			
	1 I	I I	I \|	I	I						
190827:	1 1	\|		1 \|	I	I					
Leelanau-	\| 65	\|Slight		\|Moderate		\| Moderately suited	1				
	I	\|		\| Slope/erodibility	0.50	\| Slope	10.50				
	1 I	\|		I \|	I	1					
East Lake-		\|Slight		\|Moderate		\| Moderately suited					
	1 \|	\|		\| Slope/erodibility	0.50	\| Slope	10.50				
	11	1 I	I \|	1	1						

Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued

Map unit symbol and soil name		Hazard of erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)							
	\|map		unit		Rating class and \|Value limiting features		Rating class and \|Value limiting features		Rating class and \|Value\| limiting features		
190828:	\| 6	I	I	1	I						
			I	1	I						
Leelana			\|Moderate		\|Poorly suited	I					
	1 I		\| Slope/erodibility	0.50	I Slope	11.00					
	1 \|	\|		\|		)					
East Lake	\| 25		\|Moderate		\| Moderate		\| Poorly suited	1			
	I	\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope	11.00				
	1 I	I \|	I \|								
190829:Leelanau	1 \|	1 \|	1 \|	\|Poorly suited	I						
	\| 50	\|Moderate		\|Severe							
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00				
		I \|	\|		,	I					
East Lake-	35	\|Moderate		\|Severe	\| Poorly suited	I					
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	$11.00$				
		\|		I \|	I	I					
190830:	I	1 I	1 \|	1	1						
Leelanau----------	\| 50		\|Severe		\| Poorly suited	I					
			\| Slope/erodibility	0.95	\| Slope	11.00					
		I \|	I \|	I	I						
East Lake	35	\|Moderate	\| Severe	\| Poorly suited	1						
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	$11.00$				
		\|		\|		I	I				
190831:	I	1 \|	1 \|	1	I						
Lupton	60    1    1 1   1 1   1 1	\|Slight		\|Slight		\| Poorly suited	1				
		I I	\|		\| Low strength	11.00					
		1	1 I	\| Ponding	11.00						
		1	1 I	\| Wetness	11.00						
		1	1	\| Dusty	10.01						
		\|		$\mid$ \|	\|	I					
Marke	30	\|Slight		\|Slight		\| Poorly suited					
		I I	I \|	\| Low strength	$11.00$						
		1	1 \|	\| Ponding	11.00						
		1	1 I	\| Wetness	11.00						
		I	1 I	\| Dusty	10.01						
		1 I	1	1	I						
190832:	I	I \|	1 I	I	I						
Mancelona---------	90	\|Slight		\|Moderate		\|Well suited	I				
		I \|	\| Slope/erodibility	0.50							
		1 I	I \|								
190833 :	90	1 I	1 I	I	I						
Mancelona$190834 \text { : }$		\|Slight		\|Severe	\|Moderately suited	$10.50$					
	90	I I	\| Slope/erodibility	0.95							
		1 I	\|		,						
	I	1 \|	1 \|	1	I						
Mancelona----------\|	60	\|Slight		\|Slight		\|Well suited	I				
		I I	\|			I					
East Lake	30	\|Slight		\|Slight		\| Well suited	1				
		I I	1 \|								
190835 :	I	1	1 I	I	1						
Mancelon	\| 55	\|Slight		\|Moderate		\|Moderately suited	$0.50$				
		I \|	\| Slope/erodibility	0.50	\| Slope						
		1 \|	\|		I						
East Lake	35	\|Slight		\|Moderate		\|Moderately suited	$0.50$				
		I I	\| Slope/erodibility	0.50	\| Slope						
		1 I	\|		1						
190836:	I	1 I	1 \|	I	I						
Mancelona	50	\|Moderate		\|Moderate		\| Poorly suited	$1.00$				
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope					
		\|		\|		I					
East Lake	30	\|Moderate		\|Moderate		\| Poorly suited	$1.00$				
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope					
		I \|	I \|	,							

Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued


Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued


Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued


Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued


Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued

Map unit symbol and soil name		Hazard of erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)					
	\|map		unit		Rating class and \|Value	\| Rating class and	Value	\| Rating class and	\|Value I
193284:	\| 55	\|		I	I	I			
		\|		I	1	I			
Udorth		\|Severe		\|Severe		\| Poorly suited	11.00		
	I	\| Slope/erodibility	0.75	Slope/erodibility\|0.95	\| Slope				
	I	I \|	I \|		10.01				
	I	I \|	1 I	1	I				
Udipsamments------	135	\|Severe		\|Severe		\| Poorly suited	1		
		\| Slope/erodibility	0.75	\| Slope/erodibility	0.95		11.00		
		\|		1 \|	Sandiness	10.50			
		1	1 I		I				
193285:	I	\|		1 \|		I			
Lumley	55	\|Slight		\|Slight		\| Poorly suited	1		
		I \|	I \|	\| Low strength	11.00				
		I \|	1 I	\| Ponding	11.00				
		I I	1 I	\| Wetness	11.00				
		I I	1	\| Dusty	10.03				
		I	1 \|	1	I				
Makinen	40	\|Slight		\|Slight		\| Poorly suited	I		
		I \|	1 \|	\| Low strength	11.00				
		1	1 I	\| Ponding	11.00				
		1	1	\| Wetness	11.00				
		I I	1	\| Dusty	10.03				
		1 I	1 I	I	1				
193286:	I	I \|	1 \|	I	I				
Histosols---------	55	\|Slight		\|Slight		\| Poorly suited	I		
		I \|	1 \|	\| Low strength	11.00				
		I I	1 I	\| Ponding	11.00				
		1	1	I Wetness	11.00				
		I I	1 I	\| Dusty	10.03				
		I \|	1 \|	1	1				
Aquents-----------	145	\|Slight		\|Slight		\| Poorly suited			
		I \|	1 \|	\| Ponding	11.00				
		1	1 I	\| Wetness	11.00				
		1	1 I	\| Sandiness	10.50				
		1	1	I					
193287: \|		I I	1 I	I					
Dune land-	55	Not rated \|	\| Not rated		\| Not rated				
		I	I \|	I					
Quartzipsamments--	40	\|Very severe	\| Slope/erodibility	0.95	\|Severe		\| Poorly suited	I	
			\| Slope/erodibility	0.95	Slope   Sandiness	11.0010.50			
		\|		\|					
		I I	1 I		I				
193288:	1	\|		1 \|	1	I			
Udipsamments	100\|Slight			\|Slight		\|Moderately suited	$10.50$		
			I \|	\| Sandiness					
			1	I					
193342:	1 I	I	1 \|	I	I				
Gorvan		\|Slight		\|Slight		\| Poorly suited	I		
		I I	1	\| Ponding	11.00				
		I I	1 I	\| Flooding	11.00				
		1	1	I Wetness	11.00				
		1	1	\| Low strength	10.50				
		I I	1	\| Dusty	10.03				
		I	1	1	I				
Houghton-	30	\|Slight		\|Slight		\| Poorly suited			
	1	I \|	I \|	\| Low strength	11.00				
	11	1	1 I	\| Ponding	11.00				
	11	1	1	\| Flooding	11.00				
	11	I I	1	\| Wetness	11.00				
	11	I I	1 I	\| Dusty	10.03				
		1 I	1 \|	I	1				

Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued


Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued


Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued

Map unit symbol and soil name		Hazard of erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)				
	$\begin{aligned} & \text { \|map \| } \\ & \text { \|unit } \end{aligned}$	Rating class and \|Val limiting features		Rating class and \|Value	limiting features		\| Rating class and	\|Value I
193505 :	I	\|		1	I	I		
	1 \|	1 \|	1 \|	I	1			
Spinks	50	\| Moderate	\|Moderate		\| Poorly suited	I		
	1 I	Slope/erodibility\|0.50	\| Slope/erodibility	0.50	\| Slope	11.00		
	1	I	\|		\| Sandiness	10.50		
		\|		1 \|	I	I		
Shavenaugh	140	\|Moderate		\|Moderate		\| Poorly suited	I	
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope	11.00	
	I	I \|	\|		\| Sandiness	10.50		
	I	1 I	1 I	I	I			
193506:	11	1 l	1 \|	I	I			
Spinks	50	\|Moderate		\|Severe		\| Poorly suited	I	
	1	\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00	
		\|		\|		\| Sandiness	10.50	
		1 \|	1 \|	I	I			
Shavenaugh	40	\|Moderate	\| Severe	\| Poorly suited	I			
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00	
		I	I \|	\| Sandiness	10.50			
		I	1	I	1			
193507:	1 I	I	1 \|	I	I			
Spinks	150			\| Poorly suited	I			
		\| Slope/erodibility	0.75	\| Slope/erodibility	0.95	\| Slope	11.00	
		\|			I Sandiness	10.50		
		I \|	I \|	I	I			
Shavenaugh	40	\| Severe	\| Severe	\| Poorly suited				
		\| Slope/erodibility	0.75	\| Slope/erodibility	0.95	\| Slope	11.00	
		I \|	I \|	\| Sandiness	10.50			
		1 \|	1 I	I	1			
193508:	1 1	\|		\|		I	I	
Madaus	90	\|Slight		\|Slight		\| Poorly suited	I	
	1	\|	I I	\| Low strength	11.00			
	1		1 I	\| Ponding	11.00			
	I		1 I	\| Dusty	10.03			
	\|		1 I	1	I			
193509:	1 \|	,	1 \|		I			
Boyer-	\| 50	\|Slight		\|Slight		\|Well suited		
		\|		\|		\| Dusty	10.01	
		\|		1 \|	1	1		
Shavenaugh--------	40	\|Slight		\|Slight		\|Moderately suited		
		I \|	I I	\| Sandiness	10.50			
		1 I	1 I	I	I			
193510 :	1 I	I \|	1 I		I			
Boyer-	50	\|Slight		\|Moderate		\|Moderately suited		
	1 \|	\|		\| Slope/erodibility	0.50	\| Slope	10.50	
	11	1 I	\|		\| Dusty	10.01		
		\|		1 \|		1		
Shavenaugh	40	\|Slight		\| Moderate		\|Moderately suited		
	1 I	I I	\| Slope/erodibility	0.50	\| Slope	10.50		
	11	1	I \|	I Sandiness	10.50			
	1 I	I	1 I	I	I			
193511:	1	\|	1	1	I			
Boyer	50	\| Moderate	\|Severe		\| Poorly suited	1		
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00	
		\|		,	\| Dusty	10.01		
		I \|	i i	I	I			
Shavenaugh	40	\|Moderate		\|Severe		\| Poorly suited	1	
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00	
		\|		I \|	\| Sandiness	10.50		
		1 I	1 I	I	1			
193513:	1 I	\|		1 \|	I	I		
	\| 50		\|Slight		\|Slight		\| Poorly suited	I
	1 \|	\|		\|		\| Low strength	11.00	
	11	1 I	1 I	\| Ponding	11.00			
		1 I	1 I	1	1			

Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued

Map unit symbol and soil name		Hazard of erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)					
	\|map	unit		\| Rating class and	Value	\| Rating class and	Value	\| Rating class and	\|Value   I
	$\begin{array}{ll}1 & \\ 1 & \\ 1 & 45\end{array}$	! !	\|		I	1			
		\|		I \|	I	,			
		\|Slight		\|Slight		\| Poorly suited	I		
Adrian	1	I I	1 \|	\| Low strength	11.0011.00				
		1 I	1 I	\| Ponding					
		1	1 I	Wetness	11.0010.03				
		I	1 I	\| Dusty					
		1 I	1 I	1	10.03				
193514:	I	1	1 \|	1	,				
Platteriver-------	55	\|Slight		\|Slight		\|Moderately suited	$10.50$		
		I I	1 I	\| Sandiness					
		I	1 \|	1					
Pipestone-	\| 40	\|Slight		\|Slight		\| Moderately suited			
		I \|	I \|	\| Sandiness	10.50				
		1 I	1	\| Wetness	10.50				
		1	1	,	1				
202010:	I	I	1 \|	1	I				
Houghton----------	$\begin{array}{ll}1 & 55 \\ 1 & \\ 1 & \\ 1 & 1 \\ 1 & 1 \\ 1 & \\ 1\end{array}$	\|Slight		\|Slight		\|Poorly suited	I		
		I I	I \|	\| Low strength	11.00				
		I	1	\| Ponding	11.00				
		I	1	\| Wetness	11.00				
		1	1 I	\| Dusty	10.03				
		I	1 \|	1	1				
Adrian	40	\|Slight		\|Slight		\| Poorly suited	I		
		I I	I \|	\| Low strength	11.00				
		I	1 I	\| Ponding	11.00				
		1	1 1	\| Wetness	11.00				
		I	1	\| Dusty	10.03				
		I	1	I	1				
202016:	I	1	\|		\|	I			
Spinks	50	\|Slight		\|Slight		\|Moderately suited	$10.50$		
		I I	1 \|	\| Sandiness					
		I	1	,					
Tekenink, sandy substratum----	40	I	1 \|	1	I				
		\|Slight		\|Slight		\|Well suited			
		I \|	\|		\|	I			
631170:	I	I	1 \|	I	I				
Fogg--	50	\|Severe\| Slope/erodibility	0.75		\| Poorly suited	I			
				\| Slope	11.0010.50				
		\|		I \|	\| Sandiness				
		I	1 \|		10.50				
Benzonia	40		\|Severe		\|Poorly suited	I			
			\| Slope/erodibility	0.95	\| Slope   Sandiness	11.0010.50			
		I \|	I \|						
		1 I	1 I	I	I				
631171:	I	1 I	1 I	I	I				
Fogg-	50	\|Moderate		\|Severe		\|Poorly suited			
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.0010.50		
		\|		I \|	\| Sandiness				
		I I	1	I	10.50				
Benzonia	40	\|Moderate		\|Severe		\|Poorly suited			
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.0010.50		
		I \|	I \|	\| Sandiness					
		1 I	1 I		10.50				
631172:	I	1 I	1 I	I	I				
Fogg--	50	\|Moderate		\| Moderate	\| Poorly suited				
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope	11.0010.50		
		I \|	I \|	\| Sandiness					
		I	1 \|	,	10.50				
Benzonia	40			\| Poorly suited $\mid$   \| Slope $\mid 1.00$   \| Sandiness $\mid 0.50$   \| $\mid$					

Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued

Map unit symbol and soil name		Hazard of erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)							
	\|map		unit		\| Rating class and	Valu	\| Rating class and	Value	Rating class and \|Value\| limiting features		
	\|	\|		I	I I						
	1 \|	\|		1 \|	\| Moderately suited	1					
Fogg--------------1	50	\|Slight		\|Moderate			1				
	1	I \|	\| Slope/erodibility	0.50	\| Slope	10.50					
	1 I	1 I	\|		\| Sandiness	10.50					
	1	\|		1 \|	,	,					
	\| 40		\|Slight		\|Moderate		\|Moderately suited	1			
Benzonia----------	1	I \|	\| Slope/erodibility	0.50	\| Slope	10.50					
	1 I	1 I	I \|	\| Sandiness	10.50						
	1 I	1 I	1 I	I	1						
631174 :	1 I	\|		1 \|	I	I					
Fogg-	\| 50		\|Slight		\|Slight		\|Moderately suited	1			
	1	I \|	I I	\| Sandiness	10.50						
	I	\|		\|		1	1				
Benzonia----------	\| 40		\|Slight		\|Slight		\|Moderately suited	1			
	1 I	I \|	I I	Sandiness	10.50						
	1 I	1 I	1 I								
680939 :	1 I	\|		1 I	I	1					
Fern--	\| 50		\|Slight		\|Moderate		\|Moderately suited				
	1	I \|	\| Slope/erodibility	0.50	\| Slope	10.50					
	-	1 I	I \|	\| Sandiness	10.50						
	1 I	I \|	1 I	I	1						
Spinks------------	\| 40	\|Slight		\|Moderate		\|Moderately suited					
	1	I \|	\| Slope/erodibility	0.50	\| Slope	10.50					
	,	1 I	I \|	\| Sandiness	10.50						
	11	1 I	1 I	I	1						
680943 :	1 \|	\|		1 \|	I	1					
Milnichol	\| 90		\|Slight		\|Slight		\|Moderately suited	$10.50$			
	1 I	I \|	I I	I Wetness							
	1 I	1	1 I	1							
680945 :	I	\|		1 I	I	I					
Fern--	\| 90	\|Slight		\| Moderate		\|Moderately suited					
	1	\|		\| Slope/erodibility	0.50	Sandiness					
	1 I	1 I	\|			10.50					
	1 I	1 I	1 I		I						
680946 :	1 I	I \|	1 \|	I	I						
Fern--	\| 90	\|Slight		\|Slight		\|Moderately suited					
		\|		\|		\| Sandiness	10.50				
	1 I	1 I	1 I	I	1						
680971 :	1 I	1 \|	1 \|	1	I						
Nessen-	150	\|Moderate	\|Severe	\| Poorly suited							
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00				
		I \|	I \|	\| Sandiness	10.50						
		I I	1		1						
Kaleva-	140	\|Moderate		\|Severe		\|Poorly suited					
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00				
		\|		\|		\| Sandiness	10.50				
		1 I	1	I	I						
680972 :	1 I	1 \|	1 \|	I	I						
Nessen	50\|	\|Moderate		\|Moderate		\|Poorly suited	$11.00$				
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope					
		\|		I \|	Sandiness	10.50					
		I I	1 I								
Kaleva	140	\|Moderate		\|Moderate		\|Poorly suited					
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope	11.00				
		\|		\|		\| Sandiness	10.50				
		1 I	1 I	I	I						
680973 :	1 I	I \|	1 I	1	I						
Nessen-	\| 50		\|Slight		\| Moderate		\|Moderately suited	1			
	1 I	I \|	\| Slope/erodibility	0.50	\| Slope	10.50					
	1 I	1 \|	\|		\| Sandiness	10.50					
		1 I	1 I	1	1						

Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued

Map unit symbol and soil name		Hazard of erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)					
	\|map	unit		Rating class and \|Value limiting features		\| Rating class and	Value	\| Rating class and	\|Value I
	\|		I	\|		\| Moderately suited	I		
	1 l	\|		1 I		I			
	$\begin{array}{ll}1 & 40 \\ \text { \| } \\ \text { \| }\end{array}$	\|Slight	\| Moderate		\|Moderately suited				
Kaleva		I I	Slope/erodibility\|0.50	Slope   Sandiness	$10.50$				
		1 I	I \|		10.50				
		1	1 I	I	1				
680974 :	1 I	1 \|	I	1 \|					
Nessen------------	\| 50	\|Slight		\|Slight		\|Moderately suited	Sandiness	$10.50$	
		I I	\|						
		1 \|	1 \|	1	I				
Kaleva------------	40	\|Slight		\|Slight		\| Moderately suited	$10.50$		
		I I	I \|	\| Sandiness					
		1	1	1					
893251:	1 I	1 l	1		I				
Boyer	150	\|Moderate		\|Moderate		\|Poorly suited			
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope	11.00		
		I \|	\|		\| Dusty	10.01			
		1 I	1 \|	,	1				
Shavenaugh	140	\|Moderate		\|Moderate		\| Poorly suited	I		
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope	$11.00$		
		\|		I \|	\| Sandiness	10.50			
		1 I	1 I	I	1				
894062 :	11	1 I	1 I	I	I				
Remus-	150	\|Moderate	\|Severe		\| Poorly suited	I			
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00		
		\|		\|		\| Dusty	10.01		
		1 I	1 I	I					
Spinks	140	\|Moderate	\|Severe		\| Poorly suited	$11.00$			
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95				
		\|		\|		\| Sandiness	$10.50$		
		1	1 I						
894063 :	11	1	1 I		I				
Remus	150	\|Moderate		\|Severe			,		
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	$11.00$		
		\|		\|		\| Dusty	10.01		
		1 I	1 I	I	I				
Spinks	140	\|Moderate	${ }_{\text {\| }}$ Slope/erodibility\|0.50	\|Moderate	\| Poorly suited				
				\| Slope   Sandiness	11.0010.50				
		I \|	I \|						
		1 I	1 I		10.50				
894064:	1 I	1 \|	1 I	I	,				
Fern--	50	\|Slight		\|Moderate		\| Moderately suited	$\begin{aligned} & 10.50 \\ & 10.50 \end{aligned}$		
		1 I	\| Slope/erodibility	0.50	\| Slope				
		1	I \|	Sandiness					
		1 \|	1 \|		10.50				
Remus	40	\|Slight		\|Severe		\| Moderately suited	1		
		I \|	\| Slope/erodibility	0.95	\| Slope	10.50			
		I	I \|	\| Dusty	10.01				
		1 I	1 I	1	I				
894065 :	1 I	I I	1 \|	I	1				
Fern--	50	\|Slight		\|Slight		\|Moderately suited	1		
		I \|	I \|	\| Sandiness	10.50				
		1 \|	1 I	I	I				
Remus	40	\|Slight		\| Moderate		\|Well suited	$10.01$		
		I I	\| Slope/erodibility	0.50	\| Dusty				
		1 I	\|		1				
894104:	1 1	I I	1 \|	I	1				
Mollineaux	$\begin{array}{lll}1 & 50 \\ 1 & \\ 1 & \\ 1 & \\ 1\end{array}$	\|Moderate		\|Severe		\| Poorly suited	1		
		\| Slope/erodibility	0.50	\| Slope/erodibility	0.95		11.00		
		I \|	I \|	Sandiness					
		1 I	1 I	I					
Remus	140		\| Severe		\| Poorly suited	1			
			\| Slope/erodibility	0.95	\| Slope	11.00			
			I \|	\| Dusty	10.01				
			1	1	1				

Table 6.-Land Management, Part II (Hazard of Erosion and Suitability for Roads)-Continued

Map unit symbol and soil name		Hazard of erosion	Hazard of erosion on roads and trails	Suitability for roads (natural surface)				
	\|map	unit	Rating class and \|Value limiting features		\| Rating class and	Value	\| Rating class and   \| limiting features	\|Value I
	\|			I	\|	1		
894105 :	I	I	I	1	I			
Mollineaux--------	50	\| Moderate	\| Moderate	\|Poorly suited	I			
	I	\| Slope/erodibility	0.50	\| Slope/erodibility	0.50	\| Slope	11.00	
	1	I \|	I \|	\| Sandiness	10.50			
	I	I	1 \|	\|	\|			
Remus	40	\|Moderate		\|Severe		\|Poorly suited	1	
	1	\| Slope/erodibility	0.50	\| Slope/erodibility	0.95	\| Slope	11.00	
	I	I \|	I \|	\| Dusty	10.01			
	I	I	1 I	I	I			
894165 :	I	1 I	1 \|	I	I			
Spinks	150	\|Severe		\|Severe		\|Poorly suited	1	
		\| Slope/erodibility	0.75	\| Slope/erodibility	0.95	\| Slope	11.00	
			I \|	\| Sandiness	10.50			
		1	1 I	I	I			
Tekenink, sandy substratum	I	1 I	I	I	I			
	40	\| Severe	\| Severe	\| Poorly suited	1			
		\| Slope/erodibility	0.75	\| Slope/erodibility	0.95	\| Slope	11.00	
		, Slope/erodibility 0.75	I \|		I			
899682 :	I		1 \|	1	I			
Kaleva------------	$\begin{array}{lll}1 & 90 \\ 1 \\ 1 & \\ 1 & \\ 1 & & \end{array}$		\| Severe	\| Poorly suited	I			
		\| Slope/erodibility	0.75	\| Slope/erodibility	0.95	\| Slope	11.00	
		\|		\|		\| Sandiness	10.50	
		1 I	I	I	I			
899722 :	I	-			I			
Goodharbor--------	90   1   1	\|Slight	\|Moderate	\|Moderately suited				
		\|	\| Slope/erodibility	0.50	\| Sandiness	10.50		
		1	\|	\| Slope	10.50			
		1	1 I	1 -	I			
899731 :	I	1 -	I	,	I			
Covert------------	50	\|Slight	\|Slight		I			
		I I	$\mid$ \|	\|Moderately suited	Sandiness	10.50		
		1 \|	\|	Sandiness	I			
Pipestone---------	40	\|Slight		\|Slight		\|Moderately suited	1	
		\|	\|	\| Sandiness	10.50			
		1 l	1	I Wetness	10.50			
		1 l	I	1				
899733 :	1 I	1 \|	,	\|Moderately suited	I			
Covert	50	\|Slight		\|Slight			$10.50$	
		1 I	1 \|	Sandiness				
		\|		1 \|	I	\|		
Dair--------------	145	\|Slight		\|Slight		\| Poorly suited	I	
		I		\| Low strength	11.00			
		1 \|	\|	\| Ponding	11.00			
		1	I		I			
899734:	1 I	1 l	1 \|	I	I			
	190	\|Severe		\|Severe		\|Poorly suited	I	
		\| Slope/erodibility	0.75	\| Slope/erodibility	0.95	\| Slope	11.00	
		I \|	I \|		10.50			
		1	1 \|					

Table 6.-Land Management, Part III (Site Preparation)
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 6.-Land Management, Part III (Site Preparation)-Continued


Table 6.-Land Management, Part III (Site Preparation)-Continued

Map unit symbol and soil name	$\begin{aligned} & \text { \| Pct. \| } \\ & \text { \| of } \end{aligned}$	Suitability formechanical sitepreparation (deep)		I Suitability for			
	$\begin{aligned} & \text { \|map \| } \\ & \mid \text { unit\| } \end{aligned}$	Rating class and \|Value limiting features			Rating class and \|Value\| limiting features		
	1 \|		1	\|	1		
190806:	1 I		I	I	I		
Emmet-	150	Well suited	I	\|Well suited	I		
	1 I		I	1	1		
Omena	\| 45		Well suited	I	\|Well suited	I	
	11		I	,	1		
190807:	1 I		I	1	I		
Emmet-	150	Poorly suited	1	\| Poorly suited	1		
	,	Slope	10.50	\| Slope	10.50		
	1 I		I	1	1		
Omena	145	\| Poorly suited	,	\| Poorly suited	1		
	1 I	\| Slope	10.50	\| Slope	10.50		
	11		I	I	\|		
190808 :	1 I		I	I	1		
Emmet	\| 50		\| Poorly suited	1	\| Poorly suited	1	
	1 I	\| Slope	10.50	\| Slope	10.50		
	I		I	I	1		
Omena	\| 45		\| Poorly suited	1	\| Poorly suited	,	
	,	\| Slope	10.50	\| Slope	10.50		
	1 I	I	I	I	I		
190809:	1 I		I	I	I		
Emmet-	\| 50		\| Unsuited	I	\|Unsuited	1	
	1 I	\| Slope	11.00	\| Slope	11.00		
	I		I	I	I		
Omena	\| 45		Unsuited	I	\|Unsuited	I	
	,	\| Slope	11.00	\| Slope	11.00		
	1 \|		I	I	I		
190811:	1 I		I	1	I		
Hettinge	\| 45		\|Well suited	I	\|Well suited	1	
	I		I	I	I		
Muck	\| 30		\|Well suited	I	\|Well suited	,	
	I		I	I	I		
190812 :	I		I	I	,		
Hettinger   Tonkey	\| 45		\|Well suited	I	\|Well suited	I	
	1		I	\|	I		
	130	\|Well suited	I	\|Well suited	I		
	1 I		I	I	,		
190814:	1 I		I	I	I		
Kalkas	\| 85		\|Well suited	I	\|Well suited	1	
	I		I	I	I		
$190815 \text { : }$	I		I	1	I		
Kalkaska	\| 85		\|Well suited	I	\|Well suited	,	
	I		I	,	1		
190816:	I		I	I	I		
Kalkaska	$\mid 90$ \|	\| Poorly suited	1	\| Poorly suited	1		
	1	\| Slope	10.50	\| Slope	10.50		
	I	I	I	I	I		
190817:	11		I	I	I		
Kalkaska	\| 90		\|Poorly suited		\| Poorly suited		
	1	\| Slope	10.50	\| Slope	10.50		
	1 I	I	I	I	I		
190818:	1 I		I	1	I		
Kalkaska	$\|90\|$			\|Poorly suited			
	1	\| Slope	10.50	\| Slope	10.50		
	1 I		I	I	1		
190819:	1 I		I	I	I		
Kalkaska	\| 55		\|Well suited	I	\|Well suited	I	
	1 I		I	I	I		
East Lake--------	\| 35		\|Well suited	I	\|Well suited	I	
	1 I		I	I	I		

Table 6.-Land Management, Part III (Site Preparation)-Continued


Table 6.-Land Management, Part III (Site Preparation)-Continued

Map unit symbol and soil name		Suitability for mechanical site preparation (deep)		Suitability for mechanical site reparation (surface)		
	$\begin{aligned} & \text { \|map \| } \\ & \text { \|unit\| } \end{aligned}$	Rating class and limiting features	$\begin{aligned} & \text { \|Value } \\ & \text { \| } \end{aligned}$	\| Rating class	\|Value	
	1 \|	I	I	I	I	
190833 :	11		I	I	I	
Mancelona---------190834:	\| 90		\|Well suited	I	\|Well suited	I
	I	,	I	I	1	
	1		I	I	I	
Mancelona	\| 60		\|Well suited	I	\|Well suited	I
	1		I	,	I	
East Lak	\| 30		\|Well suited	I	\|Well suited	I
	1 \|		I	I	,	
190835 :	11		I	1	I	
Mancelon	\| 55		\|Well suited	I	\|Well suited	I
	11		I	,	I	
East Lake	\| 35		\|Well suited	I	\|Well suited	I
	1 I		I	,	I	
190836:	1 I		I	,	I	
Mancelona---------	\| 50		Poorly suited	1	\| Poorly suited	1
	1 I	Slope	10.50	\| Slope	10.50	
			,	\|	,	
East Lak	\| 30		Poorly suited	I	\| Poorly suited	1
		\| Slope	10.50	\| Slope	10.50	
	11		I	1	I	
190837 :	1 I		I	I	,	
Mancelona---------	\| 45		Poorly suited	I	\| Poorly suited	
	1 I	\| Slope	10.50	\| Slope	10.50	
	11		I	I	I	
East Lak	\| 30		Poorly suited	I	\| Poorly suited	I
	1 I	\| Slope	10.50	\| Slope	10.50	
	11		1	I	1	
190838:	1 I		I	I	,	
Mancelona---------	\| 50		Poorly suited	I	\| Poorly suited	I
	1 I	Slope	10.50	\| Slope	10.50	
	11		I		I	
East Lake	\| 30		\| Poorly suited	I	\| Poorly suited	I
	I	\| Slope	10.50	\| Slope	10.50	
	11		I	1	I	
190839 :	11		I	I	I	
Mancelon	\| 70		Well suited	I	\|Well suited	I
	1		I	\|	I	
Richte	\| 25		Well suited	I	\|Well suited	I
	1 I	\|	I	\|	,	
190840 :	11		I	I	I	
Nester	\| 90		Well suited	I	\|Well suited	I
	1 I		I	I	,	
190841 :	11		I	I	I	
Nester	\| 90		\|Well suited	I	\|Well suited	I
	11		I	I	I	
190842:	1 I		I	I	I	
Nester	$\|90\|$	Poorly suited	1	\| Poorly suited	1	
	1 I	S Slope	10.50	\| Slope	10.50	
	1 I		I	1	1	
190843:	11		I	I	I	
Nester	\| 90		\| Poorly suited	1	\| Poorly suited	1
	11	I Slope	10.50	\| Slope	10.50	
	1 I	I	1	1	I	
190844:	11		I	1	I	
Nester	\| 90		Unsuited	1	\|Unsuited	
	11	Slope	11.00	\| Slope	11.00	
	1 I		I	I	I	
190846:	11		I	1	I	
Pits, gravel	\| 100	l	Not rated	I	\|Not rated	I
	$1$		I	I	I	

Table 6.-Land Management, Part III (Site Preparation)-Continued


Table 6.-Land Management, Part III (Site Preparation)-Continued


Table 6.-Land Management, Part III (Site Preparation)-Continued

Map unit symbol and soil name	\|Pct.	of	map	unit		Suitability for mechanical site preparation (deep)		mechanical site preparation (surface)				
		Rating class and limiting features	$\begin{aligned} & \text { \|Valu } \\ & \text { \| } \end{aligned}$	\| Rating class	\|Value							
\|												
193284:	I	I	I	I	1							
Udorthents---------\|												
	11	\| Slope	11.00	I Slope	11.00							
1 I I												
Udipsamments------	135	IUnsuited	I	Unsuited								
		\| Slope	11.00	I Slope	11.00							
		i	,	,	,							
193285:		1	I	$i \quad \ldots \quad \text { i }$								
Lumley	55	\|Unsuited	i	\| Poorly suited								
		\| Wetness	$11.00$	\| Wetness	$10.50$							
			I	\|	1							
Makinen-----------	1 40	\|Unsuited	I	\| Poorly suited	$10.50$							
		\| Wetness	11.00	I Wetness								
			I		I							
193286:	,	,	I									
Histosols---------	55	\|Unsuited	I	\| Poorly suited								
		\| Wetness	11.00	I Wetness	$10.75$							
		\\|	I	1	1							
Aquents-----------	45	\|Unsuited	I	\| Poorly suited	$10.75$							
		\| Wetness	11.00	\| Wetness								
			1	,								
193287: \|			1	I	1							
Dune land	55	\| Not rated	I	\| Not rated								
		\|	I									
Quartzipsamments--	40	\|Unsuited	I	\| Unsuited	I							
		\| Slope	11.00	Slope	11.00							
		,	1									
193288: \|		1	I	I	I							
Udipsamm	100\|Well suited		I	\|Well suited	1							
			I									
$193342 \text { : }$	11		I	,	I							
Gorvan	35	\|Unsuited	I	\| Poorly suited	Wetness I	$10.50$						
		I Wetness	11.00									
			1									
Houghton	30	\|Unsuited	I	\| Poorly suited	$10.50$							
		I Wetness	11.00									
		\|	1									
Glendora	20	\|Unsuited	1	\| Poorly suited	10.50							
		I Wetness	11.00	\| Wetness								
		I	I		10.50							
$\begin{array}{r} 193349: \\ \text { Spinks } \end{array}$	11		I	I	I							
	50	\|Unsuited	I	\| Unsuited								
		\| Slope	11.00	\| Slope	11.00							
		\|	1		I							
Coloma	40	\|Unsuited	I	\| Unsuited	$11.00$							
		\| Slope	11.00	\| Slope								
		,	1		I							
193351:	1 I		I	\| Poorly suited	1							
Benona	95	\| Poorly suited	1		$10.50$							
		\| Slope	10.50	\| Slope								
		-	1									
193354:	1	1	I	\|	I							
Dune land	501	\|Not rated	I	\| Not rated	1							
			I									
Quartzipsamments--193357:	40	\|Well suited	I	\| Well suited	I							
			1		\|							
	I		I	I								
193357:Shavenaugh	85	\| Poorly suited	1	\| Poorly suited	Slope	$10.50$						
		I Slope	10.50									
			1	I	1							

Table 6.-Land Management, Part III (Site Preparation)-Continued


Table 6.-Land Management, Part III (Site Preparation)-Continued


Table 6.-Land Management, Part III (Site Preparation)-Continued

Map unit symbol and soil name		Suitability for mechanical site preparation (deep)		Suitability for mechanical site preparation (surface)				
	\|map		unit		Rating class and limiting features	IValue $1$	$\begin{aligned} & \text { Rating class } \\ & \text { limiting feat } \end{aligned}$	\|Value I
	I \|	I	,	I	I			
202010 :	1 I	1	I	1	1			
Houghton	155	Unsuited	I	\| Poorly suited	1			
		\\| Wetness	11.00	\| Wetness	10.50			
		,	I	,	1			
Adrian	40	Unsuited	I	\| Poorly suited	I			
		\\| Wetness	11.00	\| Wetness	10.50			
		1	I	,	1			
202016:	1		I	I	I			
Spinks	50	\|Well suited	I	\|Well suited	I			
			I	\|	I			
Tekenink, sandy substratum	1		1	1	1			
	40 \|	\|Well suited	I	\|Well suited	I			
		I	I	1	,			
631170 :	150		I	1	I			
Fogg-		Unsuited	i	\|Unsuited	$1$			
	1	\| Slope	11.00	\| Slope	11.00			
			I	\|	,			
Benzonia----------	40	U Unsuited	I	\|Unsuited	I			
		\| Slope	11.00	\| Slope	11.00			
			1	I	$1$			
631171 :	1 I	I	I	1	I			
Fogg-	1 50	\| Poorly suited	1	\| Poorly suited	I			
		\| Slope	10.50	\| Slope	10.50			
			1	\|	I			
Benzonia	40	\| Poorly suited	1	\| Poorly suited	1			
		\| Slope	10.50	\| Slope	10.50			
			1	I	1			
631172 :	1 I	\|	I	,	,			
Fogg-	50	\|Poorly suited	I	\|Poorly suited				
		\| Slope	$10.50$	\| Slope	$10.50$			
			I	I	1			
Benzonia	40	\| Poorly suited	1	\|Poorly suited	1			
		\| Slope	10.50	\| Slope	10.50			
			I	I	1			
631173 :			I	I	1			
Fogg-	\| 501	\|Well suited	I	\|Well suited	I			
			I	I	I			
Benzoni	\| 40	\|Well suited	I	\|Well suited	I			
			I	I	I			
$631174 \text { : }$			I	1	I			
Fogg--	50	\|Well suited	I	\|Well suited	I			
		\|	I	\|	I			
Benzonia	40	\|Well suited	I	\|Well suited	I			
			I	1	I			
680939 :			I	,	I			
Fern--	50	\|Well suited	I	\|Well suited	I			
			I	I	I			
Spinks	40	\|Well suited	I	\|Well suited	I			
		\|	I	\|	I			
680943:Milnichol	11	1	I	1	I			
	$\|90\|$	\|Unsuited	1	\|Well suited	I			
	1 I	Wetness	11.00	\|	I			
	11	1	I	I	I			
680945 :	1 I		I	\|	I			
Fern--	1901	\|Well suited	I	\|Well suited	I			
	1 I		I	I	I			
$680946:$Fern--	11		I	I	I			
	$\mid 90$ \|	\|Well suited	I	\|Well suited	I			
	1 I	i	1	1	I			

Table 6.-Land Management, Part III (Site Preparation)-Continued


Table 6.-Land Management, Part III (Site Preparation)-Continued


Table 6.-Land Management, Part IV (Site Restoration)
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 6.-Land Management, Part IV (Site Restoration)-Continued


Table 6.-Land Management, Part IV (Site Restoration)-Continued

Map unit symbol and soil name	$\begin{aligned} & \hline \text { I } \\ & \text { \|Pct. } \\ & \text { I of } \\ & \text { \| map } \\ & \text { \|unit } \end{aligned}$	\| Potential for damage toPotential for seedling   soil by fire					
		\| Rating class and	\|Value		$\begin{gathered} \text { Rating } \\ \text { limiting } \end{gathered}$	class and features	\|Value I
631170:	I	1	1	I		i	
Fogg	$\begin{array}{ll}1 & 50 \\ 1 \\ 1 \\ 1 & \\ 1 & \end{array}$	\| High	I	\| Low		I	
		\| Texture/slope/	11.00	।		1	
		\| surface layer	I	I		I	
		\| thickness	1	I		1	
		I	I	1		I	
Benzonia	40	\| Low	I	\| Low		1	
		I	I	\|		I	
$631171 \text { : }$	1 I	I	I	1		I	
Fogg--	50		I	\| Low		I	
		\| Low	I	I		I	
Benzonia	40		1	\| Low		I	
		\|Moderate	10.50	\|		I	
		fragments	I	1		I	
			1	1		1	
631172 :	I	1	I	1		I	
Fogg--	50		I	\| Low		I	
		\| Low	I	I		I	
Benzonia----------	40		1	\|Low		I	
		\|Moderate	10.50	,		I	
		fragments	1	I		I	
			I	I		I	
631173 :	I	1	I	1		I	
Fogg--	50	\| Low	I	\| Low		I	
		।	I	,		I	
Benzonia----------	40	\| Moderate	1	\| Low		I	
		Texture/rock	10.50	I		I	
		fragments	I	I		I	
			I	I		I	
631174 :	I		I	1		I	
Fogg-	50	\| Low	I	\|Low		I	
			I	1		I	
Benzonia----------	40		1	\| Low		I	
		\|Moderate	Texture/rock	10.50	,		I
		\| fragments	I	I		I	
			I	I		I	
680939 :	I	1	I	1		I	
Fern--	50		1	\| Low		I	
		\|Moderate	Texture/rock	10.50	I		I
		f fragments	I	,		I	
			I	1		I	
Spinks------------	40	\| Moderate	I	\| Low		I	
		Texture/rock fragments	10.50	,		I	
			1	,		I	
			I	I		I	
680943 :	I	I	I	1		I	
Milnichol--------	\| 90		\| Low		\|High		1
		1	I	\| Wetness		11.00	
		$1 \longrightarrow$	I	1		I	
680945:	I	1	I	1		I	
	90	\| Moderate	1	\| Low		I	
		\| Texture/rock	10.50	I		I	
		fragments	I	I		I	
			I	1		I	
680946:	I	1	I	1		I	
	\| 90	\| Moderate	1	\| Low		I	
	1	\| Texture/rock	10.50	\|		I	
	I	\| fragments	I	I		,	
			I	1		1	

Table 6.-Land Management, Part IV (Site Restoration)-Continued


Table 6.-Land Management, Part IV (Site Restoration)-Continued

Map unit symbol and soil name		Potential for damage to soil by fire				
		\| Rating class and	\|Value I	Rating class and	\|Value I	
	\|		I	I	I	I
894105 :	1 \|	1	I	1	I	
Mollineaux	\| 50		\|Moderate	I	\| Low	,
	1 \|	\| Texture/rock	10.50	I	I	
	I	\| fragments	I	1	I	
	1 I	I	I	I	I	
Remus	140	\| Low	I	\| Low	I	
	I	I	I	I	I	
894165 :		1	I	1	I	
Spinks	\| 50		\| Low	I	\| Low	I
		I	I	I	1	
Tekenink, sandy			I	1	1	
substratum	\| 40		\| Low	I	\| Low	I
	1 \|		I	I	I	
899682 :	1 \|	,	I	1	I	
Kaleva	\| 90		\| High	I	\| Low	1
		\| Texture/slope/	11.00	I	I	
	i	\| surface layer	1	I	I	
		\| thickness	I	I	I	
	I	I	I	1	I	
899722 :			I	1	,	
Goodharbor	\| 90		\| Low	I	\| Low	,
	1 I	,	I	I	I	
899731 :	11	1	I	1	,	
Covert	\| 50		\| Low	I	\| Low	1
	11		I	\|	,	
Pipestone-	\| 40		\| Low	I	\| High	I
		,	I	\| Wetness	11.00	
		I	I	1	,	
899733 :	1 \|	1	I	1	I	
Covert---	\| 50		\| Low	I	\| Low	I
			I	\|	,	
Dair	\| 45		\| Low	I	\|High	,
	i	I	I	\| Wetness	11.00	
	11	I	I	,	,	
899734:			I	1	,	
Benzonia----------	\| 90		\| Low	I	\|Low	,
	1 \|		1	1	1	

Table 7.-Recreation, Part I (Camp and Picnic Areas)
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 7.-Recreation, Part I (Camp and Picnic Areas)-Continued


Table 7.-Recreation, Part I (Camp and Picnic Areas)-Continued

Map unit symbol and soil name	\|Pct. of	Camp areas		Picnic areas		
	\|unit		\| Rating class and	\|Value	\| Rating class and   \| limiting features	\|Value I
	I	I	I	I	I	
190792:	I	I	I	I	1	
Marl beds	20	\|Very limited	1	\|Very limited	,	
	1	Depth to	11.00	\| Ponding	11.00	
		I saturated zone	I	Depth to	11.00	
	1	\| Ponding	11.00	saturated zone		
	1	\| Slow water	10.96	Slow water	10.96	
	I	I movement	1	movement	1	
	I	\| Dusty	10.03	\| Dusty	10.03	
	I	,	1	I	1	
190794:	I	1	1	I	I	
Emmet	160	\|Somewhat limited	1	\|Somewhat limited	1	
		\| Dusty	10.01	\| Dusty	10.01	
		,	1	,	I	
Leelanau	$\begin{array}{lll}1 & 30 \\ 1 \\ 1 & \\ 1\end{array}$	\| Somewhat limited\| Too sandy	1	\|Somewhat limited	1	
			10.72	I Too sandy	10.72	
		Too sandy	I	I	I	
190795:	I	I	I	1	I	
Emmet-	$\begin{array}{ll}1 & 60 \\ 1 & \\ 1 & \\ 1 & \\ 1\end{array}$	\|Somewhat limited	1	\|Somewhat limited	1	
		\| Slope	10.04	\| Slope	10.04	
		\| Dusty	10.01	\| Dusty	10.01	
			I	I	I	
Leelanau	30		1	\|Somewhat limited	1	
		\|Somewhat limited   \| Too sandy	10.72	I Too sandy	10.72	
		\| Slope	10.04	\| Slope	10.04	
		,	I	I	I	
190796:	1	I	I		I	
Emmet-	50	\|Very limited	I	\|Very limited	I	
		\| Slope	11.00	\| Slope	11.00	
		\| Dusty	10.01	\| Dusty	10.01	
		\\|	I	-	,	
Leelanau----------	30	\|Very limited	I	\|Very limited	,	
		\| Slope	11.00	\| Slope	11.00	
		\| Too sandy	10.72	\| Too sandy	10.72	
		I	1	边		
190797:	1		I	1	,	
Emmet-	150	\|Very limited	I	\|Very limited	I	
			11.00	\| Slope	11.00	
			10.01	\| Dusty	10.01	
			I	I	,	
Leelanau----------	30	\|Very limited	I	\|Very limited		
		\| Slope	11.00	\| Slope	11.00	
		I Too sandy	10.72	I Too sandy	10.72	
		,	1	,	1	
190799 :	I	,	$1 \quad 1$	1	I	
Emmet	45	\|Very limited	I	\|Very limited	I	
	I	\| Slope	11.00	\| Slope	11.00	
	1	Dusty	10.01	\| Dusty	10.01	
	I	1	I		I	
Leelanau	30	\|Very limited	I	\|Very limited	I	
	1	\| Slope   I Too sandy	11.00	\| Slope	11.00	
	1		10.72	\| Too sandy	10.72	
	1 I		1	1	1	
190801 :	1	1	11	,	I	
Emmet-	170	\|Somewhat limited	1 \|	\|Somewhat limited	1	
			10.12	I Gravel content	10.12	
		\| Dusty	10.01	\| Dusty	10.01	
		\|	1 \|	\|	I	
Mancelona-	\| 25	\| Somewhat limited	1 1	\|Somewhat limited		
	1	\| Gravel content	10.26	\| Gravel content	10.26	
	1		I		,	

Table 7.-Recreation, Part I (Camp and Picnic Areas)-Continued


Table 7.-Recreation, Part I (Camp and Picnic Areas)-Continued

Map unit symbol and soil name			Picnic areas			
		I Camp areas				
	$\begin{aligned} & \text { \|map \| } \\ & \mid \text { unit\| } \end{aligned}$	Rating class and limiting features	\|Value I	Rating class andlimiting features	\|Value	
					1	
	1 \|	I	I	I	I	
193269:	I	1	I	1	I	
Grattan	$\begin{array}{ll}1 & 95 \\ \text { \| } \\ \text { 1 }\end{array}$	\|Very limited	I	\|Very limited	I	
		\| Slope	11.00	\\| Too sandy	11.00	
		I Too sandy	11.00	Slope	11.00	
		I	I	\|	,	
193270:	I	1	I	I	I	
Covert	190	\|Very limited	I	\|Very limited	I	
		Too sandy	11.00	\\| Too sandy	11.00	
		\| Depth to	10.39	\| Depth to	10.19	
		\| saturated zone	1	saturated zone	,	
		1	I	I	I	
193271:	I	I	I	1	I	
Pipestone---------	\| 90	\|Very limited	I	\|Very limited	I	
		$\begin{aligned} & \text { Depth to } \\ & \text { saturated zone } \\ & \text { Too sandy } \end{aligned}$	11.00	I Depth to	11.00	
			I	saturated zone	I	
			10.99	\\| Too sandy	10.99	
		1	I	I	I	
193272 :	1	I	I	I	I	
Dai	190		I	\|Very limited	I	
	I	\|Very limited	11.00	I Ponding	11.00	
	I	saturated zone	I	I Depth to	11.00	
	I	\| Ponding	11.00	saturated zone	I	
	I	1	I	I	I	
193277:	I	1	I	I	I	
Benona	90		I	\|Very limited	I	
		Too sandy	11.00	I Too sandy	11.00	
		\|	I	I	I	
193278:	I	I	I		I	
Benona	90		I	\|Very limited	I	
		\|Very limited	11.00	I Too sandy	11.00	
		I Too sandy   \| Slope	10.04	Slope	10.04	
		\| Slope	I	\|	I	
193279:	I	1	I	I	I	
Benona-	190	\|Very limited	I	\|Very limited	I	
		\| Too sandy	11.00	I Too sandy	11.00	
		\| Slope	11.00	\| Slope	11.00	
		+	I	\|	I	
$193284 \text { : }$   Udorthents	I	1	I	1	I	
	55		I	\|Very limited	,	
	I	\|Very limited	Slope	11.00	Slope	11.00
	I	\| Slow water	10.26	Slow water	10.26	
	I	\| movement	I	movement	I	
	I	\| Dusty	10.01	\| Dusty	10.01	
	I	\|	I	\|	I	
Udipsamments------	35	\|Very limited	I	\|Very limited	I	
	I	\| Slope	11.00	\\| Too sandy	11.00	
	I	I Too sandy	11.00	\| Slope	11.00	
	I	I	I	\|	I	
193285:	I	I	I	,	I	
Lumley	55		I	\|Very limited	I	
	I	\|Very limited	11.00	I Ponding	11.00	
	I	\| saturated zone	I	Depth to	11.00	
	I	\| Ponding	11.00	saturated zone	,	
	I	\| Dusty	10.03	I Dusty	10.03	
	I	I	I	1	I	
Makinen-----------	40	\|Very limited	1	\|Very limited	1	
	I	I Depth to	11.00	I Ponding	11.00	
	I	\| saturated zone	I	I Depth to	11.00	
	I	\| Ponding	11.00	\| saturated zone	I	
	I	\| Dusty	10.03	I Dusty	10.03	
		I	1 \|	1	I	

Table 7.-Recreation, Part I (Camp and Picnic Areas)-Continued


Table 7.-Recreation, Part I (Camp and Picnic Areas)-Continued

Map unit symbol and soil name		Camp areas		Picnic areas		
	$\begin{aligned} & \text { \|map \| } \\ & \text { \|unit\| } \end{aligned}$	\| Rating class and	\|Value I	\| Rating class and	\|Value 1	
$894063 \text { : }$	\|		I	I	I	I
	I	1	I	I	I	
Spinks	\| 40	\|Very limited	I	\|Very limited	,	
		\\| Too sandy	11.00	\| Too sandy	11.00	
		\| Slope	11.00	\| Slope	11.00	
		I	I	I	I	
$\begin{array}{r} 894064 \text { : } \\ \text { Fern- } \end{array}$	I	1	I	1	I	
	50	\|Very limited	I	\| Very limited	1	
	I	I Too sandy	11.00	\| Too sandy	11.00	
	I	I Depth to	10.39	\| Slow water	10.26	
	I	saturated zone	1	I movement	1	
	I	\| Slow water	10.26	\| Depth to	10.19	
	I	\| movement	1	\| saturated zone	I	
	I	\| Slope	10.04	\| Slope	10.04	
	I	I	I	I	I	
Remus-------------	140	\|Somewhat limited	1	\|Somewhat limited	1	
		\| Slope	10.04	\| Slope	10.04	
		\| Slow water	10.01	\| Slow water	10.01	
		\| movement	1	\| movement	1	
		Dusty	10.01	\| Dusty	10.01	
			I	1	I	
$\begin{gathered} 894065: \\ \text { Fern-- } \end{gathered}$	I	1	I	I	I	
	50	\|Very limited	I	\| Very limited	I	
	I	\| Too sandy	11.00	I Too sandy	11.00	
	1		10.39	\| Slow water	10.26	
		\| Depth to	I	I movement	,	
	1 I	\| Slow water	10.26	I Depth to	10.19	
	1 I	\| movement	1	I saturated zone	1	
	1 I	1	I	I	I	
Remus	40	\|Somewhat limited		\|Somewhat limited		
		Slow water	10.01	\| Slow water	10.01	
		\| movement	I	\| movement	1	
		\| Dusty	10.01	\| Dusty	10.01	
		I	I	I	I	
894104:	1 I	I	I	I	I	
Mollineaux--------	50	\|Very limited	I	\|Very limited	I	
		\| Slope	11.00	\| Slope	11.00	
		\| Too sandy	10.88	I Too sandy	10.88	
		\| Slow water	10.26	\| Slow water	10.26	
		I movement	I	I movement	I	
		1	I	I	I	
Remus-------------	40		1	\|Very limited		
	1	\|Very limited	Slope	11.00	\| Slope	11.00
	1	\| Slow water	10.01	\| Slow water	10.01	
	1 I	\| movement	1	I movement	,	
	11	\| Dusty	10.01	\| Dusty	10.01	
	11	1	I	1	I	
894105:	11	1	I	1	I	
Mollineaux--------	50	\|Very limited	1	\|Very limited	1	
	1 I	\| Slope	11.00	\| Slope	11.00	
	I	I Too sandy	10.88	I Too sandy	10.88	
	I	\| Slow water	10.26	\| Slow water	10.26	
	I	movement	1	\| movement	I	
	1 I		I	1	I	
Remus-------------	40	\|Very limited	1	\|Very limited	1	
	1 I	\| Slope	11.00	\| Slope	11.00	
	11	\| Slow water	10.01	\| Slow water	10.01	
	1 I	I movement	1	I movement	1	
	11	\| Dusty	10.01	\| Dusty	10.01	
	11	1	1	1	1	

Table 7.-Recreation, Part I (Camp and Picnic Areas)-Continued


Table 7.-Recreation, Part II (Trail Management)
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Map unit symbol and soil name} \&  \& \multicolumn{2}{|l|}{Foot traffic and equestrian trails} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Mountain bike and \\
| off-road vehicle trails
\end{tabular}} \\
\hline \& |map | |unit| \& | Rating class and limiting features \& |Value
\[
1
\] \& Rating class and limiting features \& |Value 1 \\
\hline \multirow[b]{2}{*}{190775:} \& \multirow[t]{3}{*}{| 55} \& I \& I \& I \& I \\
\hline \& \& 1 \& I \& 1 \& 1 \\
\hline \multirow[t]{6}{*}{Adrian} \& \& |Very limited \& I \& |Very limited \& I \\
\hline \& 1 \& I Depth to \& 11.00 \& I Depth to \& 11.00 \\
\hline \& I \& | saturated zone \& I \& | saturated zone \& 1 \\
\hline \& 1 \& I Ponding \& 11.00 \& | Ponding \& 11.00 \\
\hline \& I \& | Dusty \& 10.01 \& | Dusty \& 10.01 \\
\hline \& I \& 1 \& 1 \& I \& 1 \\
\hline \multirow[t]{6}{*}{Houghton} \& 45 \& |Very limited \& \& |Very limited \& \\
\hline \& I \& | Depth to \& 11.00 \& | Depth to \& \[
11.00
\] \\
\hline \& I \& | saturated zone \& I \& | saturated zone \& I \\
\hline \& I \& I Ponding \& 11.00 \& | Ponding \& 11.00 \\
\hline \& I \& | Dusty \& 10.01 \& | Dusty \& 10.01 \\
\hline \& I \& | \& \&  \& , \\
\hline 190777: \& I \& 1 \& I \& 1 \& I \\
\hline \multirow[t]{2}{*}{Alcona} \& \multirow[t]{2}{*}{55} \& | Not limited \& I \& \multirow[t]{2}{*}{| Not limited} \& I \\
\hline \& \& \& 1 \& \& I \\
\hline \multirow[t]{5}{*}{Richter} \& \multirow[t]{5}{*}{30

1

1} \& |Somewhat limited \& 1 \& |Somewhat limited \& 1 <br>
\hline \& \& | Depth to \& 10.99 \& | Depth to \& 10.99 <br>
\hline \& \& I saturated zone \& I \& I saturated zone \& , <br>
\hline \& \& Dusty \& 10.01 \& | Dusty \& 10.01 <br>
\hline \& \& 1 \& I \& , \& I <br>
\hline 190778: \& I \& I \& I \& 1 \& I <br>
\hline \multirow[t]{2}{*}{Alcona} \& \multirow[t]{2}{*}{65} \& |Not limited \& I \& | Not limited \& \multirow[t]{2}{*}{I} <br>
\hline \& \& \& I \& | \& <br>
\hline \multirow[t]{5}{*}{Richter} \& \multirow[t]{5}{*}{25} \& |Somewhat limited \& \& |Somewhat limited \& I <br>

\hline \& \& | Depth to \& $$
10.99
$$ \& | Depth to \& \[

10.99
\] <br>

\hline \& \& | saturated zone \& I \& | saturated zone \& 1 <br>
\hline \& \& | Dusty \& 10.01 \& | Dusty \& 10.01 <br>
\hline \& \& 1 \& 1 \& I \& I <br>
\hline 190779 : \& \multicolumn{2}{|l|}{1} \& I \& I \& I <br>
\hline \multirow[t]{2}{*}{Alpena} \& \multirow[t]{2}{*}{90} \& | Not limited \& I \& \multirow[t]{2}{*}{| Not limited} \& I <br>
\hline \& \& I \& I \& \& I <br>

\hline $$
190780 \text { : }
$$ \& I \& I \& I \& 1 \& 1 <br>

\hline \multirow[t]{5}{*}{Au Gres} \& \multirow[t]{5}{*}{45} \& | Very limited \& I \& |Very limited \& , <br>
\hline \& \& I Too sandy \& 11.00 \& I Too sandy \& 11.00 <br>
\hline \& \& I Depth to \& 10.99 \& | Depth to \& 10.99 <br>
\hline \& \& | saturated zone \& I \& I saturated zone \& <br>
\hline \& \& \& I \& | \& I <br>
\hline \multirow[t]{3}{*}{Kalkaska} \& \multirow[t]{3}{*}{35} \& |Very limited \& I \& |Very limited \& I <br>
\hline \& \& | Too sandy \& 11.00 \& | Too sandy \& 11.00 <br>
\hline \& \& I \& 1 \& - \& I <br>
\hline 190781: \& I \& 1 \& I \& , \& I <br>
\hline \multirow[t]{6}{*}{Bach-} \& \multirow[t]{6}{*}{190} \& | Very limited \& \& |Very limited \& <br>
\hline \& \& | Depth to \& 11.00 \& | Depth to \& 11.00 <br>
\hline \& \& | saturated zone \& I \& I saturated zone \& 1 <br>
\hline \& \& I Ponding \& 11.00 \& | Ponding \& 11.00 <br>
\hline \& \& | Dusty \& 10.01 \& | Dusty \& 10.01 <br>
\hline \& \& 1 \& I \& I \& I <br>
\hline 190782: \& I \& \& I \& I \& I <br>
\hline Deer Park- \& \& |Very limited \& 1 \& |Very limited \& <br>
\hline \& 1 | \& | Too sandy \& 11.00 \& | Too sandy \& 11.00 <br>
\hline \& 1 I \& 1 \& I \& 1 \& 1 <br>
\hline
\end{tabular}

Table 7.-Recreation, Part II (Trail Management)-Continued


Table 7.-Recreation, Part II (Trail Management)-Continued


Table 7.-Recreation, Part II (Trail Management)-Continued


Table 7.-Recreation, Part II (Trail Management)-Continued

Map unit symbol and soil name		Foot traffic andequestrian trails		$\begin{aligned} & \text { Mountain bike and } \\ & \text { off-road vehicle trails } \end{aligned}$				
	\|map		unit		\| Rating class and	\|Value I	Rating class and \| limiting features	\|Value I
190817:	1901	\|	I	\|	1			
		I	I	1	1			
Kalkaska		\|Very limited	1	\| Very limited	I			
	190	I Too sandy	11.00	I Too sandy	11.00			
		\| Slope	10.82	I	1			
		1	I	I	I			
190818:	I	1	I		I			
Kalkaska	190	\|Very limited	I	\|Very limited	I			
		\| Slope	11.00	I Too sandy	11.00			
		I Too sandy	11.00	\| Slope	10.78			
			I	,	I			
190819:	11	1	I	1	,			
Kalkaska	55	\|Somewhat limited	I	\|Somewhat limited	1			
		I Too sandy	10.42	I Too sandy	10.42			
		I	I	,	I			
East Lake	35	\|Somewhat limited	I	\|Somewhat limited	I			
		\\| Too sandy	10.42	\| Too sandy	10.42			
		1	I	,	I			
190820:	I	1	I	1	I			
Kiva-	65	\|Somewhat limited	1	\|Somewhat limited	1			
		\| Dusty	10.01	\| Dusty	10.01			
			I		1			
Mancelona	30	\| Not limited	I	\| Not limited	I			
		I	I	I	I			
190821:	1	1	I	1	I			
Kiva--	\| 50		\|Somewhat limited	Dusty	i	\|Somewhat limited		
			10.01	\| Dusty	$10.01$			
			1	I	1			
Mancelona---------190823:	30	\|Not limited	I	\| Not limited	I			
			I		I			
	1 I	1	I	\|Somewhat limited	I			
$\begin{array}{r} \text { 190823: } \\ \text { Kiva-- } \end{array}$	50	\|Somewhat limited	1		1			
		I Slope	10.82	\| Dusty	10.01			
		\| Dusty	10.01	I	1			
		1	1	1	I			
Mancelona---------	30	\|Somewhat limited		\| Not limited	I			
		\| Slope	10.82		I			
		I	1	I	I			
190824:	11	1	I	1	I			
Lake beaches	100\|Not rated		I	\| Not rated	I			
	1 I	I	I	-	I			
190825:	1 I	1	I	1	I			
Lake bluffs	100\|Not rated		I	\| Not rated	I			
	11	I	I	1	I			
190826:	1 I		I	\|Somewhat limited	I			
Leelanau	60	\|Somewhat limited	1		1			
		I Too sandy	10.72	I Too sandy	10.72			
			I	I	I			
East Lake	30	\|Somewhat limited	Too sandy	I	\|Somewhat limited	1		
			10.42	\| Too sandy	10.42			
		I	1	I	1			
190827:	1 1		I	I	I			
Leelanau	\| 65	\|Somewhat limited Too sandy	1	\|Somewhat limited	1			
			10.72	I Too sandy	10.72			
		1	1		I			
East Lake-	\| 25		\|Somewhat limited	1	\|Somewhat limited	I		
		\| Too sandy	10.42	\| Too sandy	10.42			
	11	I	1	I	1			

Table 7.-Recreation, Part II (Trail Management)-Continued


Table 7.-Recreation, Part II (Trail Management)-Continued


Table 7.-Recreation, Part II (Trail Management)-Continued


Table 7.-Recreation, Part II (Trail Management)-Continued

| Map unit symbol and soil name | \|Pct. | | of | Foot traffic and equestrian trails |  | \| Mountain bike a | and trails |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { \|map \| } \\ & \text { \|unit\| } \end{aligned}$ | Rating class and \|Value limiting features | |  | Rating class and limiting features | \|Value I |
|  | I I |  | 1 | \| | 1 |
| 190852 : | 1 I | I | I | 1 | I |
| Munuscong--------- | 30 \| | Very limited | I | \|Very limited | 1 |
|  | 1 I | \| Depth to | 11.00 | \| Depth to | 11.00 |
|  | 1 I | \| saturated zone | 1 | \| saturated zone | 1 |
|  | 1 I | \| Ponding | 11.00 | \| Ponding | 11.00 |
|  | 1 I | \| Dusty | 10.01 | \| Dusty | 10.01 |
|  | 1 \| | I | 1 | I | I |
| Iosco | $\begin{array}{ll}1 & 20 \\ 1 \\ 1 \\ 1 & \\ 1\end{array}$ | Somewhat limited | I | \|Somewhat limited | 1 |
|  |  | I Depth to | 10.99 | \| Depth to | 10.99 |
|  |  | \| saturated zone | 1 | \| saturated zone | I |
|  |  | I Too sandy | 10.78 | I Too sandy | 10.78 |
|  |  | , | I | 1 | I |
| 190853: | 1 \| | 1 | I | I | I |
| Water | 100\|Not rated |  | I | \| Not rated | I |
|  | 100\|Not rated |  | I | \| | 1 |
| 190854: | 1 I | I | I |  | I |
| Wallace----------- | 50 | \|Very limited |  | \|Very limited | I |
|  |  | \| Too sandy | 11.00 | I Too sandy | 11.00 |
|  |  |  | I | , | I |
| Kalkaska | 45 | \|Very limited | I | \|Very limited | I |
|  |  | \| Too sandy | 11.00 | I Too sandy | 11.00 |
|  |  |  | 1 |  |  |
| 190855: | 1 \| | I | I | 1 | I |
| Wind eroded land |  |  | I | \| Very limited | I |
|  | 100\|Very limited\| Too sandy |  | 11.00 | I Too sandy | 11.00 |
|  | 1 I | 1 | I | , | I |
| 190856: | 1 I |  | I | 1 | I |
| Wind eroded land | 100\|Very limited |  | I | \|Very limited |  |
|  | 1 I | \| Too sandy | 11.00 | \| Too sandy | 11.00 |
|  | 1 I | Slope | 11.00 | \| Slope | 10.14 |
|  | 1 \| |  | I | 1 | 1 |
| 193236: | 11 | 1 | I | I | I |
| Beaches | 100\|Not rated |  | I | \| Not rated | I |
|  | 1 I | I | I | 1 | I |
| $193237 \text { : }$ | 11 |  | I | 1 | I |
| Thompsonville----- | 50 | \|Very limited | I | \| Very limited | I |
|  |  | I Too sandy | 11.00 | I Too sandy | 11.00 |
|  |  | I Depth to | 10.44 | I Depth to | 10.44 |
|  |  | \| saturated zone | I | I saturated zone | I |
|  |  | , | I | I | I |
| Milnichol--------- | 40 | \|Very limited | 1 | \|Very limited | 1 |
|  |  | I Depth to | 11.00 | I Depth to | 11.00 |
|  |  | \| saturated zone |  | I saturated zone |  |
|  |  | I Too sandy | 11.00 | I Too sandy | 11.00 |
|  |  | I | I | , | I |
| 193255: | 11 | I | I | I | I |
| Spinks | 50 | \|Very limited | I | \| Very limited | 1 |
|  |  | I Too sandy | 11.00 | I Too sandy | 11.00 |
|  |  | I | I | \| | I |
| Coloma | 40 | \|Very limited | I | \| Very limited | I |
|  |  | \| Too sandy | 11.00 | I Too sandy | 11.00 |
|  |  | 1 | I | I | I |
| 193256: | 1 I | I | I | I | I |
| Spinks | 50 | \|Very limited | I | \|Very limited | 1 |
|  |  | I Too sandy | 11.00 | I Too sandy | 11.00 |
|  |  |  | I | \| | 1 |
| Coloma | 40 | \|Very limited | 1 | \|Very limited | 1 |
|  |  | I Too sandy | 11.00 | I Too sandy | 11.00 |
|  |  |  | I | 1 | I |

Table 7.-Recreation, Part II (Trail Management)-Continued

Map unit symbol and soil name		Foot traffic and equestrian trails		Mountain bike and off-road vehicle trails			
	\|map	unit		\| Rating class and	\|Value	Rating class and limiting features	\|Value
	$\mid$ \|	\|	1	\|	I		
193257 :	I	I	1	I	1		
Spinks	155		I	\|Very limited	1		
		\| Too sandy	11.00	\| Too sandy	11.00		
		I	I	\|	,		
Coloma	35	\| Very limited	1	\|Very limited	I		
		Too sandy	11.00	\| Too sandy	11.00		
			I	,	I		
193258 :	1 I	I	1	,	,		
Spinks-	50	\|Very limited	1	\|Very limited	I		
		\| Too sandy	11.00	I Too sandy	11.00		
		\| Slope	11.00	\| Slope	10.04		
		\|	I		I		
Coloma------------	40	\|Very limited	I	\|Very limited	I		
		\| Too sandy	11.00	\| Too sandy	11.00		
		\| Slope	11.00	\| Slope	10.04		
		I	I	-	I		
193260 :	I	1	I	I	I		
Copemish----------	195		1	\|Very limited	\|		
		\|Very limited	Too sandy	11.00	\| Too sandy	11.00	
		\|	I	,	1		
193262 :	I	1	1	1	I		
Kaleva-	195		I	\|Very limited	I		
		\|Very limited   \| Too sandy	11.00	I Too sandy	11.00		
		I	\|	,	\|		
193263 :	I	I	I	,	I		
Kaleva	95		,	\|Very limited	I		
		\|Very limited   \| Too sandy	11.00	\| Too sandy	11.00		
		1	I	I	I		
193265 :	1	I	I	I	1		
Grattan	95		I	\|Very limited	I		
		\|Very limited   \| Too sandy	11.00	I Too sandy	11.00		
		\|	1	I	I		
193266:	I	I	I	\|	I		
Grattan	95	\| Very limited	I	\|Very limited	I		
		\| Too sandy	11.00	\| Too sandy	11.00		
		I	1	I	I		
193267 :	I	I	I	\|	I		
Grattan	95		1	\| Very limited	1		
		\|Very limited   \| Too sandy	11.00	\| Too sandy	11.00		
		1 100 sandy	1	I	I		
193269 :	1 I	$1$	I		I		
Grattan----------	95	\|Very limited	1	\|Very limited	$1$		
	I	\| Slope	11.00	\| Too sandy	11.00		
	,	\| Too sandy	11.00	\| Slope	11.00		
	1 I	I	I	,	\|		
193270:	I	I	I	,	I		
Covert	90	Very limited	I	\|Very limited	1		
	\|	Too sandy		11.00	I Too sandy	11.00	
	1		\|	-	1		
193271:	-	1	1 I	,	I		
Pipestone	1 90	\|Very limited	1	\| Very limited	1		
		$\begin{aligned} & \text { Depth to } \\ & \text { saturated zone } \\ & \text { Too sandy } \end{aligned}$	11.00	Depth to	11.00		
			1	\| saturated zone	1		
			10.99	\| Too sandy	10.99		
		Too sandy	1 I	I	I		
193272:   Dair--	$\begin{array}{ll} 1 & 1 \\ \text { I } & \text { I } \end{array}$		1 1	1	I		
	190	\| Very limited	I	\|Very limited	1		
	I	\| Depth to	11.00	\| Depth to	11.00		
	I	\| saturated zone	I	\| saturated zone	I		
	1	I Ponding	11.00 \|	\| Ponding	11.00		
	1	I	1	I	I		

Table 7.-Recreation, Part II (Trail Management)-Continued

Map unit symbol and soil name		Foot traffic and equestrian trails		$\begin{aligned} & \text { Mountain bike and } \\ & \text { off-road vehicle trails } \end{aligned}$				
	\|map		unit		Rating class and limiting features	\|Value	\| Rating class and limiting features	\|Value
193277:	\|		I	1	\|	I		
	1 \|	I	1	I	I			
Benona	190	\|Very limited	I	\|Very limited	1			
		I Too sandy	11.00	I Too sandy	11.00			
		,	I	,	I			
193278:	I		I	1	I			
Benona	190	\|Very limited	I	\|Very limited	1			
		I Too sandy	11.00	\| Too sandy	11.00			
193279:	I		I	1	I			
Benona	190	\|Very limited	I	\|Very limited	I			
		I Too sandy	$11.00$	I Too sandy	11.00			
			I	I	I			
$193284:$Udorthe	I	I	I	I	I			
	55	\|Very limited	1	\|Very limited	i			
		\| Slope	11.00	\| Slope	$11.00$			
		\| Dusty	10.01	\| Dusty	10.01			
			I	\|	I			
Udipsamments------	35	\|Very limited	1	\|Very limited	I			
		\| Slope	11.00	\| Too sandy	11.00			
		I Too sandy	11.00	\| Slope	11.00			
			I	,	,			
193285:	I		I	1	,			
Lumley	\| 55	\|Very limited	1	\|Very limited	1			
		Depth to	11.00	\| Depth to	11.00			
		I saturated zone	I	saturated zone				
		Ponding	11.00	\| Ponding	11.00			
		Dusty	10.03	\| Dusty	10.03			
			I	I	I			
Makinen	40	\|Very limited	I	\|Very limited				
		D Depth to	11.00	\| Depth to	11.00			
		\| saturated zone	I	I saturated zone	I			
		Ponding	11.00	\| Ponding	11.00			
		Dusty	10.03	\| Dusty	10.03			
			I	,	I			
193286:Histosols	1		I	,	I			
	55	\|Very limited	I	\|Very limited				
		Depth to	11.00	\| Depth to	11.00			
		\| saturated zone	1.	I saturated zone	1.00			
		Organic matter	11.00	\| Organic matter	$11.00$			
		content	I	I content	$1$			
		Ponding	11.00	I Ponding	11.00			
		Dusty	10.03	\| Dusty	10.03			
		I	I	1	I			
Aquents-	45	\|Very limited	I	\| Very limited	I			
		Depth to	11.00	\| Depth to	11.00			
		I saturated zone	I	I saturated zone	$1$			
		I Too sandy	11.00	\| Too sandy	11.00			
		Ponding	11.00	I Ponding	11.00			
		I	1	,	I			
193287:	I	I	I	,	I			
Dune land	55	Not rated	I	\| Not rated	I			
			I	,	I			
Quartzipsamments--	40	\|Very limited	1	\| Very limited				
		Slope	11.00	\| Too sandy	11.00			
		I Too sandy	11.00	\| Slope	11.00			
			I	1	I			
193288:Udipsamments	11	I	I	1	I			
	\| 100		\|Very limited	I	\| Very limited	I		
	11	I Too sandy	11.00	I Too sandy	11.00			
			I	I	1			

Table 7.-Recreation, Part II (Trail Management)-Continued


Table 7.-Recreation, Part II (Trail Management)-Continued

Map unit symbol and soil name		Foot traffic andequestrian trails		Mountain bike and off-road vehicle trails			
	\|map	unit		Rating class and	\|Value I	\| Rating class and	\|Value I
	I	I	I	I	1		
631170 :	I	I	I	I	I		
Fogg-	1 50	\|Very limited	1	\|Very limited	I		
		\| Slope	11.00	\| Too sandy	11.00		
		I Too sandy	11.00	\| Slope	11.00		
			1	I	\|		
Benzonia	40	\| Very limited	I	\|Very limited			
		\| Slope	11.00	\| Too sandy	11.00		
		I Too sandy	11.00	\| Slope	11.00		
631171:	1	\|	1	\|	1		
Fogg-	50	\|Very limited	I	\|Very limited	,		
		\\| Too sandy	11.00	I Too sandy	11.00		
		I Slope	11.00	\| Slope	10.04		
			I	,	,		
Benzonia	40	\| Very limited	I	\|Very limited	1		
		\| Too sandy	11.00	I Too sandy	11.00		
		\| Slope	11.00	\| Slope	10.04		
		I	I	I	I		
631172 :	1	I	I	,	1		
Fogg--	50	\|Very limited	1	\|Very limited	1		
		\\| Too sandy	11.00	\| Too sandy	11.00		
			I	I	1		
Benzonia	40	\|Very limited	I	\|Very limited			
		I Too sandy	11.00	\| Too sandy	$11.00$		
		I	1	I	1		
631173 :	1		I		1		
Fogg--	50	\|Very limited	1	\|Very limited	I		
		Too sandy	11.00	\| Too sandy	11.00		
			I	1	,		
Benzonia	40	\|Very limited	$1$	\|Very limited			
		\| Too sandy	11.00	\| Too sandy	11.00		
		I	I	1	I		
631174Fogg-	1		I		I		
	50	\|Very limited	I	\|Very limited	I		
		\| Too sandy	11.00	\| Too sandy	11.00		
			I	I	I		
Benzonia	40	\|Very limited	I	\|Very limited			
		Too sandy	11.00	\| Too sandy	11.00		
		I	1	I	1		
680939:	I	I	I	1	I		
	50	\|Very limited	1	\|Very limited			
		\| Too sandy	11.00	\| Too sandy	11.00		
			I	I	I		
Spinks	40	\|Very limited		\|Very limited			
		\| Too sandy	11.00	\| Too sandy	11.00		
		\|	1	I	\|		
680943:Milnichol	1	1	I	I	I		
	90	\|Very limited	1	\|Very limited			
		\| Depth to	11.00	I Depth to	11.00		
		\| saturated zone	1	I saturated zone	11.00		
		I Too sandy	11.00	I Too sandy	11.00		
			1	1	1		
680945:	I		I	I	I		
	190	\|Very limited	1	\|Very limited			
		I Too sandy	11.00	I Too sandy	11.00		
		I	1	I	1		

Table 7.-Recreation, Part II (Trail Management)-Continued


Table 7.-Recreation, Part II (Trail Management)-Continued

Map unit symbol and soil name		Foot traffic andequestrian trails		Mountain bike and off-road vehicle trails				
	\|map		unit		\| Rating class and	\|Value	\| Rating class and   \| limiting features	\|Value I
	1 \|	1	I	\|	1			
894064:	I	1	,	I	I			
Fern-	50	Very limited	I	\|Very limited	,			
	1	I Too sandy	11.00	\| Too sandy	11.00			
	I		I	\|	1			
Remus	40		1	\|Somewhat limited	I			
		\|Somewhat limited	Dusty	10.01	\| Dusty	10.01		
	1 I	,	I	I	I			
894065 :	1 I	1	1	I	1			
Fern-	50		1	\|Very limited	1			
		\|Very limited	Too sandy	11.00	I Too sandy	11.00		
			I	1	I			
Remus	140		1	\|Somewhat limited	I			
		\|Somewhat limited	Dusty	10.01	\| Dusty	10.01		
		1	I	I	I			
894104 :	1 I	1	1	1	1			
Mollineaux	50	Very limited	I	\| Somewhat limited	1			
		Slope	11.00	\| Too sandy	10.88			
		I Too sandy	10.88	\| Slope	10.04			
		1	I	I	I			
Remus	40		I	\|Somewhat limited	,			
		\|Very limited	Slope	11.00	\| Slope	10.04		
		I Dusty	10.01	\| Dusty	10.01			
		1	I	I	I			
894105 :	1 I	I	I	1	I			
Mollineaux--------	50	\|Somewhat limited   \| Too sandy	I	\|Somewhat limited	I			
			10.88	I Too sandy	10.88			
			1	I	I			
Remus	40	\|Somewhat limited	1	\|Somewhat limited	1			
			10.01	\| Dusty	10.01			
			I	I	I			
894165 :	1 I	I	1	1	I			
Spinks-----------	50		I	\|Very limited	1			
		\|Very limited   \| Slope	11.00	\| Too sandy	11.00			
		\| Too sandy	11.00	\| Slope	11.00			
		1	I	\|	I			
Tekenink, sandysubstratum----	40		I	1	I			
		\|Very limited	I	\|Very limited	1			
	1 I	\| Slope	11.00	\| Slope	11.00			
	I Too sandy		10.50	I Too sandy	10.50			
	1 \|		I	I	1			
899682 :	1 I	,	I		I			
Kaleva	90	\| Very limited	I	\|Very limited	I			
		\| Slope	11.00	I Too sandy	11.00			
		I Too sandy	11.00	\| Slope	11.00			
		I	I	,	I			
899722 :	1	1	I		I			
Goodharbor--------	190	\|Very limited	1	\|Very limited				
		I Too sandy	11.00	\| Too sandy	11.00			
		1	I	I	I			
899731 :	1 I	1	1	I	I			
Covert------------	50	\|Very limited	1	\|Very limited				
		\| Too sandy	11.00	\| Too sandy	11.00			
			I	1	I			
Pipestone--------	40	\|Very limited	1	\|Very limited				
		I Depth to	11.00	\| Depth to	11.00			
		\| saturated zone	1	\| saturated zone	1			
		I Too sandy	10.99	I Too sandy	10.99			
		I	1	I	1			

Table 7.-Recreation, Part II (Trail Management)-Continued


Table 8.-Dwellings and Small Commercial Buildings
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 8.-Dwellings and Small Commercial Buildings-Continued


Table 8.-Dwellings and Small Commercial Buildings-Continued


Table 8.-Dwellings and Small Commercial Buildings-Continued

Map unit symbol and soil name		Dwellings without basements		Dwellings with bas	sements	Small commercial buildings			
	\|map	unit		\| Rating class and	\|Value I	\| Rating class and	\|Value I	\| Rating class and   \| limiting features	\|Value I
	I	I	1	\|		\|	I		
190809:	I	I	1	1	I	1	I		
Emmet	50	\|Very limited	I	\|Very limited	1	\|Very limited	1		
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00		
			I	I	I	\|	I		
Omena	45	\|Very limited	I	\|Very limited	I	\|Very limited	1		
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00		
		I	I	\|	I	,	I		
190811:	I	1	I	1	,	,	I		
Hettinger---------	45	\|Very limited	I	\|Very limited	1	\|Very limited	1		
	\|	I Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00		
		I Depth to	11.00	\| Depth to	11.00	\| Depth to	11.00		
	I	\| saturated zone	I	saturated zone		\| saturated zone	1		
	1		I	\|	,	,	1		
Muck	30	\|Very limited	I	\|Very limited	I	\|Very limited	,		
	1 I	I Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00		
	1 I	\| Subsidence	11.00	\| Subsidence	11.00	\| Subsidence	11.00		
	1 I	I Depth to	11.00	\| Depth to	11.00	I Depth to	11.00		
	1	\| saturated zone	1	saturated zone	1	I saturated zone			
	I								
190812 :	1	1	I	1	I	1	,		
Hettinge	$45$	\|Very limited	I	\|Very limited	1	\|Very limited	I		
	1 \|	\| Ponding	11.00	I Ponding	11.00	I Ponding	11.00		
	1	I Depth to	11.00	\| Depth to	11.00	\| Depth to	11.00		
	I	\| saturated zone	I	I saturated zone	I	\| saturated zone	I		
	1	।	I	\|	1	1	1		
Tonkey-	130	\|Very limited	I	\|Very limited	1	\|Very limited			
	1 I	\| Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00		
	1	\| Depth to	11.00	\| Depth to	11.00	\| Depth to	11.00		
	I	saturated zone		\| saturated zone		I saturated zone	,		
	1	$1$				I	1		
190814:	11		I	1	I	1	1		
Kalkaska	185	\|Not limited	I	\| Not limited	I	\| Not limited	I		
		\|	I		I	I	I		
190815:	1	I	I	1	I	I	I		
Kalkaska	185	\|Somewhat limited		\|Somewhat limited	1	\|Very limited			
		\| Slope	10.04	\| Slope	10.04	\| Slope	$11.00$		
			I	-	I	I	I		
190816:	I	1	I	1	I	I	1		
Kalkaska----------	190	\|Very limited	I	\|Very limited	I	\|Very limited			
		\| Slope	11.00	\| Slope	11.00	\| Slope	$11.00$		
		1	1	,	1	\|	I		
190817:	I	1	I	1	I	I	1		
Kalkaska	190	\|Very limited	i	\|Very limited	I	\|Very limited			
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00		
		\|	I	,	I	I	1		
190818:	I	,	I	1	I	I	1		
Kalkaska	190	\|Very limited	I	\|Very limited	I	\|Very limited	1		
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00		
		\|	1	I	1	I	I		
190819:	I	1	I	1	I	1	I		
Kalkaska	55	\|Not limited	1	\| Not limited	I	\| Not limited	1		
			1	,	I	\|	1		
East Lake	\| 35	\|Not limited	I	\| Not limited	I	\| Not limited	1		
		\|	I		I	I	I		
	I		I	,	I	I	I		
Kiva--	\| 65	\|Not limited	1	\| Not limited	I	\| Not limited	1		
			I	1	I	1	I		
Mancelona	\| 30		\|Not limited	I	\| Not limited	I	\| Not limited	I	
	1 I		1	\|	I	I	1		

Table 8.-Dwellings and Small Commercial Buildings-Continued


Table 8.-Dwellings and Small Commercial Buildings-Continued

Map unit symbol and soil name		Dwellings without basements		\| Dwellings with basements 1		\| Small commercial				
	\|map		unit		\| Rating class and	\|Value	\| Rating class and	\|Value	Rating class and limiting features	\|Value
193277:	I	\|	I	1	I	\|	I			
	90	I	I	I	1	1	,			
Benona		\|Not limited	I	\| Not limited	I	\| Not limited	I			
			I	I	I	I	I			
193278:	I		I	1	1	1	I			
Benona	90	\|Somewhat limited	I	\|Somewhat limited	I	\|Very limited	I			
		\| Slope	10.04	\| Slope	10.04	\| Slope	11.00			
	I		I	I	I	1	,			
193279:	I		I	I	I	I	I			
Benona	90	\|Very limited	I	\|Very limited	I	\|Very limited	I			
	\| Slope		11.00	\| Slope	11.00	\| Slope	11.00			
	I		I	I	I	\|	I			
193284:	I		I	I	I	1	I			
Udorthents--------	55	\|Very limited	I	\|Very limited	1	\|Very limited	I			
	I	\| Slope	11.00	\| Slope	11.00	\| Slope	11.00			
	I		I	1	I	I	I			
Udipsamments------	35	\|Very limited	I	\|Very limited	I	\|Very limited	I			
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00			
			I	I	I	\|	I			
193285:	I		I	I	I	1	1			
Lumley	55	\|Very limited	I	\|Very limited	I	\|Very limited	I			
	I	\| Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00			
	,	\| Subsidence	11.00	\| Subsidence	11.00	\| Subsidence	11.00			
	11	I Depth to	11.00	I Depth to	11.00	I Depth to	11.00			
	1 I	\| saturated zone		\| saturated zone	1	saturated zone				
	1	\| Organic matter	11.00	\| Organic matter	11.00	\| Organic matter	11.00			
	1 I	\| content	I	I content	I	content	I			
	I		1	I	I	\|	I			
Makinen-	40	\|Very limited	I	\| Very limited	I	\|Very limited				
	I	I Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00			
	I	\| Subsidence	11.00	\| Subsidence	11.00	\| Subsidence	11.00			
	1	\| Depth to	11.00	\| Depth to	11.00	\| Depth to	11.00			
	I	\| saturated zone	I	\| saturated zone	I	saturated zone				
	1	\| Organic matter	11.00	1	I	\| Organic matter	11.00			
	1 I	content		I	I	I content				
	1		I	I	I	I	I			
193286:	1 I	I	I	1	I		I			
Histosols---------	\| 55	\|Very limited	I	\|Very limited	I	\|Very limited	I			
		I Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00			
	1 I	\| Subsidence	11.00	\| Subsidence	11.00	\| Subsidence	11.00			
	11	\| Depth to	11.00	\| Depth to	11.00	Depth to	11.00			
	11	I saturated zone	,	I saturated zone	I	saturated zone				
	1	\| Organic matter	11.00	1	I	\| Organic matter	11.00			
	11	\| content	1	I	1	\| content	I			
	I		I	I	I	I	I			
Aquents-----------	45	\|Very limited	I	\|Very limited	I	\|Very limited				
	1 I	I Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00			
	1	I Depth to	11.00	I Depth to	11.00	I Depth to	11.00			
	I	I saturated zone	1	I saturated zone	I	I saturated zone	I			
	1		I	I	I	,	I			
193287:	\|	1	I	I	1	1	I			
Dune land-----------\|	\| 55	\|Not rated	I	\| Not rated	I	\| Not rated	I			
		$1$	I	\|	I		I			
Quartzipsamments--	40	\|Very limited	I	\|Very limited	I	\|Very limited	I			
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00			
			I	1	I	1	I			
193288:	11		I	1	I	,	I			
Udipsamments----	\| 100		\|Not limited	I	\| Not limited	I	\| Not limited	I		
	1 I		I	1	I	,	I			

Table 8.-Dwellings and Small Commercial Buildings-Continued


Table 8.-Dwellings and Small Commercial Buildings-Continued

Map unit symbol and soil name		Dwellings without basements		Dwellings with bas	sements	Small commercial buildings				
	\|map		unit		\| Rating class and	\|Value I	\| Rating class and	\|Value I	\| Rating class and	$\begin{aligned} & \text { \|Value } \\ & \text { \| } \end{aligned}$
193365:	\| 91		1	1		\|	I			
			1	I	11	1	1			
Benzon		Not limited	I	\| Not limited	1	\| Not limited	1			
	1		1	I	1					
	I	,	I	I	1	I	I			
Dair--	$\begin{array}{ll}1 & 50 \\ 1 \\ 1 \\ 1 & \end{array}$	Very limited	I	\|Very limited	I	\| Very limited	1			
		I Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00			
		I Depth to	11.00	I Depth to	11.00	I Depth to	11.00			
		I saturated zone	I	I saturated zone		I saturated zone				
			I	I	11	\|	1			
Pipestone---------	40	\|Very limited	I	\|Very limited	I	\| Very limited	1			
		\| Depth to	11.00	\| Depth to	11.00	\| Depth to	11.00			
		saturated zone		\| saturated zone		\| saturated zone	I			
			I	I	I	I	1			
193372 :	$\begin{aligned} & \text { \| } \\ & 100 \text { Not rated } \end{aligned}$		1	I	1	1	1			
Access Den			I	\| Not rated	1	\| Not rated	I			
	100\|Not rated I		I	I	I		I			
$193423:$	I		I	I	I	\|Very limited	1			
Benona	195		1	\|Very limited	I					
		\| Slope	11.00	\| Slope	11.00	Slope	11.00			
			I	I	I	\|	,			
193484:	1		I	I	I	I	I			
Pits, sand and	I		I	I	I	1	I			
	$100 \text { Not rated }$\|		I	\| Not rated	I	\| Not rated	I			
			I	I	I	\|	I			
193494 :	1		I	I	,		I			
Nordhouse---------	100\|Very limited		I	\|Very limited	1 I	\|Very limited	I			
	Slope		11.00	\| Slope	11.00	\| Slope	11.00			
			I	I	I					
193496 :	I	I	I	I	I		I			
Nordhouse---------	95	\|Somewhat limited	1	\|Somewhat limited	I	\|Very limited	$11.00$			
		\| Slope	10.63	I Slope	10.63	\| Slope				
			I	1	I	,	1			
193497 :	I		I	I	$1 \quad 1$	1	I			
Nordhouse----------- 95		\|Not limited	I	\| Not limited	I	\| Not limited	I			
$1 \quad 1$	95		I	I	I		I			
$193498 \text { : }$			I	I	I	1	I			
Nordhouse-----------\| 40			\|Not limited	I	\| Not limited	I	\| Not limited	I		
			I	I	I	1	I			
Platteriver-------	35	\|Somewhat limited	I	\|Very limited	I	\|Somewhat limited	$10.98$			
		I Depth to	10.98	\| Depth to	11.00	\| Depth to				
		\| saturated zone	I	I saturated zone	I	\| saturated zone	I			
		\|	I	I	I	\|	I			
Dair	25	\|Very limited	1	\|Very limited	1	\|Very limited	$1$			
		\| Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00			
		Depth to	11.00	I Depth to	11.00	I Depth to	11.00			
		saturated zone	I	I saturated zone	I	\| saturated zone				
			I	I	I	,	I			
193503: \|			I	I	I	1	I			
Spinks	50	\|Not limited	I	\| Not limited	I	\| Not limited	I			
			I	I	I	,	I			
Shavenaugh--------193504:	40	\| Not limited	I	\| Not limited	I	\| Not limited	I			
			I	I	I	I				
	I	\|Somewhat limited	I	I	I	1	I			
Spinks	50		I	\|Somewhat limited	I	\|Very limited	$11.00$			
		\| Slope	10.04	\| Slope	10.04	\| Slope				
			I	I	I	I	I			
Shavenaugh	40	\|Somewhat limited	1	\|Somewhat limited	1	\|Very limited				
		\| Slope	10.04	\| Slope	10.04	\| Slope	11.00			
			1	1	I	,	I			

Table 8.-Dwellings and Small Commercial Buildings-Continued

| Map unit symbol and soil name | \|Pct. | of |map |unit | Dwellings without basements |  | Dwellings with basements |  | \| Small commercial |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \| Rating class and | \|Value | \| Rating class and | \|Value | \| Rating class and | \|Value |
|  |  | \| limiting features | 1 | \| limiting features | I | \| limiting features | 1 |
| $193505 \text { : }$ | 1 \| | \| | I | I | I | \| | I |
|  | 1 I | I | I | 1 | I | 1 | 1 |
| Spinks- | \| 50 | | \|Very limited | I | \|Very limited | I | \|Very limited | I |
|  | I | \| Slope | 11.00 | \| Slope | 11.00 | \| Slope | 11.00 |
|  | 1 I | , | I | I | 1 | \| | \| |
| Shavenaugh | \| 40 | | \|Very limited |  | \|Very limited | I | \|Very limited | 1 |
|  | 1 I | \| Slope | 11.00 | \| Slope | 11.00 | \| Slope | 11.00 |
|  | 1 I | I | I | I | I | I | I |
| 193506: | 1 | I | I | I | 1 | I | , |
| Spinks | 150 \| | \| Very limited | I | \|Very limited | I | \|Very limited | , |
|  | I | \| Slope | 11.00 | \| Slope | 11.00 | \| Slope | 11.00 |
|  | 1 I | , | I | I | I | \| | 1 |
| Shavenaugh | \| 40 | \|Very limited | I | \|Very limited | 1 | \|Very limited |  |
|  | I | \| Slope | 11.00 | \| Slope | 11.00 | \| Slope | $1.00$ |
|  | , | 1 | I | 1 | I | \\| | , |
| 193507: | I | I | 1 | 1 | 1 | I | 1 |
|  | 150 | \| Very limited |  | \|Very limited | I | \|Very limited | I |
|  | 1 I | \| Slope | 11.00 | \| Slope | 11.00 | \| Slope | 11.00 |
|  | I | 1 | I | I | I | , | 1 |
| Shavenaugh | \| 40 | \|Very limited | I | \|Very limited | I | \|Very limited |  |
|  | , | \| slope | 11.00 | \| Slope | 11.00 | \| Slope | $1.00$ |
|  | , | \| | I | I | I | , | I |
| 193508: | I | 1 | I | I | I | 1 | I |
| Madaus | 190 | \| Very limited | I | \|Very limited | I | \|Very limited |  |
|  | I | \| Ponding | 11.00 | \| Ponding | 11.00 | \| Ponding | 11.00 |
|  | 11 | I Depth to | 11.00 | I Depth to | 11.00 | \| Depth to | 11.00 |
|  | I | I saturated zone | 1 | I saturated zone | I | \| saturated zone |  |
|  | , |  |  | I |  | , |  |
| 193509: | I | 1 | I | I | I | , | , |
| Boyer | \| 50 | \| Not limited | I | \| Not limited | I | \|Not limited |  |
|  | I |  | I | I | I |  | I |
| Shavena | 140 | \| Not limited | I | \| Not limited | I | \| Not limited | I |
|  | I | I | I | I | I | , | I |
| $193510 \text { : }$ | I |  | I | I | I | 1 | I |
| Boyer- | 150 | \|Somewhat limited |  | \|Somewhat limited | I | \|Very limited | I |
|  | , | \| Slope | 10.04 | \| Slope | 10.04 | \| Slope | 11.00 |
|  | 1 | I | 1 | I | I | I | I |
| Shavenaugh | \| 40 | \|Somewhat limited |  | \| Somewhat limited | 1 | \|Very limited | I |
|  | , | \| Slope | 10.04 | \| Slope | 10.04 | \| Slope | 11.00 |
|  | , | I | I | 1 | I | 1 | I |
|  | I |  | I | I | I | 1 | I |
| Boyer- | \| 50 | \| Very limited | I | \|Very limited | I | \|Very limited | I |
|  | , | \| Slope | 11.00 | \| Slope | 11.00 | \| Slope | 11.00 |
|  | I | 1 | I | I | I | I | I |
| Shavenaugh | 1401 | \| Very limited |  | \|Very limited | 1 | \|Very limited |  |
|  | , | \| Slope | 11.00 | \| Slope | 11.00 | \| Slope | 11.00 |
|  | , | 1 | I | 1 | I | 1 | I |
|  | I |  | I | I | I | 1 | I |
| Dair-- | 150 | \|Very limited | I | \|Very limited | I | \|Very limited |  |
|  | , | \| Ponding | 11.00 | \| Ponding | 11.00 | \| Ponding | 11.00 |
|  | , | \| Depth to | 11.00 | \| Depth to | 11.00 | \| Depth to | 11.00 |
|  | I | \| saturated zone | I | \| saturated zone | I | I saturated zone | I |
|  | I | I | I | $1$ | I | I | I |
| Adrian | \| 45 | \| Very limited | I | \|Very limited | I | \|Very limited | I |
|  | I | \| Ponding | 11.00 | \| Ponding | 11.00 | \| Ponding | 11.00 |
|  | I | \| Subsidence | 11.00 | \| Subsidence | 11.00 | \| Subsidence | 11.00 |
|  | I | \| Depth to | 11.00 | \| Depth to | 11.00 | I Depth to | 11.00 |
|  | I | I saturated zone | I | I saturated zone | I | \| saturated zone | I |
|  | I | \| Organic matter | 11.00 | I | I | \| Organic matter | 11.00 |
|  | I | \| content |  | I | I | \| content | 1 |
|  |  |  | 1 | 1 | 1 | l | I |

Table 8.-Dwellings and Small Commercial Buildings-Continued

Map unit symbol and soil name	$\begin{aligned} & \mid \\ & \mid \\ & \text { \| Pct. } \\ & \text { I of } \end{aligned}$	Dwellings without basements		\| Dwellings with basements	I		\| Small commercial		
	\|map	unit		\| Rating class and	\|Value I	\| Rating class and	$\begin{aligned} & \mid \text { \|Value } \\ & \mid \end{aligned}$	\| Rating class and	\|Value I
	\|		I	I	I	1 I	I	I	
193514:	55	I	I	\| Very limited	1 I	1	,		
Platteriver-------		\|Somewhat limited	1		I	\|Somewhat limited	1		
	1	\| Depth to	10.98	\| Depth to	11.00	\| Depth to	10.98		
	1 I	saturated zone	1	\| saturated zone	1	saturated zone	I		
	1 I	1	I	I	1 I				
Pipestone---------	140	\|Very limited	I	\|Very limited	1 I	\|Very limited			
	1	\| Depth to	11.00	\| Depth to	11.00	\| Depth to	11.00		
		\| saturated zone	I	\| saturated zone	1	\| saturated zone	I		
			1	I	1	,	I		
202010 :	,	I	I	1	I		I		
Houghton----------	55	\|Very limited	I	\| Very limited	1 I	\|Very limited	1		
		\| Ponding	11.00	\| Ponding	11.00	\| Ponding	11.00		
		\| Subsidence	11.00	\| Subsidence	11.00	\| Subsidence	11.00		
		I Depth to	11.00	I Depth to	11.00	I Depth to	11.00		
		\| saturated zone	I	I saturated zone	I	saturated zone	1		
		\| Organic matter	11.00	\| Organic matter	11.00	\| Organic matter	11.00		
		\| content	i	\| content		content			
		I	I	I	I	\\|	I		
Adrian------------	40	\|Very limited	1	\|Very limited	1 I	\|Very limited	I		
	1	\| Ponding	11.00	\| Ponding	11.00 \|	\| Ponding	11.00		
	I	\| Subsidence	11.00	\| Subsidence	11.00	\| Subsidence	11.00		
	I	I Depth to	11.00	I Depth to	11.00	I Depth to	11.00		
	1	\| saturated zone	I	I saturated zone	I	saturated zone			
	1	\| Organic matter	11.00	I	I	\| Organic matter	11.00		
	I	\| content	1	I	I	I content	I		
	1	I	1	I	I	I	I		
202016:	1	1	1	,	1	,	I		
Spinks	50	\| Not limited	I	\| Not limited	1 I	\| Not limited	I		
			1	I	I	,	I		
Tekenink, sandy substratum----	11		1	1	I		I		
	40	\|Not limited	1	\| Not limited	I		I		
		I	I	I	I	\| Not limited	I		
631170:	1 I		1	I	I		I		
Fogg--	50	\|Very limited		\|Very limited	I	\|Very limited			
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00		
		1	I	I	I		I		
Benzonia----------	40	\|Very limited		\|Very limited	I	\|Very limited			
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00		
		1	1	1	I	1	I		
631171:Fog	1 I		1		I		I		
	50	\|Very limited	1	\|Very limited	I	\|Very limited			
	I	\| Slope	11.00	\| Slope	11.00	\| Slope	11.00		
	I	1	1	I	I	1	I		
Benzonia----------	40	\|Very limited		\|Very limited	1	\|Very limited			
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00		
	,	1	I	1	I	I	I		
631172 :		1	1	1	1 I		I		
Fogg--	50	\|Very limited	1	\| Very limited	11.00	\|Very limited			
		\| Slope	11.00	\| Slope	11.00 \|	\| Slope	11.00		
		1	1	1	1 I	I	I		
Benzonia----------	40	\|Very limited	1	\| Very limited	1 1	\|Very limited			
		\| Slope	11.00	\| Slope	11.00 \|	Slope	11.00		
		11	I	1	1 I	1	I		
631173:	1	I	I	1	1 I	I	I		
Fogg--	50	\|Somewhat limited	1	\|Somewhat limited	1 \|	\|Very limited			
		\| Slope	10.04	\| Slope	10.04	\| Slope	11.00		
			1	\|	1 1	\|	I		
Benzonia	\| 40	\|Somewhat limited\| Slope	1	\| Somewhat limited	1 1	\|Very limited			
			10.04	\| Slope	10.04	\| Slope	11.00		
				I	1				

Table 8.-Dwellings and Small Commercial Buildings-Continued


Table 8.-Dwellings and Small Commercial Buildings-Continued

Map unit symbol and soil name	$\begin{aligned} & \mid \\ & \mid \\ & \text { \| Pct. } \\ & \text { I of } \end{aligned}$	Dwellings without basements		Dwellings with basements\|		\| Small commercial		
	\|map	unit	\| Rating class and	\|Value I	\| Rating class and	$\begin{aligned} & \mid \text { \|Value } \\ & \mid \end{aligned}$	\| Rating class and	\|Value
893251:	\|		I	I	I	I	1	I
	\| 50	1	I	I	1 I	1	,	
Boyer-		\|Very limited	I	\|Very limited	1	\|Very limited	1	
	1 I	Slope	11.00	\| Slope	11.00	\| Slope	11.00	
	1 I	1	I	\|	I	\\|	I	
Shavenaugh	140	\|Very limited		\|Very limited	I	\|Very limited		
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00	
		I	I	I	I	I	I	
894062 :	50	1	I	I	1	I	,	
Remus		\|Very limited	1	\|Very limited	I	\|Very limited	I	
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00	
		\| Shrink-swell	10.01	\| Shrink-swell	10.09	\| Shrink-swell	10.01	
	I	I	I		I		I	
Spinks	140	\|Very limited	1	\|Very limited	I	\|Very limited		
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00	
		1	I	I	I	,	I	
894063:	1	I	I	,	I	I	I	
Remus-	50	\|Very limited	I	\|Very limited	1	\|Very limited	I	
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00	
		\| Shrink-swell	10.01	Shrink-swell	10.09	\| Shrink-swell	10.01	
		i		\|	I		I	
Spinks------------	40	\|Very limited	1	\|Very limited	1 1	\|Very limited	,	
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00	
		1	1	-	I	1	I	
894064:	1 I	1	1		I	I	I	
Fern--	$\begin{array}{lll}1 & 50 & 1 \\ 1 & & 1 \\ 1 & & 1 \\ 1 & & 1 \\ 1 & & 1\end{array}$	\|Somewhat limited		\|Very limited	1	\|Very limited	I	
		\| Depth to	10.39	\| Depth to	11.00	\| Slope	11.00	
		\| saturated zone		saturated zone		I Depth to	10.39	
		\| Slope	10.04	Slope	10.04	\| saturated zone		
		\| Shrink-swell	10.01	Shrink-swell	10.01	\| Shrink-swell	10.01	
Remus-------------	40	\|Somewhat limited	1	\|Somewhat limited	1 \|	\|Very limited	I	
		\| Slope	10.04	\| Shrink-swell	10.091	\| Slope	11.00	
		\| Shrink-swell	10.01	Slope	10.04	\| Shrink-swell	10.01	
		\|	1	,	1	,	I	
894065:	, 50	1	1		I	I	I	
Fern-	50	\|Somewhat limited		\|Very limited	i	\|Somewhat limited		
		\| Depth to	$10.39$	\| Depth to	11.00	\| Depth to	10.39	
		\| saturated zone	i	saturated zone	I	\| saturated zone	1	
		\| Shrink-swell	10.01	Shrink-swell	10.01	\| Shrink-swell	10.01	
			1		I		I	
Remus	40	\|Somewhat limited	1	\|Somewhat limited	1	\|Somewhat limited		
		\| Shrink-swell	10.01	Shrink-swell	10.09	\| Shrink-swell	10.01	
		1	1	\|	I	1	1	
894104:	I	I	1	I	11	I	I	
Mollineaux--------	50	\|Very limited	1	\|Very limited	1 I	\|Very limited		
		\| Slope	11.00	\| Slope	11.00	\| Slope	11.00	
			I		1 I		I	
Remus-------------	40	\|Very limited	1	\|Very limited	I	\|Very limited		
		\| Slope	11.00	\| Slope	11.00 \|	\| Slope	11.00	
		\| Shrink-swell	10.01	Shrink-swell	10.09 \|	\| Shrink-swell	10.01	
		1	1	\|	1 I	1	I	
894105:	1 I	1	1	,	1 I	I	I	
Mollineaux--------	50	\|Very limited	1	\|Very limited	1 I	\|Very limited	I	
		\| Slope	11.00	\| Slope	11.00 \|	\| slope	11.00	
		\|	I		1 I	\|	I	
Remus-------------	40	\|Very limited	1	\|Very limited	1 1	\|Very limited	I	
		\| Slope	11.00	\| Slope	11.00 \|	\| Slope	11.00	
		\| Shrink-swell	10.01	\| Shrink-swell	10.09 \|	\| Shrink-swell	10.01	
					,			

Table 8.-Dwellings and Small Commercial Buildings-Continued


Table 9.-Roads and Streets, Shallow Excavations, and Landscaping
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 9.-Roads and Streets, Shallow Excavations, and Landscaping-Continued


Table 10.-Sewage Disposal
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued

Map unit symbol and soil name		Septic tank absorption fields		\| Sewage lagoons		
	$\begin{aligned} & \text { \|map \| } \\ & \text { \|unit\| } \end{aligned}$	Rating class and \|Valuelimiting features \|		Rating class and \|Value\| limiting features		
	1 \|	I	I	1	I	
190787:	1 I	1	I	1	I	
East Lake	190	\|Very limited	I	\|Very limited	I	
		\\| Seepage, bottom	11.00	\| Seepage	11.00	
		\| layer	I	\| Slope	10.08	
		Filtering	11.00	1	I	
		\| capacity	I	I	I	
		1	I	1	I	
190788:	I	I	I	I	I	
East Lake	90	\|Very limited	I	\|Very limited	I	
	I	Seepage, bottom	11.00	\| Seepage	11.00	
	11	\| layer	I	\| Slope	11.00	
	11	\| Filtering	11.00	1	I	
	1 I	\| capacity	I	1	I	
	1 I	\| Slope	10.04	1	1	
	1 I	I	I	I	I	
190789:East Lake	1 I	\|	I	I	I	
	90	\|Very limited	I	\|Very limited	I	
East Lake	1 I	\| Seepage, bottom	11.00	\| Slope	11.00	
	1 I	\| layer	I	\| Seepage	11.00	
	1 I	\| Slope	11.00	1	I	
	1 I	\| Filtering	11.00	1	I	
	1 I	\| capacity	I	I	I	
	1 I	1	1	1	I	
190790:	11	1	I	1	I	
East Lake	90	\|Very limited	I	\|Very limited	I	
	1 I	\| Slope	11.00	\| Slope	11.00	
	I	\| Seepage, bottom	11.00	\| Seepage	11.00	
	11	\| layer		1	I	
	11	\\| Filtering	11.00	1	I	
	11	I capacity	I	I	I	
	11	1	I	I	I	
190791:	1 I	1	I	1	I	
Eastport	93		I	\| Very limited	I	
	1 I	\| Seepage, bottom	11.00	\| Seepage	11.00	
	11	\| layer		\| Slope	10.08	
	11	\| Filtering	11.00	1	I	
	11	\| capacity	I	I	I	
	11	1	I	I	I	
190792 :	11		I	I	I	
Edwards	70	\|Very limited	I	\|Very limited	I	
	1 I	\|Very limited	Flooding	11.00	I Ponding	11.00
	11	\| Ponding	11.00	\| Flooding	11.00	
	11	\| Depth to	11.00	\| Organic matter	11.00	
	1 I	\| saturated zone	I	I content	\|	
	11	\| Slow water	11.00	I Depth to	11.00	
	11	\| movement	I	I saturated zone	I	
	11	\| Subsidence	11.00	\| Seepage	11.00	
	11	\|	I	\\|	I	
Marl beds	20	\|Very limited	I	\|Very limited	1	
	11	I Ponding	11.00	I Ponding	11.00	
	11	Depth tosaturated zone	11.00	\| Organic matter	11.00	
	11		1	I content	I	
	11	Slow water movement	11.00	Depth to saturated zone	11.00	
	11		I		I	
	1 I		I	1	I	
190794:	11	\|	I	I	I	
Emmet	160	\|Very limited	I	\|Very limited	I	
	1 I	\\| Seepage, bottom	11.00	\| Seepage	11.00	
	11	\| layer	1	\| Slope	10.32	
	11	\| Slow water	10.50	1	I	
	11	I movement	1	1	I	
	11	1	I	1	1	

Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued

Map unit symbol and soil name		Septic tank absorption fields		Sewage lagoons		
	\|map		Rating class and \|Valuelimiting features \|		\| Rating class and	\|Value I
190801:	\|		I	1	\|	1
		1	1	1	1	
Emmet-	\| 70	\|Very limited	1 I	\|Very limited	1	
		\|Very limited   \| Seepage, bottom	11.00	\| Seepage	11.00	
		\| layer	1	Slope	11.00	
		\| Slow water	10.50	\|	I	
		\| movement	1	I	I	
			I	1	I	
Mancelona	25	\|Very limited	,	\|Very limited	1	
		\| Seepage, bottom	11.00	\| Seepage	11.00	
		\| layer	I	Slope	11.00	
		1	I	-	,	
190803:	1 I	I	1	1	1	
Emmet-	60		I	\|Very limited	1	
	1 I	\| Slope	11.00	\| Slope	11.00	
	11	\| Seepage, bottom	11.00	Seepage	11.00	
	1 I	\| layer	1	I	I	
	1 I	\| Slow water	10.50	I	I	
	11	I movement	I	I	,	
	11	\|	I	1	1	
Mancelona---------	30	\|Very limited	I	\|Very limited	I	
	1 I	\| Slope	11.00	\| Slope	11.00	
	11	\| Seepage, bottom	11.00	I Seepage	11.00	
	11	\| layer	I	,		
	1 I	1	I	I	I	
190805:	1 I	\|	I	-	I	
Emmet-	50		I	\| Very limited	I	
	1 I	\|Very limited   \| Seepage, bottom	11.00	\| Seepage	11.00	
	1 1	\| layer	1	slope	10.32	
	11	\| Slow water	10.50			
	1 I	\| movement	1	I	,	
	1 I	I	I		I	
Omena	45	\|Very limited	1	\|Very limited	I	
	1 \|	\| Seepage, bottom	11.00	\| Seepage	11.00	
	11	\| layer	I	\| Slope	10.32	
	I	1	I	,	,	
190806:	1 1	1	I	\|	,	
Emmet	50		I	\| Very limited	I	
	1 I	\|Very limited   \| Seepage, bottom	11.00	\| Seepage	11.00	
	1	\| layer	1	\| Slope	11.00	
	11	\| Slow water	10.50	-	1	
	11	\| movement	1	I	I	
	11	\| Slope	10.04	I	I	
	11	\| Slope	I	1	,	
Omena	45	\|Very limited	I	\|Very limited	I	
	1 \|	\| Seepage, bottom	11.00	\| Seepage	11.00	
	11	\| layer	1	\| Slope	11.00	
	11	\| Slope	10.04	,	1	
	11	1	I	,	I	
190807:	1 1	1	I		I	
Emmet-	50	\|Very limited	1	\|Very limited	I	
	1 I	\| Slope	11.00	\| Slope	11.00	
	11	\| Seepage, bottom	11.00	I Seepage	11.00	
	11	\| layer	1	-	I	
	11	\| Slow water	10.50	1	I	
	11	I movement	I	,	I	
	1 I	I	I	1	I	
Omena-	\| 45		\|Very limited	I	\|Very limited	I
	1 I	\| Slope	11.00	\| Slope	11.00	
	11	\| Seepage, bottom	11.00	I Seepage	11.00	
	11	\| layer	I	-	I	
			I		1	

Table 10.-Sewage Disposal-Continued

Map unit symbol and soil name		Septic tank absorption fields		Sewage lagoons				
	\|map		unit		\| Rating class and	Value	\| Rating class and	\|Value I
	1 \|	I	I	I	1			
190808:	I	1	I	I	I			
	150	\|Very limited	1	\|Very limited	I			
	I	\| Slope	11.00	\| Slope	11.00			
	I	\| Seepage, bottom	11.00	\| Seepage	11.00			
	I	\| layer	1	I	I			
	I	\| Slow water	10.50	1	I			
	I	\| movement	I	I	I			
	I	,	I	I	I			
Omena	45	\|Very limited	I	\|Very limited	i			
		\| Slope	11.00	\| Slope	$11.00$			
		\| Seepage, bottom	11.00	\| Seepage	11.00			
		\| layer	I	I	I			
		\\|	I	I	I			
190809:		1	I	I	I			
Emmet	50	\|Very limited	I	\|Very limited	1			
		\| Slope	11.00	\| Slope	11.00			
		\| Seepage, bottom	11.00	I Seepage	11.00			
		\| layer		1	I			
		\| Slow water	10.50	1	I			
		I movement	I	I	I			
		$1$	I	1	\|			
Omena	145	\|Very limited	1	\|Very limited	1			
		\| Slope	11.00	\| Slope	11.00			
		\| Seepage, bottom	11.00	\| Seepage	11.00			
		\| layer	\|	I				
		1	I	I	I			
190811:	I	1	I	I	I			
Hettinger	$\begin{array}{ll}1 & 45 \\ 1 \\ 1 \\ 1 \\ 1\end{array}$	\| Very limited	I	\|Very limited	1			
		I Ponding	11.00	I Ponding	11.00			
		I Depth to	11.00	\| Depth to	11.00			
		\| saturated zone	$1$	I saturated zone	I			
		\| Slow water	11.00	1	1			
		I movement	I	I	I			
		,	I	1	I			
Muck	1301111	\|Very limited	1	\|Very limited				
		\| Ponding	11.00	\| Ponding	11.00			
		I Depth to	11.00	\| Organic matter	11.00			
		\| saturated zone		\| content				
		\| Slow water	10.73	\| Depth to	11.00			
		I movement	I	I saturated zone	I			
		,	I	\| Seepage	11.00			
		1	1	1	,			
190812:Hettinge	1 I	1	1	I	1			
	111111	\| Very limited	I	\|Very limited	1			
		\| Ponding	11.00	\| Ponding	11.00			
		I Depth to	11.00	I Depth to	11.00			
		\| saturated zone	I	I saturated zone	I			
		\| Slow water	11.00	,	I			
		\| movement	I	I	I			
		I	I	I	I			
Tonkey------------	30	\|Very limited	I	\|Very limited	,			
		\| Ponding	11.00	\| Ponding	11.00			
		\| Depth to	11.00	\| Seepage	11.00			
		\| saturated zone	I	I Depth to	11.00			
		\| Filtering	11.00	\| saturated zone	I			
		\| capacity	1	1	I			
		\| Seepage, bottom	11.00	I	I			
		\| layer	1	I	1			
		I	1	1	1			

Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued

Map unit symbol and soil name	I\|Pct.I of\|map\|unit	Septic tank absorption fields		\| Sewage lagoons	
		Rating class and	\|Value I	Rating class and   \| limiting features	\|Value I
190833:	1 I	I	I	I	1
	1 I		I	1	I
Mancelona---------	$\begin{array}{lll}1 & 90 & 1 \\ 1 & & 1 \\ 1 & & 1 \\ 1 & & 1\end{array}$	\|Very limited	I	\|Very limited	I
		\| Seepage, bottom	11.00	\| Seepage	11.00
		\| layer	I	Slope	11.00
		\| Slope	10.04	\|	I
			,	1	I
190834 :	1 I	1	I	1	I
Mancelona--------	160	\|Very limited	1	\|Very limited	I
		Seepage, bottom	11.00	\| Seepage	11.00
		\| layer	I	Slope	10.08
		-	I	\|	I
East Lake	130111	\|Very limited	1	\|Very limited	I
		\| Seepage, bottom	11.00	\| Seepage	$11.00$
		\| layer	I	\| Slope	10.08
		\| Filtering	11.00	,	I
		I capacity	I	I	I
		1 l		I	I
190835 :	1 I	1	I	1	I
Mancelona---------	55		1	\|Very limited	
	1	\| Seepage, bottom	11.00	\| Seepage	11.00
	1 \|	\| layer	1	\| Slope	11.00
	1 I	\| Slope	10.04	I	I
	1 I	\|	I	\|	I
East Lake	35		I	\|Very limited	I
	1	Seepage, bottom	11.00	\| Seepage	11.00
	1 I	\| layer	1	\| Slope	11.00
	11	\| Filtering	11.00	,	I
	11	\| capacity	1	I	I
	1 I	\| Slope	10.04	I	I
	1 I	1	I	I	I
190836:	1 I	1	I	,	I
Mancelona---------	50	\|Very limited	I	\|Very limited	I
	1 I	\| Seepage, bottom	11.00	\| Slope	11.00
	,	\| layer	i	I Seepage	11.00
	I	\| Slope	11.00	Seap	1
	I	\|	I	+	I
East Lake	30	\| Very limited	1	\|Very limited	I
	1	\| Seepage, bottom	11.00	\| Slope	11.00
	1 I	\| layer	I	I Seepage	11.00
	1 I	\| Slope	11.00	-	1
	11	\| Filtering	11.00	1	I
	11	\| capacity	I	1	I
	11	1	I	,	I
$190837 \text { : }$		I	I	I	I
Mancelona--------	\| 45	\|Very limited	I	\|Very limited	I
	1 \|	\| Slope	11.00	\| Slope	11.00
	11	I Seepage, bottom	11.00	\| Seepage	11.00
	,	layer	1	I	I
	11		I	,	I
East Lake---------	30		I	\|Very limited	I
	1 I	\| Slope	11.00	\| Slope	11.00
	1	\| Seepage, bottom	11.00	\| Seepage	11.00
	11	\| layer	I	I	I
	1	\| Filtering	11.00	,	I
	1	\| capacity	1	I	I
	1 I	\|	I	,	I
190838: \|	I	1	I	1	I
Mancelona	150	\| Very limited	I	\|Very limited	I
	1 I	I Slope	11.00	\| Slope	11.00
	11	\| Seepage, bottom	11.00	I Seepage	11.00
	1 I	\| layer	1	I	1
	11	1	I	,	1

Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued

Map unit symbol and soil name		Septic tank absorption fields		\| Sewage lagoons		
	$\begin{aligned} & \text { \|map \| } \\ & \text { \|unit\| } \end{aligned}$	Rating class and limiting features	\|Value I	\| Rating class and	\|Value ।	
193288:	I \|		I	I	I	
	11	I	I	I	I	
Udipsamments	100\|Very limited		I	\|Very limited	I	
	I	Seepage, bottom	11.00	\| Seepage	11.00	
	1	layer	I	\| Slope	10.08	
		Filtering	11.00	1	I	
	1 I	capacity	I	I	I	
	I		1	1	I	
193342 :	1 I	I	I	1	I	
Gorvan------------	35	\|Very limited	I	\|Very limited	I	
	1	Flooding	11.00	\| Ponding	11.00	
	I	Ponding	11.00	\| Flooding	11.00	
	I	Depth to	11.00	\| Seepage	11.00	
	1 I	saturated zone	I	I Depth to	11.00	
	I	Slow water	11.00	\| saturated zone	I	
	I	movement	I	1	I	
	I	Seepage, bottom	11.00	I	I	
	I	layer	I	I	I	
	I		I	1	I	
Houghton	\| 30		\|Very limited	1	\|Very limited	1
	1 \|	Flooding	11.00	\| Ponding	11.00	
	I	Ponding	11.00	\| Flooding	11.00	
	I	Depth to	11.00	\| Organic matter	11.00	
	1	saturated zone	I	I content	I	
	I	Subsidence	11.00	\| Depth to	11.00	
	I	Seepage, bottom	11.00	I saturated zone	1	
	1	layer	i	I Seepage	11.00	
	I		I	1	I	
Glendora	\| 20		Very limited	I	\|Very limited	I
	1 I	Flooding	11.00	\| Ponding	11.00	
	I	Ponding	11.00	\| Flooding	11.00	
	I	Depth to	11.00	I Seepage	11.00	
	I	saturated zone		\| Depth to	11.00	
	I	Seepage, bottom	11.00	I saturated zone		
	I	layer	1	,	I	
	1	Filtering	11.00	I	I	
	I	capacity	I	I	I	
	1 I	1 l	I	I	I	
193349:	1 I		I	I	I	
Spinks	\| 50	\|Very limited	I	\|Very limited	I	
	1 I	Slope	11.00	\| Slope	11.00	
	1	Seepage, bottom	11.00	I Seepage	11.00	
	I	layer	I	1	I	
	I	Filtering	11.00	I	I	
	I	capacity	I	I	I	
	1 I	\|	1	I	I	
Coloma	140 \|	Very limited	1	\|Very limited	I	
	1 I	Slope	11.00	\| Slope	11.00	
	I	Seepage, bottom	11.00	\| Seepage	11.00	
	I	layer	1	I	I	
	1	Filtering	11.00	I	I	
	1	capacity	I	I	I	
	1 I		I	I	I	
193351:	1 I	I	I	1	I	
Benona-	\| 95	\|Very limited	I	\|Very limited	I	
	1 I	Slope	11.00	\| Slope	11.00	
	1 I	Seepage, bottom	11.00	\| Seepage	11.00	
	11	layer	I	I	I	
	1 I	Filtering	11.00	I	I	
	11	capacity	I	I	I	
	1 I		1	1	I	

Table 10.-Sewage Disposal-Continued

Map unit symbol and soil name		Septic tank		\| Sewage lagoons				
	\|map		unit		Rating class and limiting features	\|Value I	\| Rating clas	\|Value I
	I	I	I	\|	1			
193354:	1 I	1	I	1	I			
Dune land-----------\|	50	\| Not rated	I	\| Not rated	I			
		\|	I	\|	,			
Quartzipsamments--	$\begin{array}{lll}1 & 40 & 1 \\ 1 & & 1 \\ 1 & & 1 \\ 1 & & 1 \\ 1 & & 1 \\ 1 & & 1\end{array}$	\|Very limited	I	\|Very limited	1			
		\| Seepage, bottom	11.00	\| Seepage	11.00			
		\| layer	I	\| Slope	11.00			
		\| Filtering	11.00	\|	I			
		\| capacity	I	1	I			
		\| Slope	10.63	1	I			
		,	1	1	,			
193357:	1 I	1	I	\|	I			
Shavenaugh--------	\| 85			I	\|Very limited	1		
	1	\| Slope	11.00	\| Slope	11.00			
	1 I	Seepage, bottom	11.00	\| Seepage	11.00			
	11	\| layer	I	S	I			
	1 I	\| Filtering	11.00	1	I			
	11	I capacity	I	I	I			
	1 I	I	I	I	,			
193359 :	1 \|	I	I	1	I			
Shavenaugh--------	85		I	\|Very limited	I			
	I	Seepage, bottom	11.00	\| Seepage	11.00			
	11	\| layer	I	\| Slope	11.00			
	1 I	\| Filtering	11.00	\|	I			
	1 I	\| capacity	I	1	I			
	1 I	\| Slope	10.04	1	I			
	1 I	I	I	1	1			
$193360:$Shavenaugh--------	1 I	I	I	1	I			
	85	\|Very limited	I	\|Very limited	I			
Shavenaugh--------	11	\| Seepage, bottom	11.00	\| Seepage	11.00			
	11	\| layer	I	\| Slope	10.08			
	11	\| Filtering	11.00	,	I			
	1 I	\| capacity	I	I	I			
	1 I	1	1	1	I			
193362: Benzonia---------	11	I	I	1	I			
Benzonia----------	90		1	\|Very limited	I			
	1 I	\|Very limited	11.00		11.00			
	1 I	\| Seepage, bottom	11.00		11.00			
	11	\| layer	I		I			
	11	\| Filtering	11.00	1	I			
	11		I	I	I			
	1 I	I	I	1	I			
193363 :	1 I	I	I	1	I			
Benzonia----------	90 \|	\|Very limited	1	\|Very limited	I			
	1 I	\| Seepage, bottom	11.00	\| Slope	11.00			
	1 I	\| layer	I	I Seepage	11.00			
	11	\| Slope	11.00	I	I			
	11	\| Filtering	11.00	1	I			
	11	\| capacity	I	1	I			
	1 I	I	I	1	I			
193364:	11	I	I	,	I			
Benzonia-	\| 90		\| Very limited	I	\|Very limited	I		
	1 I	I Seepage, bottom	11.00	\| Seepage	11.00			
	11	\| layer	1	\| Slope	11.00			
	11	\| Filtering	11.00	,	I			
	11	\| capacity	1	,	I			
	11	\| Slope	10.04	,	I			
	11	1	I	,	1			

Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued

Map unit symbol and soil name	Pct.	Septic tank absorption fields		Sewage lagoons		
	\|map	unit	\| Rating class and	\|Value I	Rating class and   \| limiting features	\|Value I
193505:	I	I	I	I	I	
	I	-	I	1	,	
Shavenaugh--------	40	\| Very limited	1	\|Very limited	1	
	I	\| Seepage, bottom	11.00	\| Slope	11.00	
	I	\| layer	I	\| Seepage	11.00	
	I	\| Slope	11.00	I	I	
	I	\| Filtering	11.00	I	I	
	1 I	\| capacity	I	I	I	
	I	I	I	I	I	
193506:	I	1	I	I	I	
Spinks	50	\|Very limited	I	\|Very limited	I	
	I	\| Slope	11.00	\| Slope	11.00	
	I	I Seepage, bottom	11.00	\| Seepage	11.00	
	I	\| layer	I	1	I	
	I	\| Filtering	11.00	I	I	
	I	\\| capacity	I	I	I	
	I	I	I	1	,	
Shavenaugh--------	40	\|Very limited	I	\|Very limited	I	
	1	\| Slope	11.00	\| Slope	11.00	
	1	I Seepage, bottom	11.00	\| Seepage	11.00	
		\| layer	I	I	I	
	1	\| Filtering	11.00	I	I	
	1	\\| capacity	I	I	I	
	1	1	I	1	I	
193507:	1	1	I	I	I	
Spinks-----------	50	\|Very limited	I	\|Very limited	,	
	1	\| Slope	11.00	\| Slope	11.00	
	1	\| Seepage, bottom	11.00	\| Seepage	11.00	
	1	\| layer	i	I	$1$	
	I	\| Filtering	11.00	I	I	
	1	\\| capacity	I	I	I	
	I	I	I	I	I	
Shavenaugh	40	\|Very limited	I	\|Very limited	I	
	1	\| Slope	11.00	\| Slope	11.00	
	1	I Seepage, bottom	11.00	I Seepage	11.00	
	I	\| layer	\|	1	\|	
	1	\| Filtering	11.00	I	I	
	1	\| capacity	I	I	I	
	1	I	I	I	I	
193508 :	I	1	I		I	
Madaus------------	90	\|Very limited	I	\|Very limited	I	
	1	\| Ponding	11.00	\| Ponding	11.00	
	11	\| Depth to	11.00	\| Organic matter	11.00	
	1 I	I saturated zone	1	1 content	11.00	
	1 I	\| Slow water	11.00	\| Seepage	11.00	
	1	\| movement	I	I Depth to	11.00	
	1	1 l	I	\| saturated zone	11.00	
	1 I		I	I	1	
193509:	1	1	I	I	I	
Boyer-	50	\|Very limited	I	\|Very limited	I	
	1	\| Seepage, bottom	11.00	\| Seepage	11.00	
	1	\| layer	1	\| Slope	10.08	
	1 I		I	\|	I	
Shavenaugh--------	40	\|Very limited	I	\|Very limited	I	
	1	I Seepage, bottom	11.00	\| Seepage	11.00	
	1	\| layer	1	\| Slope	10.08	
	1	\| Filtering	11.00	1	I	
	I	\| capacity	I	I	I	
	1	1	I	1	I	

Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued

Map unit symbol and soil name		$\qquad$		Sewage lagoons		
	\|map		Rating class and limiting features	\|Value I	Rating class and   \| limiting features	\|Value I
	\|		I	I	\|	1
202010 :	I	I	,	1	1	
Houghton	\| 55	\| Very limited	I	\|Very limited	1	
	1	Ponding	11.00	\| Ponding	11.00	
	1	\| Depth to	11.00	Organic matter	11.00	
	I	\| saturated zone	I	content		
	I	Subsidence	11.00	I Depth to	11.00	
	I	\| Seepage, bottom	11.00	saturated zone	I	
	I	\| layer	I	Seepage	11.00	
	1	I	I	I	I	
Adrian	140	\| Very limited	1	\|Very limited	,	
	1	I Ponding	11.00	\| Ponding	11.00	
	1	I Depth to	11.00	\| Organic matter	11.00	
	1	\| saturated zone	I	content		
	I	\| Subsidence	11.00	I Seepage	11.00	
	1	\| Seepage, bottom	11.00	\| Depth to	11.00	
	I	\| layer	I	saturated zone	I	
	1			1	I	
202016:	I	I	I	1	I	
Spinks------------	\| 50		\|Very limited	1	\|Very limited	I
	1 I	I Seepage, bottom	11.00	\| Seepage	11.00	
	I	layer		\| Slope	10.08	
	I	\| Filtering	11.00	I	I	
	1	\| capacity	I	I	I	
	1 I	I	I	I	I	
Tekenink, sandy substratum----	1 I	I	I	1	I	
	\| 40		\|Very limited	I	\|Very limited	I
	11	Seepage, bottom layer	11.00	\| Seepage	11.00	
	I		I	Slope	10.08	
	I		I			
631170 :	I	-	I	I	I	
Fogg--	150	\|Very limited	1	\|Very limited		
	I	\| Slope	11.00	\| Slope	11.00	
	I	\| Seepage, bottom	11.00	\| Seepage	11.00	
	I	\| layer	I	I	I	
	1 I	\|	I	1	I	
Benzonia----------	\| 40	\| Very limited	I	\|Very limited	I	
	1 I	\| slope	11.00	\| Slope	11.00	
	I	\| Seepage, bottom	11.00	I Seepage	11.00	
	1	\| layer	i	I	I	
	1	\| Filtering	11.00	I	I	
	1	\| capacity	I	I	I	
	I	\|	I	1	I	
631171 :	I	1	1	I	I	
Fogg--------------	50	\|Very limited	1	\|Very limited	$1$	
	1	I Slope	11.00	\| Slope	11.00	
	1	I Seepage, bottom	11.00	I Seepage	11.00	
	1	\| layer	I	1	I	
	I	\\|	I	1	I	
Benzonia----------	\| 40		\|Very limited	I	\|Very limited	I
	1	\| Slope	11.00	\| Slope	11.00	
	I	\| Seepage, bottom	11.00	I Seepage	11.00	
	I	\| layer	1.00	1	I	
	I	\| Filtering	11.00	1	I	
	1	\| capacity	I	1	I	
	11	\|	I	I	I	
631172 :	1	I	I	I	I	
Fogg		\|Very limited	1	\|Very limited	I	
	\| 50	\| Slope	11.00	\| Slope	11.00	
	11	\| Seepage, bottom	11.00	I Seepage	11.00	
	11	\| layer	I	1	I	
	1 I		I	1	I	

Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued

Map unit symbol and soil name	I\|Pct.I of\|map\|unit	Septic tank absorption fields		\| Sewage lagoons		
		Rating class and	\|Value I	Rating class and   \| limiting features	\|Value I	
$\begin{gathered} 680946: \\ \text { Fern- } \end{gathered}$	1 \|	I	1	\|	1	
	I	I	,	I	I	
	190	\|Very limited	1	\|Very limited	1	
		\| Depth to	11.00	\| Seepage	11.00	
		\| saturated zone	I	Depth to	11.00	
		\| Slow water	11.00	\| saturated zone		
		I movement	I	Slope	10.08	
		I	I	\|	I	
680971 :	I	I	1	1	I	
Nessen------------	50	\|Very limited	I	\|Very limited	I	
	1	\| Slope	11.00	\| Slope	11.00	
	1	I Seepage, bottom	11.00	I Seepage	11.00	
	I	\| layer	1	I	I	
	I	\| Filtering	11.00	1	I	
	I	\| capacity	I	I	I	
	I	,	1	1	1	
Kaleva-	\| 40	\| Very limited	I	\|Very limited	I	
	1 I	\| Slope	11.00	\| Slope	11.00	
	1	I Seepage, bottom	11.00	I Seepage	11.00	
	1	\| layer		1	I	
	1	\| Filtering	11.00	1	I	
	1 I	\| capacity	I	I	I	
	I	I	1	1	I	
680972 :	11	1	I	I	I	
Nessen	\| 50		\| Very limited	I	\|Very limited	I
	1 I	S Seepage, bottom	11.00	\| Slope	11.00	
	1 I	\| layer	1	\| Seepage	11.00	
	I	I Slope	11.00	,	I	
	I	\| Filtering	11.00	1	I	
	1	\\| capacity	I	I	I	
	1 I	।	I	,	I	
Kaleva	140	\| Very limited	I	\|Very limited	I	
	1 I	\| Seepage, bottom	11.00	\| Slope	11.00	
	I	\| layer	1	\| Seepage	11.00	
	I	\| Slope	11.00	-		
	1	\| Filtering	11.00	1	I	
	I	\\| capacity	I	I	I	
	1 I	I	I	I	I	
680973 :	11	1	I	,	I	
Nessen------------	\| 50		\|Very limited	I	\|Very limited	I
	1 I	\| Seepage, bottom	11.00	\| Seepage	11.00	
	I	\| layer		\| Slope	11.00	
	I	\| Filtering	11.00	,	I	
	I	\| capacity	1	,	I	
	I	I Slope	10.04	I	I	
	I	\|	1	\|	I	
Kaleva	140 \|	\| Very limited	I	\|Very limited	1	
	1 I	\| Seepage, bottom	11.00	\| Seepage	11.00	
	I	\| layer	1	\| Slope	11.00	
	I	\| Filtering	11.00	,	I	
	I	\| capacity	1	I	I	
	1	\| slope	10.04	I	I	
		I	I		I	
680974 :	11	I	I	I	I	
Nessen	150	\| Very limited	1	\|Very limited		
	1 I	\| Seepage, bottom	11.00	\| Seepage	11.00	
	1 I	\| layer	I	\| Slope	10.08	
	11	\| Filtering	11.00	1	I	
	11	\| capacity	I	,	I	
	1 I		1 \|	1	I	

Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued


Table 10.-Sewage Disposal-Continued


Table 11.-Source of Gravel and Sand
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The ratings given for the thickest layer are for the thickest layer above and excluding the bottom layer. The numbers in the value columns range from 0.00 to 0.99. The greater the value, the greater the likelihood that the bottom layer or thickest layer of the soil is a source of sand or gravel. See text for further explanation of ratings in this table)


Table 11.-Source of Gravel and Sand-Continued

Map unit symbol and soil name	Pct. of	Gravel source		Sand source		
	$\begin{aligned} & \text { \|map \| } \\ & \text { \| unit } \end{aligned}$	\| Rating class and   \| limiting features	\|Value I	\| Rating class and	\|Value	
190783:	1 \|	I	I	I	I	
	I	1	1	1	I	
	\| 100	Poor		1	Fair	1
	1	\| Bottom layer	10.00	\| Bottom layer	10.64	
	I	\| Thickest layer	10.00	Thickest layer	10.99	
	I	,	1	I	I	
190784:	I	1	1		I	
Deer Park---------	170	\| Poor	1	\| Fair	1	
		\| Bottom layer	10.00	\| Bottom layer	10.64	
		\| Thickest layer	10.00	\| Thickest layer	10.99	
			1	Thickest	,	
Roscommon---------	\| 25	\| Poor	,	\| Fair	1	
		\| Bottom layer	10.00	\| Bottom layer	10.64	
		I Thickest layer	10.00	\| Thickest layer	$10.99$	
		I	1	I	I	
190786:	1 \|		1	I	I	
Dune lan	100\|Not rated		,	\| Not rated	I	
	1 I	I	1	I	I	
$190787 \text { : }$	I	1	1	1	I	
East Lak	190	\| Poor		\|Fair		
		\| Thickest layer	10.00	Thickest layer	$10.58$	
		\| Bottom layer	10.00	Bottom layer	10.61	
		1	1		I	
190788:	I	1	,	I	I	
East La	90	\| Poor	1	\|Fair	I	
		\| Thickest layer	10.00	\| Thickest layer	10.58	
		\| Bottom layer	10.00	\| Bottom layer	10.61	
		I	\|	I	i	
190789:	I	1	1	\|Fair	I	
East Lake---------	190	\| Poor	I			
		\| Thickest layer	10.00	\| Thickest layer	$10.58$	
		\\| Bottom layer	10.00	\| Bottom layer	10.61	
		1	I	I	I	
190790 :	I	I	1	I	I	
East Lake---------	90	\| Poor	1	\| Fair	I	
		\| Thickest layer	10.00	\| Thickest layer	10.58	
		I Bottom layer	10.00	\| Bottom layer	10.61	
		I	1	Bottor	I	
190791:	1 I	I	1	1	I	
Eastport----------	193	\| Poor	1	\| Good	I	
		\| Bottom layer	10.00	Bottom layer	10.86	
		\| Thickest layer	10.00		1	
		।	1		I	
190792 :	1 \|	1	I	1	I	
Edwards		\| Poor	1	\| Poor	1	
	70	I Bottom layer	10.00	\| Bottom layer	10.00	
		\\| Thickest layer	10.00	\| Thickest layer	10.00	
		।	,		1	
Marl beds	20	\| Poor	,	\| Poor		
		\| Bottom layer	10.00	\| Bottom layer	10.00	
		\| Thickest layer	10.00	\| Thickest layer	10.00	
		I	I	I	I	
190794:	I	I	I	I	I	
Emmet-------------	60	\| Poor	1	\| Fair	1	
		\| Bottom layer	10.00	\| Bottom layer	10.03	
		\| Thickest layer	10.00	\| Thickest layer	10.09	
		I	I	I	I	
Leelanau	30	\| Poor	I	\|Fair	1	
		\| Bottom layer	10.00	\| Bottom layer	10.10	
		\| Thickest layer	10.00	\| Thickest layer	10.23	
			,	,		

Table 11.-Source of Gravel and Sand-Continued


Table 11.-Source of Gravel and Sand-Continued

Map unit symbol and soil name		Gravel source		Sand source						
	\|map		unit		\| Rating class and limiting features	\|Value		\| Rating class and	limiting features	\|Value I
	I	I	I	I	I					
193286 :	I	1	I	I	I					
Histosols	\| 55	\| Poor	1	\|Fair	1					
		\| Bottom layer	10.00	\| Thickest layer	10.00					
		\| Thickest layer	10.00	\| Bottom layer	10.75					
		)	1	I						
Aquents	145	\| Poor	1	\| Good	1					
		\| Bottom layer	10.00	\| Bottom layer	10.00					
		\| Thickest layer	10.00	,	1					
		\|	1	I	I					
193287:	I	1	I	1	I					
Dune land-------	155	\| Not rated	I	\| Not rated	I					
			I	I	I					
Quartzipsamments--	40	\| Poor	I	\| Good	1					
		\| Bottom layer	10.00	\| Bottom layer	10.00					
		\| Thickest layer	10.00	,	1					
		I	1	I	I					
193288:	I	1	I	1	I					
	100\|Poor		1	IGood	1					
	1 \|	\| Bottom layer	10.00	\| Bottom layer	10.00					
	I	I Thickest layer	10.00		I					
	I	1	I	1	,					
193342 :Gorvan	I	1	I	1	I					
	35	\| Poor	1	\| Fair	,					
		\| Bottom layer	10.00	\| Thickest layer	10.09					
		I Thickest layer	10.00	\| Bottom layer	10.75					
		।	I	\|	,					
Houghton-	30	\| Poor	1	\| Poor						
		\| Bottom layer	10.00	\| Bottom layer	10.00					
		I Thickest layer	10.00	\| Thickest layer	10.00					
		Organic matter	$10.00$	\| Organic matter	$10.00$					
		content	I	\| content	$1$					
		I	I	।	,					
Glendora	20	\| Poor	1	\| Fair						
		\| Bottom layer	10.00	\| Bottom layer	10.51					
		\| Thickest layer	10.00	\| Thickest layer	10.92					
		\|	1	I	I					
193349 :	I	I	I	I	I					
Spinks	50	\| Poor	I	\| Fair	I					
		\| Bottom layer	10.00	\| Bottom layer	10.75					
		\| Thickest layer	10.00	\| Thickest layer	10.95					
			1	I						
Coloma	40	\| Poor	I	\| Fair	I					
		I Bottom layer	10.00	\| Bottom layer	10.15					
		\| Thickest layer	10.00	\| Thickest layer	10.99					
			I	-	1					
193351:	I	1	I	1	I					
	95	\| Poor	1	\|Fair						
		I Bottom layer	10.00	\| Bottom layer	10.38					
		\| Thickest layer	10.00	\| Thickest layer	10.99					
		I	I	I	1					
193354 :	1 1	1	I	1	I					
Dune land-	50	\| Not rated	I	\| Not rated	I					
			I	I	I					
Quartzipsamments--	40	\| Poor	1	\| Good						
		I Bottom layer	10.00	\| Bottom layer	10.00					
		\| Thickest layer	10.00	I	I					
		1	I	I	I					
193357:	1 \|	I	I	1	I					
Shavenaugh-	85	\| Fair	I	\|Fair	,					
		\| Thickest layer	10.00	\| Thickest layer	10.96					
		\| Bottom layer	10.25	\| Bottom layer	10.97					
			1	I	I					

Table 11.-Source of Gravel and Sand-Continued


Table 11.-Source of Gravel and Sand-Continued

Map unit symbol and soil name	Pct. of	Gravel source		I Sand source		
	$\begin{aligned} & \text { \|map \| } \\ & \text { \|unit\| } \end{aligned}$	\| Rating class and   \| limiting features	\|Value I	\| Rating class and	\|Value	
	1 \|	I	1	I	I	
193497:	I	1	1	1	I	
Nordhouse	$\begin{array}{ll}1 & 95 \\ 1 \\ 1 & \\ 1\end{array}$	\| Poor	1	\| Good	I	
		\| Bottom layer	10.00	I	I	
		\| Thickest layer	10.00	I	I	
		1	1	I	I	
193498 :	I	I	1	I	I	
Nordhouse	\| 40	\| Poor	1	\| Good	I	
		\| Bottom layer	10.00	I	I	
		\| Thickest layer	10.00	I	I	
		I	1	I	I	
193498 :	I	1	1	I	I	
Platteriver-------	1111	\| Poor	I	\| Good	I	
		\| Bottom layer	10.00	\|	I	
		\| Thickest layer	10.00	I	I	
		1	1	I	I	
Dair-	125	\| Poor	I	\| Fair	I	
		\| Bottom layer	10.00	\| Bottom layer	10.75	
		\| Thickest layer	10.00	\| Thickest layer	10.99	
		I	I	1	I	
193503:	I	1	1	1	I	
Spinks	$\begin{array}{ll}1 & 50 \\ 1 \\ 1 & \end{array}$	\| Poor	,	\| Fair	I	
		\| Bottom layer	10.00	\| Bottom layer	10.75	
		\| Thickest layer	10.00	\| Thickest layer	10.95	
		\|		I	I	
Shavenaugh--------	140	\| Fair		\| Fair	I	
		\| Thickest layer	10.00	\| Thickest layer	10.96	
		I Bottom layer	10.25	\| Bottom layer	10.97	
		\|	1	\|	I	
193504:Spinks---------	1	1	I	I	I	
	150	\| Poor	1	\|Fair		
		I Bottom layer	10.00	\| Bottom layer	$10.75$	
		\| Thickest layer	10.00	\| Thickest layer	10.95	
		।	,	।	I	
Shavenaugh--------	140	\| Fair	1	\|Fair		
		\| Thickest layer	10.00	\| Thickest layer	10.96	
		I Bottom layer	10.25	\| Bottom layer	10.97	
		I	1	I	I	
193505:	I	I	1	,	I	
Spinks	\| 50	\| Poor	1	\| Fair	1	
		\| Bottom layer	10.00	\| Bottom layer	10.75	
		\| Thickest layer	10.00	\| Thickest layer	10.95	
		।	I	।	I	
Shavenaugh--------	140	\| Fair	1	\| Fair	1	
		\| Thickest layer	10.00	\| Thickest layer	10.96	
		I Bottom layer	10.25	\| Bottom layer	10.97	
		1	I	1	I	
193506:Spinks----------	1 1	1	I	I	I	
	150	\| Poor		\| Fair	I	
		\| Bottom layer	10.00	\| Bottom layer	10.75	
		\| Thickest layer	10.00	\| Thickest layer	10.95	
		।	I	।	I	
Shavenaugh--------	140	\| Fair	,	\|Fair	1	
		\| Thickest layer	10.00	\| Thickest layer	10.96	
		\| Bottom layer	10.25	\| Bottom layer	10.97	
		1 l	1	I	I	
193507:	1 1	I	I	I	I	
	\| 50		\| Poor	I	\|Fair	I
	1	\| Bottom layer	10.00	\| Bottom layer	10.75	
	11	\| Thickest layer	10.00	\| Thickest layer	10.95	
			,	,		

Table 11.-Source of Gravel and Sand-Continued


Table 12.-Source of Reclamation Material, Roadfill, and Topsoil
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.00 to 0.99 . The smaller the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 12.-Source of Reclamation Material, Roadfill, and Topsoil-Continued


Table 12.-Source of Reclamation Material, Roadfill, and Topsoil-Continued

| Map unit symbol and soil name | \| Pct. | of |map |unit| | Source of <br> reclamation material |  | Roadfill source |  |  | Topsoil source |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \| Rating class and | \|Value I | \| Rating class and | \|Value | 1 | Rating class and limiting features | \|Value I |
| $190832 \text { : }$ | I | \| | I | I | I | I |  | I |
|  |  |  | I | I | I | I |  | I |
| 190832: | \| 90 | \| Fair | 1 | \| Good | I |  | Fair |  |
|  | 1 | \| Low content of | 10.13 | I | I | \| | Rock fragments | 10.04 |
|  | I | \| organic matter | 1 | 1 | I | 1 | Hard to reclaim | 10.18 |
|  | 1 | \| Droughty | 10.22 | I | I | I | (rock fragments) |  |
|  | I | I Too sandy | 10.26 | I | I | 1 | Too sandy | 10.26 |
|  | I | - |  | I | I | I |  |  |
| 190833: | 1 | I | I | I | I | 1 |  | 1 |
| Mancelona--------- | 190 | \|Fair | 1 | \| Good | I |  | Fair |  |
|  | 1 | L Low content of | 10.13 | I | I | I | Rock fragments | $10.04$ |
|  | I | \| organic matter | 1 | 1 | I | 1 | Hard to reclaim | 10.18 |
|  | I | \| Droughty | 10.22 | I | I | I | (rock fragments) |  |
|  | I | I Too sandy | 10.26 | I | I | 1 | Too sandy | 10.26 |
|  | I | - | I | 1 | I | 1 |  |  |
| 190834:Mancelona--------- | I | 1 | I | I | I | 1 |  | 1 |
|  | 160 | \| Poor | 1 | I Good | I |  | Fair |  |
| Mancelona--------- | 1 | \| Wind erosion | 10.00 | I | I |  | Rock fragments | 10.04 |
|  | I | \| Too sandy | 10.08 | I | I | I | Too sandy | 10.08 |
|  | I | I Low content of | 10.13 | I | I | 1 | Hard to reclaim | 10.18 |
|  | I | \| organic matter |  | I | I | 1 | (rock fragments) |  |
|  | 1 1 |  |  | I | I | I |  |  |
| East Lake | 130 | \| Poor | I | \| Good | 1 |  | Fair |  |
|  | 1 | \| Wind erosion | 10.00 | I | I | - | Too sandy | 10.03 |
|  | I | I Too sandy | 10.03 | I | I | I | Hard to reclaim | 10.18 |
|  | I | I Low content of | 10.13 | I | I | 1 | (rock fragments) |  |
|  | I | \| organic matter | I | I | I | 1 | Rock fragments | 10.26 |
|  | 1 I | \| | I | I | I | I |  | , |
| 190835: | 1 1 | I | I | I | I | , |  |  |
| Mancelona--------- | \| 55 | \| Poor | I | I Good | 1 | \| Fair |  |  |
|  | 1 I | \| Wind erosion | 10.00 | I | I | , | Rock fragments | 10.04 |
|  | 1 | \| Too sandy | 10.08 | I | I | 1 | Too sandy | 10.08 |
|  | 1 | Low content of organic matter | 10.13 | I | I | Hard to reclaim (rock fragments) |  | 10.18 |
|  | 1 |  | I | I | I |  |  |  |
|  | I | - | I | I | I | I |  | I |
| East Lake | 135 | \| Poor | 1 | \| Good | I |  | Fair |  |
|  | I | \| Wind erosion | 10.00 | I | I |  | Too sandy | 10.03 |
|  | I | \| Too sandy | 10.03 | I | I | , | Hard to reclaim | 10.18 |
|  | I | \| Low content of | 10.13 | I | I | 1 | (rock fragments) |  |
|  | 1 | \| organic matter |  | I | I | I | Rock fragments | 10.26 |
|  | 11 | 1 | I | 1 | , | , |  | I |
| 190836: | I | 1 | I | I | I | I |  | , |
| Mancelona--------- | 150 | \| Poor | I | \| Good | I | \| Poor |  | 1 |
|  | I | \| Wind erosion | 10.00 | I | I | , | Slope | 10.00 |
|  | I | \\| Too sandy | 10.08 | I | I | 1 | Rock fragments | 10.04 |
|  | I | \| Low content of | 10.13 | I | I | 1 | Too sandy | 10.08 |
|  | I | \| organic matter | 1 | I | I | I |  | 1 |
|  | 1 I | । | 1 | I | I | 1 |  | I |
| East Lake | \| 30 | | \| Poor | 1 | \| Good | 1 | \| Poor |  |  |
|  | I | \| Wind erosion | 10.00 | I | I | , | Slope | 10.00 |
|  | I | I Too sandy | 10.03 | I | 1 | , | Too sandy | 10.03 |
|  | I | Low content of organic matter | 10.13 | 1 | 1 | 1 |  | 10.18 |
|  | 1 |  | I | I | , | (rock fragments) |  |  |
|  | 1 |  | I | 1 | , | , |  | , |
| 190837: | 1 I | 1 | I | I | , | 1 |  | I |
| Mancelona--------- | \| 45 | \| Poor | 1 | \| Fair | 1 | \| Poor |  |  |
|  | 1 | \| Wind erosion | 10.00 | \| Slope | 10.18 | , | Slope | 10.00 |
|  | 11 | \| Too sandy | 10.08 | । | 1 | , | Rock fragments | 10.04 |
|  | I | I Low content of | 10.13 | I | I | 1 | Too sandy | 10.08 |
|  | I | \| organic matter | I | I | , | 1 |  | 1 |
|  | I | \\| | I | 1 | 1 | , |  | 1 |

Table 12.-Source of Reclamation Material, Roadfill, and Topsoil-Continued


Table 13.-Ponds and Embankments
(Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 13.-Ponds and Embankments-Continued


Table 13.-Ponds and Embankments-Continued


Table 13.-Ponds and Embankments-Continued

| Map unit symbol and soil name | \|Pct. |\| of |\|map |\|unit| | Pond reservoir | areas |  | Embankments, dike levees | and | ! | Aquifer-f excavated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \| Rating class and | \|Value |  | Rating class and limiting features | \|Value I |  | Rating class a limiting featur | \|Value I |
|  | 1 \| | I | I | I |  | I |  |  | 1 |
| 190803 : | I | I | I | I |  | 1 |  |  | I |
| Emmet | 160 | \| Very limited | 1 | \|Somewhat limited |  | 1 | \|Very limited |  | 1 |
|  |  | \\| Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | I |  |  |  |  | I |
|  |  | I | \| | 1 |  | I |  |  | I |
| Mancelona-------- | \| 30 | \| Very limited | 1 | \|Very limited |  |  | \|Very limited |  | I |
|  |  | \\| Seepage | 11.00 |  | Seepage | 11.00 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | 1 |  | I |  |  | I |
|  |  | I | I | I |  | I | \| |  | I |
| 190805: | I | 1 | , | I |  | I | I |  | , |
| Emmet | 50 | \|Very limited | | I | \|Somewhat limited |  |  | \|Very limited |  | 1 |
|  |  | \| Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 10.08 | I |  | I | I |  | I |
|  |  | 1 | 1 | , |  | , | , |  | , |
| Omena | 45 | \| Very limited |  | \|Somewhat limited |  |  | \|Very limited |  | 1 |
|  |  | \\| Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 10.08 | 1 |  | I | I |  | I |
|  |  | 1 | , | I |  | I | \| |  | 1 |
| 190806: | I | 1 | I | I |  | I |  |  | I |
| Emmet | 50 | \|Very limited |  | \|Somewhat limited |  |  | \|Very limited |  | I |
|  |  | I Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | 1 |  | 1 | I |  | , |
|  |  | I | I | I |  | I |  |  | I |
| Omena------------- | 45 | \|Very limited | I | \|Somewhat limited |  |  |  | \|Very limited | I |
|  |  | I Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | 1 |  | I | I |  | I |
|  |  | I | I | I |  | I | I |  | 1 |
| 190807: | I | I | I | I |  | I | I |  | I |
| Emmet- | 50 | \|Very limited | |  | \|Somewhat limited |  |  | \|Very limited |  | , |
|  |  | I Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | 1 |  | I |  |  | I |
|  |  | I | I | I |  | , |  |  | 1 |
| Omena------------ | 45 | \|Very limited | I | \|Somewhat limited |  | 1 | \|Very limited |  | I |
|  |  | I Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | I |  | 1 | I |  | I |
|  |  | 1 | I | 1 |  | I | I |  | I |
| 190808 : | I | I | 1 | I |  | I |  |  | I |
| Emmet------------- | 50 | \|Very limited | | 1 | \|Somewhat limited |  | 1 | \|Very limited |  | I |
|  |  | I Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | I |  | I |  |  | , |
|  |  | 1 | \| | I |  | I |  |  | I |
| Omena------------- | 45 | \| Very limited | I | \|Somewhat limited |  | 1 | \|Very limited |  | I |
|  |  | \\| Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | , |  | I | I |  | I |
|  |  | I | I | I |  | I | 1 |  | I |
| 190809: | I | I | 1 | \| |  | I |  |  | , |
| Emmet------------- | 50 | \| Very limited | I | \|Somewhat limited |  | 1 | \|Very limited |  | I |
|  |  | I Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | 1 |  | 1 | , |  | I |
|  |  | I | I |  |  | I |  |  | I |
| Omena------------ | 45 | \| Very limited | I | \|Somewhat limited |  | 1 | \|Very limited |  | I |
|  |  | I Seepage | 11.00 |  | Dusty | 10.01 |  | Depth to water | 11.00 |
|  |  | \| Slope | 11.00 | 1 |  | I | I |  | I |
|  |  | I | I | I |  | I | I |  | I |
| 190811: | I | I | I | I |  | I | I |  | I |
| Hettinger-------- | 45 | \|Somewhat limited | 1 | \|Very limited |  | I | \|Somewhat limited |  | I |
|  | I | I Seepage | 10.03 |  | Ponding | 11.00 |  | Slow refill | 10.30 |
|  | I | I | I | I | Depth to | 11.00 | I | Unstable | 10.10 |
|  | I | I | I |  | saturated zone | 1 |  | excavation wa | \| |
|  | I | 1 | 1 |  | Dusty | 10.02 | 1 |  | I |
|  | I | I | I |  | Piping | 10.01 | I |  | I |
|  | 1 I |  | 1 | I |  | I | I |  | 1 |

Table 13.-Ponds and Embankments-Continued

Map unit symbol and soil name		Pond reservoir areas				Aquifer-fed excavated ponds						
	\|map		unit		\| Rating class and	i	\| limiting features	1		\| limiting features		
190811:	\| 1	1	I	\|	1							
		1	I	I	I	I		1				
		\|Very limited	1	\| Very limited	I		\|Somewhat limited					
	1 I	I Seepage	11.00	\| Ponding	11.00		Unstable	10.50				
	I	,	I	\| Depth to	11.00		excavation walls					
	1	1	1	\| saturated zone								
	1	1	I	\| Seepage	11.00	,		I				
	1	1	I	\| Hard to pack	11.00	1		I				
	1	1	1	I Dusty	10.01			1				
	I	I	1	1	1 \|							
190812:			1	1	1	,		I				
Hettinger	\| 45	\|Somewhat limited	1	\|Very limited	I	\|Somewhat limited						
	1 I	\| Seepage	10.03	\| Ponding	11.00		Slow refill	10.30				
	1	I	I	\| Depth to	11.00		Unstable	10.10				
	1	I	I	\| saturated zone			excavation walls					
	1 I	I	I	\| Dusty	10.02			1				
	I	1	1	\| Piping	10.01	I						
	1 I	1	I	I	1							
Tonkey	30	\|Very limited	1	\|Very limited	I	\| Very limited						
	I I Seepage		11.00	\| Ponding	11.00		Unstable	11.00				
	1 I	I Seepage	I	I Depth to	11.00		excavation walls					
	I	I	I	\| saturated zone	1							
	1 I	I	I	\\| Dusty	10.01	I		I				
	1 I	1	I	1	1							
190814 :	1 I	I	I	I	I							
Kalkaska190815:	85	\|Very limited		\|Very limited	I	\|Very limited						
	1 I	\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00				
	I	1	I	1	1							
	1 \|	1	I	I	,							
Kalkaska----------	85	\|Very limited	1	\|Very limited	1	\|Very limited						
	1	\\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00				
	\|	Slope		11.00	1	1						
			I	I	I							
190816:		1	I	I	I							
Kalkaska	$\begin{array}{llll}1 & 90 & 1 \\ 1 & & 1 \\ 1 & & 1 \\ 1 & & 1\end{array}$	\|Very limited	I	\|Very limited	I	\| Very limited						
		I Seepage	11.00	\| Seepage	11.00		Depth to water	11.00				
		\| Slope	11.00	I	I							
		\|		I	I							
190817:	1 I	1	I	1	I							
Kalkaska	90	\|Very limited		\|Very limited	1	\|Very limited						
	1 I	\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00				
	\|	Slope		11.00	1	I						
	1 I		I	I	I			I				
190818:	1	I	I	1	I			1				
Kalkaska	90		I	\|Very limited	I		Very limited					
	1	\|Very limited	Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
	I I Slope		11.00	1	I							
	1 \|		I	I	I			I				
190819:	1	I	I	I	I							
Kalkaska	\| 55		I	\|Very limited	I		Very limited					
		\|Very limited	Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
		\\|	I	I	I							
East Lake	35	\|Very limited	1	\|Very limited	I		Very limited					
		\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00				
			1	1	1			I				
190820:	1	I	I	1	I			I				
Kiva--	1 65 \|	\|Very limited	1	\|Very limited	1		Very limited					
		\\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00				
		\| Slope	10.08	I Dusty	10.01			I				
			I	1	I			I				
Mancelona	130	\|Very limited	1	\|Very limited	I	\|Very limited						
		\\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00				
		\| Slope	10.08	1	I							
			1	1	I	1						

Table 13.-Ponds and Embankments-Continued


Table 13.-Ponds and Embankments-Continued


Table 13.-Ponds and Embankments-Continued

Map unit symbol and soil name	$\begin{array}{ll} \mid l & \mid \\ \text { \| Pct. } \\ \text { I of } \end{array}$	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds			
	$\begin{array}{l\|} \mid \text { map } \\ \text { \|unit\| } \\ \hline \end{array}$	\| Rating class and	\| Value	\| Rating class and   \| limiting features	\|Value I		Rating class and limiting featur	\|Value	
	I	I	I	\|					
190837 :	1 I	I	I	1	I			I	
Mancelona	145	\| Very limited	I	\| Very limited	I	\|Very limited		I	
		\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00	
		\| Slope	11.00	I	\|	I		I	
		,		1	I			I	
East Lak	130	\|Very limited	I	\|Very limited		\|Very limited		I	
		\\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00	
		\| Slope	11.00	1	,			I	
		I	I	I	I			I	
190838 :	1 \|		1	I	1			I	
Mancelona------	\| 50	\|Very limited	I	\|Very limited	1	\|Very limited		i	
	1	\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00	
	1 I	\| Slope	11.00	I	I	,		I	
		1	I	1	I			I	
East Lake----------	30	\|Very limited	1	\|Very limited	1	\|Very limited			
		\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00	
		\| Slope	11.00	1	I			I	
		I	1	I	I	I		I	
190839 :		1	,	1	I			I	
Mancelona---------	70	\|Very limited	I	\|Very limited	1	\|Very limited			
		I Seepage	11.00	\| Seepage	11.00		Depth to water	11.00	
		\\|	I	I	I			I	
Richter	25	\|Somewhat limited	1	\|Very limited		\|Very limited			
		I Seepage	10.70	\| Depth to	11.00		Unstable	11.00	
		1	I	I saturated zone			excavation wal		
		,		\| Dusty	10.01		Slow refill	10.30	
		1	I	1	,			1	
190840:	1 I		I	I	,			I	
Nester	90	\|Somewhat limited		\|Somewhat limited	Dusty	1	\|Very limited		
		\| Slope	10.08		10.03		Depth to water	11.00	
		1	I	1	I			I	
190841:			I	I	I	\|Very limited		I	
Nester	90	\|Very limited	I	\|Somewhat limited	1				
		\| Slope	11.00	\| Dusty	10.03		Depth to water	11.00	
		I	I	I	I			I	
190842 :	1 1	1	I	I	I			I	
Nester	90	\|Very limited	I	\|Somewhat limited	I		Very limited	I	
		\| Slope	11.00	\| Dusty	10.03		Depth to water	11.00	
		,		1	1			I	
190843 :		I	I	1	I			I	
Nester	90	\| Very limited	I	\|Somewhat limited	I	\|Very limited			
		\| Slope	11.00	\| Dusty	10.03		Depth to water	11.00	
		I	I	I	I			I	
190844 :	1 I	1	I	I	I			I	
Nester	90	\|Very limited	I	\|Somewhat limited	1	\|Very limited		I	
		\| Slope	11.00	I Dusty	10.03	I Depth to water		11.00	
		I	I	1	I			I	
190846:	1		I	1	I			I	
Pits, gravel	100\|Not rated		I	\| Not rated	I		Not rated	I	
	\|			I	I	I			I
190847:	I		I	\|Very limited	I	\|		I	
Richter-----------	45	\|Somewhat limited	1		I		Very limited	I	
		I Seepage	10.70	\| Depth to	11.00		Unstable	11.00	
		I	I	I saturated zone	1		excavation wal		
		1	I	\| Dusty	10.01		Slow refill	10.30	
			I	1	I			I	
Alcona------------	140	\|Somewhat limited		\| Not limited	I		Very limited		
		\| Seepage	10.70	1	I		Depth to water	11.00	
			1	I	I			I	

Table 13.-Ponds and Embankments-Continued


Table 13.-Ponds and Embankments-Continued

Map unit symbol and soil name	$\begin{array}{ll} \mid l & \mid \\ \text { \| Pct. } \\ \text { I of } \end{array}$	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds					
	\|map		unit		Rating class and limiting features	\|Value	\| limiting features	$1$		limiting features	$1$
631171:	I 17	1	I	\|	1						
		1	I	I	I			I			
Benzonia		\|Very limited	1	\|Very limited	1	\|Very limited		I			
	$1 \begin{array}{ll}1 \\ 1 \\ 1 & \\ 1\end{array}$	\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
		Slope	11.00		1			,			
		I	\|		I			I			
631172 :	I	1	I	I	I			I			
Fogg-	150	\|Very limited	I		\|Very limited	\|Very limited		I			
		\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
		\| Slope	11.00	1	\|			I			
		,	I	I	I			I			
Benzonia	140	\| Very limited	1	\|Very limited	I	\|Very limited		I			
		I Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
		\| Slope	11.00	I	,			I			
		1	1	1	I	\|		I			
631173:Fogg-	1 I	1	I	I	I	I		I			
	50	\|Very limited	I	\|Very limited	1	\|Very limited		1			
		\\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
		\| Slope	11.00	1	I			I			
		I	,	,	I			I			
Benzonia	40	\|Very limited	I	\|Very limited	I	\|Very limited					
		I Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
		\| Slope	11.00	1	1			I			
		1	I	I	I			I			
631174 :	1 I	1	1	I	,			I			
Fogg-	50	\|Very limited	1	\|Very limited	I	\|Very limited		I			
		I Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
		1	I	I	\|			,			
Benzonia----------	40	\|Very limited	I	\|Very limited	I	\|Very limited		I			
		\\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
		I	1	1	I			I			
680939 :	11	I	I	I	I			I			
Fern--	50	\| Very limited	1	\|Somewhat limited	1	\|Very limited		I			
		I Seepage	11.00	Depth to saturated zone	10.99	excavation walls\|					
		\| Slope	10.68		I						
		I	1		I		Slow refill	10.97			
		1	I	I	,			I			
Spinks	40	\|Very limited	I	\|Very limited	I	\|Very limited					
		I Seepage	11.00	\| Seepage	11.00		Depth to water	11.00			
		\| Slope	11.00	1	I			I			
		I	I	I	I			I			
680943 :	11	1	1	I	I			I			
Milnichol---------	901	\| Very limited	I	\|Very limited	I	\|Very limited		I			
	1 I	\\| Seepage	11.00	\| Depth to	11.00		Unstable	11.00			
	11	1	I	saturated zone							
	1 I	I	1	I Seepage	11.00			I			
	1 I	1	1	1	I			I			
680945 :	11	1	1	1	1			I			
Fern--	90	\|Very limited	I	\|Somewhat limited	I	\|Very limited					
	I	I Seepage	11.00	Depth to saturated zone	10.99		excavation walls\|				
	I	\| Slope	11.00		I						
	1 I		I		I	Slow refill		10.97			
	11	I	1	I	I			I			
680946 :	1 I	1	1	I	I	1		I			
Fern-	\| 90		\|Very limited	I	\|Somewhat limited	1	\|Very limited		I		
	1 I	I Seepage	11.00	\| Depth to	10.99		Unstable	11.00			
	1 I	I	I	I saturated zone	I		excavation wal				
	1 I	I	1	I	I	I	Slow refill	10.97			
	1 I	1	1	1	,			1			

Table 13.-Ponds and Embankments-Continued


Table 13.-Ponds and Embankments-Continued

Map unit symbol and soil name	$\begin{aligned} & \text { I } \\ & \text { \| Pct. } \\ & \text { I of } \\ & \text { Imap } \\ & \text { \| unit \| } \end{aligned}$	Pond reservoir	areas		and	1	Aquifer-f excavated p		
		\| Rating class and	\| Value	\| Rating class and	\|Value I		Rating class and limiting featur	\|Value	
$\begin{gathered} 894064: \\ \text { Fern- } \end{gathered}$	50	I	1	\|	I				
		1	I	I	I			I	
		\|Very limited	I	\|Somewhat limited	1		Very limited	I	
1	1	\\| Seepage	11.00	\| Depth to	10.99		Unstable	11.00	
		\| Slope	11.00	\| saturated zone	I		excavation wal		
	$1 \quad 1$	I	I	I	I		Slow refill	10.97	
		I	I	1	I			1	
Remus-------------	\| 40	\|Very limited	I	\|Very limited	,	\|Very limited		I	
		\| Slope	11.00	\| Piping	11.00		Depth to water	11.00	
		\| Seepage	10.53	\| Dusty	10.01	1			
		I	I	1	1	I		1	
$\begin{array}{r} 894065 \text { : } \\ \text { Fern- } \end{array}$	1 I	1	I	I	1	I		I	
	50	\|Very limited	I	\|Somewhat limited			\|Very limited		I
	1 I	\| Seepage	11.00	\| Depth to	10.99		Unstable	11.00	
		1	I	\| saturated zone	1		excavation wal		
	11	I	I	I	I		Slow refill	10.97	
		1	I	1	1			I	
Remus	140	\|Somewhat limited	1	\|Very limited	1	\|Very limited			
		I Seepage	10.53	\| Piping	11.00		Depth to water	11.00	
		1	I	\| Dusty	10.01	I		I	
		,	I	I	I	\|		I	
894104 :	1 \|	1	I	I	I			I	
Mollineaux--------	50	\|Very limited	I	\|Very limited	I	\|Very limited		1	
	1 I	\\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00	
	I	\| Slope	11.00	1	I			I	
	1 I	I	I	I	,	\|		I	
Remus-------------	40	\|Very limited	I	\|Very limited	I	\|Very limited		I	
	1 I	\| Slope	11.00	\| Piping	11.00		Depth to water	11.00	
	I	I Seepage	10.53	\| Dusty	10.01	I		I	
	I	I	1	1	I	\|		I	
894105 :	11	1	I	I	I	I		I	
Mollineaux--------	50	\|Very limited	I	\|Very limited	I	\|Very limited			
		I Seepage	11.00	\| Seepage	11.00		Depth to water	11.00	
		\| Slope	11.00	I	I	,		I	
		I	I	I	I			I	
Remus-------------	40	\|Very limited	I	\|Very limited	I	\|Very limited		I	
		\| Slope	11.00	\| Piping	11.00		Depth to water	11.00	
		I Seepage	10.53	\| Dusty	10.01	I			
		1	I	1	I	I		I	
894165 :	11	1	I	1	I			I	
Spinks------------	50	\|Very limited	I	\|Very limited	I	\|Very limited		I	
		\\| Seepage	11.00	\| Seepage	11.00		Depth to water	11.00	
		\| Slope	11.00	1	I			I	
		I	I	I	I			I	
Tekenink, sandy substratum		1	I	I	I	I		I	
	40	\|Very limited	I	\| Not limited	I	\|Very limited			
	1 I	\| Seepage	11.00	1	I		Depth to water	11.00	
	11	I Slope	11.00	I	I	I		I	
	11	1	I	I	I	I		I	
899682 :	1 \|	1	I	1	I			I	
Kaleva------------	90	\|Very limited	I	\|Very limited	1	\|Very limited			
	1 I	\| Seepage	11.00	Seepage	11.00		Depth to water	11.00	
	11	\| Slope	11.00		I	,		I	
	1 I	1	1	1	I	I		I	
899722 :	11	I	I	I	I	I		I	
Goodharbor--------	190	\|Very limited	I	\|Very limited	I		Very limited	I	
		I Seepage	11.00	\| Seepage	11.00		Depth to water	11.00	
		\| Slope	10.68	I	1	I		I	
		1	1	1	I	,		1	

Table 13.-Ponds and Embankments-Continued

(Absence of an entry indicates that data were not estimated)


Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

Map unit symbol and soil name	Depth	1 USDA texture	Classification		\\| Fragments				\| Percentage passing			$\begin{aligned} & \text { \| \| } \mid \text { \| } \\ & \text { \| liquid\| Plas- } \end{aligned}$	
					1								
			\|	I	I	>10	I	3-10	1 l				
			\| Unified	1 AASHTO	1	in	1	in	14	\| 10	40	1200	1
,	In	I	I	1	I	Pct	I	Pct	I	1	I	1 Pct	I
		I	1	1	I		1		1	1 I	1		I
190794: \|		1	1	I	1		1		I	1 I	1	1	1
Emmet-----------\|	0-8	\| Sandy loam	\|SM, SC-SM,	SC\|A-4, A-2-4,	I	0	I	0-8	\| 90-10	00\|75-100	45-85	\| 20-50	115-25
		I	I	\| A-1-b	I		1			1 \|	1		
	8-26	\|Sandy loam, loamy sand,	\|SC, CL	\|A-6, A-4,	I	0	1	0-8	\| 95-10	00\|85-100	40-90	\|10-55	125-37
		\| sandy clay loam		\| A-2-6	I		1			1 \|			
	26-32	\| Sandy loam, sandy clay	\|SC, SC-SM,	$\mathrm{A}-4, \mathrm{~A}-6,$	I	0	1	0-8	\| 95-10	00\|75-100	45-95	120-75	\|20-40
		\| loam	\| CL, CL-ML	\| A-1-b, A-2	I		1		\|		\|	I	
	32-60	\| Sandy loam	\| SM, SC-SM,	$\mathrm{SC} \mid \mathrm{A}-4, \mathrm{~A}-2-4$,	I	0	1	0-8	\| 85-10	.00\|60-100	45-80	120-50	115-25
		1	I	\| A-1-b	I		1			1 I	I	1	I
I		1	1	1	I		1			1 I	I	1	1
Leelanau--------	0-8	\| Loamy sand	\| SP-SM, SM,	\|A-2-4, A-1	1	0	,	0-15	\| 85-10	00\|75-100	35-75	110-30	115-25
I			\| SC-SM	I	I		1			1 \|	I		।
	8-28	\| Loamy sand, sand	ISW-SM,	\|A-3, A-2-4,	I	0	1	0-15	\| 85-10	00\|75-100	35-75	\| 5-30	115-25
			\| SP-SM, SM	\| A-1	,		1			I I	I		-
	28-36	\| Sandy loam	\| SM, SC-SM,	$\mathrm{SC} \mid \mathrm{A}-4, \mathrm{~A}-2-4$,	I	0	1	0-20	180-10	00\|75-100	45-70	120-40	120-30
		1	I	\| A-1	I		1		I	1 \|		I	\|
	36-60	\| Loamy sand	\| SW-SM,	\|A-2-4, A-1	I	0		0-10	\| 80-10	00\|75-100	35-75	110-30	115-25
		$1$	\| SP-SM, SM	I	I		1			I $1$		1	1
		I		I	I		1			$1 \quad 1$	I	I	I
190795: \|				I	I		1			1 \|	I		1
Emmet----------- -	0-8	\| Sandy loam	\| SM, SC-SM,	SC\|A-4, A-2-4,	I	0		0-8	\| 90-10	00\|75-100	45-85	\| 20-50	115-25
	-	$1$	$1$	\| A-1-b	1		I		I				i
	8-26	\|Sandy loam, loamy sand,	\|SC, CL	$\mathrm{A}-6, \mathrm{~A}-4,$	I	0		0-8	195-10	00\|85-100	40-90	110-55	\|25-37
		\| sandy clay loam	$1$	\| A-2-6	I		1		i	1	\|	1	
	26-32	\| Sandy loam, sandy clay	\|SC, SC-SM,	\|A-4, A-6,	I	0		0-8	\| 95-10	00\|75-100	45-95	\| 20-75	120-40
		\| loam	\\| CL, CL-ML	\| A-1-b, A-2	I		1		$1$				
	32-60	\| Sandy loam	\| SM, SC-SM,	$\mathrm{SC} \mid \mathrm{A}-4, \mathrm{~A}-2-4,$	I	0	1	0-8	185-10	00\|60-100	45-80	\|20-50	115-25
		I		\| A-1-b	I		1		I	$1$ $1$	,	,	I
I		1		I	I		1			$1 \quad 1$			1
Leelanau--------	0-8	\| Loamy sand	\|SP-SM, SM,	\|A-2-4, A-1	I	0		0-15	185-10	00\|75-100	35-75	110-30	115-25
		I	SC-SM	I	I		1			I I		I	I
,	8-28	\| Loamy sand, sand	\| SW-SM,	\|A-3, A-2-4,	I	0	1	0-15	185-10	00\|75-100	35-75	\| 5-30	115-25
		।	\| SP-SM, SM	\| A-1	I		1			1 \|	I		-
	28-36	\| Sandy loam	\| SM, SC-SM,	SC\|A-4, A-2-4,	I	0	,	0-20	180-10	00\|75-100	45-70	\| 20-40	120-30
		$1$	$1$	A-1	I		1		I	1 \|	I	,	-
	36-60	\| Loamy sand	\| SW-SM,	\|A-2-4, A-1	I	0	1	0-10	180-10	00\|75-100	35-75	110-30	115-25
		I	\| SP-SM, SM	I	I		1		I	1 \|	I	1	I
I			1	1	I		1			11	I	I	I
190796: \|		I	1	I	I		1		I	1 I	I	I	,
Emmet----------- -	0-8	\| Sandy loam	\| SM, SC-SM,	SC\|A-4, A-2-4,	I	0	1	0-8	190-10	00\|75-100	45-85	120-50	115-25
I		I	I	\| A-1-b	I		1		1	1 \|	I		
	8-26	\|Sandy loam, loamy sand,	ISC, CL	$\mathrm{A}-6, \mathrm{~A}-4,$	I	0	1	0-8	195-10	00\|85-100	40-90	110-55	125-37
		\| sandy clay loam	$1$	\| A-2-6	I		1			\|			
	26-32	\|Sandy loam, sandy clay		$\mathrm{A}-4, \mathrm{~A}-6,$	I	0	1	0-8	\| 95-10	00\|75-100	45-95	\| 20-75	\|20-40
		\| loam	\| CL, CL-ML	\| A-1-b, A-2	I		1			\|			
	32-60	\| Sandy loam	\| SM, SC-SM,	$\mathrm{SC} \mid \mathrm{A}-4, \mathrm{~A}-2-4$,	I	0		0-8	185-10	00\|60-100	45-80	\|20-50	115-25
		1	\|	\| A-1-b	I		1		1	\|		\|	,
1		1	1	1	I		1		1	1 l	I	,	I

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

Map unit symbol \| and soil name	Depth	USDA texture	Classification		Fragments		Percentage passingsieve number--		\|Liquid	Plas-\| limit	ticity		
			I	I \|	>10	\| 3-10	\| ${ }^{\text {l }}$, l	-					
			\| Unified	1 AASHTO \|	in	in	$\begin{array}{llllll}\text { \| } & 4 & 10 & \text { \| }\end{array}$	1200	1	\|index			
I	In	I	I	1 I	Pct	Pct	I	I	Pct	I			
1		I	1	1 \|		1	1 I	I	1 -	1			
190801: \|		,	1	1 \|		I	I	1	1 \|	1			
Emmet----------- -	0-8	\|Gravelly sandy loam	\| SM, SC-SM,	SC\|A-2, A-1-b		0	1 0-8	\|80-95	60-75	35-60	110-35	115-25	\| NP-10
I	8-26	\|Sandy loam, loamy sand,	\|SC, CL	$\mid A-6, A-4,1$	0	$10-8$	\| 95-100	85-100	40-90	110-55	125-35	\| 7-15	
1		\| sandy clay loam	I	$\mid \mathrm{A}-2-6$ \|		1	1 \|	1	1	,			
,	26-32	\|Sandy loam, sandy clay	\|SC, SC-SM,	\|A-4, A-6,		0	1 0-8	\|95-100	75-100	45-95	120-75	120-40	\| 5-20
I		\| loam	\| CL, CL-ML	$\mid \mathrm{A}-1-\mathrm{b}, \mathrm{A}-2$ \|		1	1 \|		I	1	,		
I	32-60	\| Sandy loam	\| SM, SC-SM,	SC\|A-4, A-2-4,		0	1 0-8	\|85-100	60-100	45-80	\| 20-50	\|15-25	\| NP-10
,		1	I	$\mid \mathrm{A}-1-\mathrm{b}$ \|		1	I \|		I	1	\|		
1		1	1	1 l		I	1 \|		1	1 \|	I		
Mancelona-------\|	0-8	\| Gravelly sandy loam	\|SM, SC-SM	\|A-1-b	0	1 0-5	\|70-80	55-75	35-55	115-35	\|15-25	\| NP-7	
I	8-25	\|Loamy sand, sand,	\|SP-SM, SM	\|A-3, A-2-4,		0	\| 0-5	\|80-100	55-95	30-75	\| 5-30	\| 0-14	\| NP
I		\| gravelly loamy sand		$\mid \mathrm{A}-1-\mathrm{b}$ \|		1	1 \|		I				
,	25-30	\|Sandy loam, gravelly	\|SC-SM, SC	$\|A-6, A-4, A-2\|$	0	\| 0-5	\|85-100	55-95	45-95	120-75	120-35	\| 8-15	
I		\| sandy clay loam,	I	1 \|		1	1 I \|	I	1 \|	,			
I		\| gravelly sandy loam	I	1		1	1 \| 1	I		I			
I	30-60	\|Very gravelly coarse	\|SP-SM, SW,	\|A-2, A-1-b,		0	\| 0-10	\| 40-90	30-85	20-60	\| 0-15	\| 0-14	\| NP
1		\| sand, sand	\\| GP, GW	1 A-3		I	1 \|		1	I	,		
,		,	1	1 \|		I	1 l 1	I	1	1			
190803: \|		,	I	I		I	1 \|		I	1	I		
Emmet----------- -	0-8	\| Gravelly sandy loam	\| SM, SC-SM,	SC\|A-2, A-1-b		0	$10-8$	\|80-95	60-75	35-60	110-35	\|15-25	\| NP-10
I	8-26	\|Sandy loam, loamy sand,	\|SC, CL	\|A-6, A-4,		0	$10-8$	\| 95-100	85-100	40-90	\|10-55	125-35	\| 7-15
1		\| sandy clay loam		\| A-2-6									
	26-32	\|Sandy loam, sandy clay	\|SC, SC-SM,	\|A-4, A-6,		0	1 0-8	\|95-100	75-100	45-95	120-75	120-40	\| 5-20
I		\| loam	\| CL, CL-ML	\| A-1-b, A-2		1	I $1$		I	1			
I	32-60	\|Sandy loam	\| SM, SC-SM,	SC\|A-4, A-2-4,		0	1 0-8	\|85-100	60-100	45-80	120-50	115-25	\| NP-10
I		I	I	$\mid \mathrm{A}-1-\mathrm{b}$ \|		I	1 I \|	I	1 \|	I			
I		,	I	1 \|		1	1 I	I	1				
Mancelona------- \|	0-8	\| Gravelly sandy loam	\| SM, SC-SM	$\mid \mathrm{A}-1-\mathrm{b}$ \|	0	1 0-5	\|70-80	55-75	35-55	115-35	115-25	\| NP-7	
	8-25	\|Loamy sand, sand,	\|SP-SM, SM	\|A-3, A-2-4,		0	$10-5$	\|80-100	55-95	30-75	\| 5-30	\| 0-14	1 NP
I		\| gravelly loamy sand	i	\| A-1-b			\|						
I	25-30	\|Sandy loam, gravelly	\|SC-SM, SC	$\|A-6, A-4, A-2\|$	0	1 0-5	\|85-100	55-95	45-95	120-75	120-35	\| 8-15	
I		\| sandy clay loam,		1 \|		I	I l \|	I		,			
I		\| gravelly sandy loam	I	1 \|		1	1 l \|	1		1			
	30-60	\|Very gravelly coarse	\|SP-SM, SW,	\|A-2, A-1-b,		0	\| 0-10	\|40-90	30-85	20-60	\| 0-15	\| 0-14	I NP
I		\| sand, sand	I GP, GW	\| A-3		1	1 I I	I					
I		I		I		I	1 I I	I	1	1			
190805: \|		I	I	1 \|		1	1 I \|	1	,	1			
Emmet----------- -	0-8	\| Sandy loam	\| SM, SC-SM,	$S C\|A-4, A-2-4, \quad\|$	0	$10-8$	\|90-100	75-100	45-85	\|20-50	\|15-25	\| NP-10	
I		I	I	\| A-1-b		1	I	110-5	125-37	\| 715			
I	8-26	\|Sandy loam, loamy sand,	ISC, CL	\|A-6, A-4,		0	1 0-8	\|95-100	85-100	40-90	110-55	125-37	\| 7-15
1		\| sandy clay loam	I	$\mid \mathrm{A}-2-6$ \|		1	\|					,	
,	26-32	\|Sandy loam, sandy clay	\| SC, SC-SM,	$\mid A-4, A-6,1$	0	\| 0-8	\|95-100	75-100	45-95	120-75	120-40	\| 5-20	
,		\| loam	\| CL, CL-ML	$\mid \mathrm{A}-1-\mathrm{b}, \mathrm{A}-2$ \|		1	\|					1	
I	32-60	\| Sandy loam	\| SM, SC-SM,	SC\|A-4, A-2-4,		0	1 0-8	\|85-100	60-100	45-80	\|20-50	115-25	\| NP-10
I		1	I	$\mid \mathrm{A}-1-\mathrm{b}$ \|		1	1 I I	I	I	1			
1		1	1	1 I		I	1 I I	1	1	I			

Table 14.-Engineering Properties-Continued

| Map unit symbol and soil name | Depth | USDA texture | Classification |  | , | Fragments |  | Percentage passing sieve number-- |  |  | \| Liquid| Plas-\| limit|ticity |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1 |  |  |  |  |  |  |  |
|  |  |  | 1 | I | I | >10 \| 3-10 |  | - 1 |  |  |  |  |
|  |  |  | \| Unified | AASHTO | 1 | in | 1 in | 4 | 10 \| 40 | 200 | \| | \|index |
|  | In | I | I | 1 | 1 | Pct | 1 Pct | I | 1 I | , | I Pct | \| |
|  |  | I | 1 | I | , |  | I | I | 1 I | I | 1 |  |
| 190805: |  | I | 1 | I | I |  | 1 | I | 1 । | I | I | I |
| Omena----------- - | 0-8 | \| Sandy loam | \| SM, SC-SM, | SC\|A-4, A-2-4 | I | 0 | \| 0-10 | \|90-10 | 0\|75-100|55-85 | \|25-50 | \|15-25 |  |
|  | 8-14 | \|Loam, sandy loam | \|SC, SM, CL, | \|A-4, A-2-4 | I | 0 | \| 0-15 | \|90-10 | 0\|75-100|50-95 | \| 25-75 | \|15-20 | 2-10 |
| I |  | I | \\| ML | 1 | I |  | 1 | I | 1 \| | 1 | I |  |
|  | 14-60 | \| Sandy loam | \| SM, SC-SM, | SC\|A-4, A-2-4 | I | 0 | \| 0-10 | 190-10 | 0\|75-100|55-85 | \| 25-50 | \|15-25 | 2-8 |
|  |  | I | I | I | I |  | I | I | 1 I | , | 1 |  |
| 190806: |  | I |  | I | I |  | I | I | 1 I | 1 | 1 | 1 |
| Emmet-----------\| | 0-8 | \|Sandy loam | \| SM, SC-SM, | SC\|A-4, A-2-4, | I | 0 | \| 0-8 | \| 90-10 | 0\|75-100|45-85 | \|20-50 | \|15-25 | \| NP-10 |
| \| |  |  |  | \| A-1-b | I |  | 1 |  | 1 \| |  |  |  |
| I | 8-26 | \|Sandy loam, loamy sand, | ISC, CL | \|A-6, A-4, | I | 0 | \| 0-8 | \| 95-10 | 0\|85-100|40-90 | 110-55 | 125-37 | 7-15 |
|  |  | \| sandy clay loam |  | \| A-2-6 | I |  | 1 |  | 1 \| | 1 | 1 |  |
|  | 26-32 | \|Sandy loam, sandy clay | \|SC, SC-SM, | \|A-4, A-6, | 1 | 0 | 1 0-8 | \|95-10 | 0\|75-100|45-95 | 120-75 | \|20-40 | 5-20 |
|  |  | \| loam | \| CL, CL-ML | \| A-1-b, A-2 | I |  | 1 |  | 1 \| | \| | \| |  |
|  | 32-60 | \| Sandy loam | \| SM, SC-SM, | SC\|A-4, $\mathrm{A}-2-4$, | I | 0 | 1 0-8 | \| 85-10 | 0\|60-100|45-80 | \| 20-50 | 115-25 | \| NP-10 |
|  |  | $1$ | I | \| A-1-b | I |  |  |  | $1$ I |  | 1 |  |
| I |  | I | 1 | 1 | , |  | 1 |  | 1 I | , | 1 | 1 |
| Omena------------ | 0-8 | \| Sandy loam | \| SM, SC-SM, | SC\|A-4, A-2-4 | I | 0 | \| 0-10 | 190-10 | 0\|75-100|55-85 | \| 25-50 | 115-25 | 2-8 |
| I | 8-14 | \|Loam, sandy loam | \|SC, SM, CL, | \|A-4, A-2-4 | , | 0 | \| 0-15 | 190-10 | 0\|75-100|50-95 | \|25-75 | 115-20 | 2-10 |
| I |  | I | \| ML | 1 | 1 |  | 1 |  | \| | |  | \| | । |
| I | 14-60 | \| Sandy loam | \| SM, SC-SM, | SC\|A-4, A-2-4 | I | 0 | \| 0-10 | 190-10 | 0\|75-100|55-85 | \| 25-50 | 115-25 | 2-8 |
|  |  | I |  | 1 | , |  | I |  | I | 1 | 1 | I |
| 190807: |  | I |  | I | , |  | I |  | 1 | 1 | 1 |  |
| Emmet----------- \| | 0-8 | \|Sandy loam | \| SM, SC-SM, | $\mathrm{SC} \mid \mathrm{A}-4, \mathrm{~A}-2-4,$ | I | 0 | 1 0-8 | \|90-10 | 0\|75-100|45-85 | \|20-50 | 115-25 | \|NP-10 |
| - \| |  | I | i | $1 \mathrm{~A}-1-\mathrm{b}$ | I |  | 1 |  |  |  | I |  |
| I | 8-26 | \|Sandy loam, loamy sand, | \|SC, CL | \|A-6, A-4, | I | 0 | 1 0-8 | \| 95-10 | 0\|85-100|40-90 | \|10-55 | 125-37 | 7-15 |
|  |  | \| sandy clay loam | I | \| A-2-6 | , |  | 1 |  | \|75-100| |  | , |  |
| I | 26-32 | \|Sandy loam, sandy clay | \| SC, SC-SM, | \|A-4, A-6, | I | 0 | \| 0-8 | \|95-10 | 0\|75-100|45-95 | \|20-75 | \|20-40 | 5-20 |
|  |  | \| loam | \\| CL, CL-ML | \| A-1-b, A-2 | 1 |  | 1 |  | 1 | 1 | 1 |  |
| I | 32-60 | \| Sandy loam | \| SM, SC-SM, | SC\|A-4, $\mathrm{A}-2-4$, | 1 | 0 | 1 0-8 | \| 85-10 | 0\|60-100|45-80 | \| 20-50 | 115-25 | \| NP-10 |
| I |  | I |  | \| A-1-b | I |  | I |  | 1 \| | 1 | 1 |  |
| I |  | I | 1 | 1 | I |  | I |  | 1 \| |  |  |  |
| Omena------------ | 0-8 | \|Sandy loam | \|SM, SC-SM, | $S C \mid A-4, \quad A-2-4$ | I | 0 | \| 0-10 | \|90-10 | 0\|75-100|55-85 | \|25-50 | 115-25 |  |
| \| | 8-14 | \|Loam, sandy loam | \|SC, SM, CL, | \| $\mathrm{A}-4, \mathrm{~A}-2-4$ | I | 0 | \| 0-15 | \|90-10 | 0\|75-100|50-95 | \|25-75 | 115-20 | \| 2-10 |
| I |  | I | \| ML | 1 | , |  | 1 | I | 1 \| | 1 |  |  |
|  | 14-60 | \| Sandy loam | \| SM, SC-SM, | SC\|A-4, A-2-4 | I | 0 | \| 0-10 | 190-10 | 0\|75-100|55-85 | \|25-50 | 115-25 | \| 2-8 |
| - \| |  | I | I | I | I |  | I | I | 1 I | I | 1 | 1 |
| 190808: \| |  | I | I | I | I |  | 1 | 1 | 1 | 1 | 1 | 1 |
| Emmet------------ | 0-8 | \|Sandy loam | \| SM, SC-SM, | SC\|A-4, A-2-4, | I | 0 | 1 0-8 | \| 90-10 | 0\|75-100|45-85 | \|20-50 | 115-25 | \| NP-10 |
| , |  | 1 | \\| | \| A-1-b | , |  | 1 |  | 1 \| | 1 | \| |  |
| I | 8-26 | \|Sandy loam, loamy sand, | \|SC, CL | \|A-6, A-4, | I | 0 | 1 0-8 | \| 95-10 | 0\|85-100|40-90 | \| 10-55 | 125-37 | \| 7-15 |
| I |  | \| sandy clay loam | I | \| A-2-6 | I |  | 1 | 1 | 1 \| | 1 |  |  |
|  | 26-32 | \|Sandy loam, sandy clay | \|SC, SC-SM, | \|A-4, A-6, | 1 | 0 | 1 0-8 | \| 95-10 | 0\|75-100|45-95 | 120-75 | 120-40 | 5-20 |
| I |  | \| loam | \| CL, CL-ML | \| A-1-b, A-2 | I |  | 1 | I | 1 \| | 1 |  |  |
| I | 32-60 | \| Sandy loam | \| SM, SC-SM, | SC\|A-4, $\mathrm{A}-2-4$, | 1 | 0 | 1 0-8 | \| 85-10 | 0\|60-100|45-80 | 120-50 | 115-25 | \| NP-10 |
|  |  | I | I | \| A-1-b | 1 |  | 1 | I | 1 \| | , | 1 | , |
| I |  | 1 | 1 | 1 | 1 |  | 1 | 1 | 11 | 1 | 1 | I |

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

| Map unit symbol \| and soil name | Depth | USDA texture | Classification |  | \| | Fragments |  | Percentage passing sieve number-- |  |  | \|Liquid|Plas-\| limit|ticity\|\|index |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | I |  | >10 | \| 3-10 | 1 | I | I |  |  |  |
|  |  |  | \| Unified | 1 AASHTO | 1 | in | 1 in | 4 | \| 10 | 40 | 200 |  |  |  |
| I | In | , | I | I |  | Pct | 1 Pct | 1 | 1 I |  |  | Pct | \| |
| I |  | , | I | I | 1 |  | I | 1 | 1 I | I |  |  | I |
| 190814: \| |  | 1 | I | I |  |  | 1 | 1 | 1 I |  |  |  | 1 |
| Kalkaska--------\| | 0-7 | \| Sand | \| SM | \|A-3, A-2-4, | I | 0 | \| 0-5 | \| 95-10 | \|85-100|45-70 | 5-15 |  | 0-14 | NP |
| , |  | , | \| | \| A-1-b | I |  | 1 | 1 | 1 |  |  |  | I |
| I | 7-15 | \| Sand | \|SP-SM, SM | \|A-3, A-2-4, | I | 0 | \| 0-5 | \| 95-10 | \| $85-100 \mid 45-75$ | 5-30 |  | 0-14 | NP |
| I |  | I | I | \| A-1-b | 1 |  | 1 | I | 1 \| |  |  |  | I |
| I | 15-32 | \| Sand | \| SM | \|A-3, A-2-4, | I | 0 | \| 0-5 | \| 95-10 | \| $85-100 \mid 45-70$ | 5-15 |  | 0-14 | NP |
| I |  | I | \| | \| A-1-b | I |  | 1 |  | 1 \| |  |  |  | 1 |
| I | 32-60 | \| Sand | \|SP-SM, SP, | SM\|A-3, A-2-4, | I | 0 | \| 0-5 | \|95-10 | \|85-100|45-70 | 0-15 |  | 0-14 | NP |
| I |  | I | I | \| A-1-b |  |  | 1 |  | 1 \| |  | I |  | I |
| I |  | I | I | I | I |  | I | 1 | 1 I | I | \| |  | I |
| 190815: \| |  | \\| | \| | I | I |  | I | 1 | 1 \| |  |  |  | I |
| Kalkaska--------\| | 0-7 | \| Sand | \| SM | \|A-3, A-2-4, | 1 | 0 | \| 0-5 | \| 95-10 | \|85-100|45-70 | 5-15 | I | 0-14 | NP |
| I |  | I | I | \| A-1-b |  |  | 1 |  | 1 \| |  |  |  | I |
| I | 7-15 | \| Sand | \|SP-SM, SM | \|A-3, A-2-4, | 1 | 0 | \| 0-5 | \|95-10 | $0\|85-100\| 45-75$ | 5-30 | I | 0-14 | NP |
| I |  | \| | I | $\text { \| } \mathrm{A}-1-\mathrm{b}$ | I |  |  | \| | $1$ <br> । |  |  |  |  |
| I | 15-32 | \| Sand | \| SM | \|A-3, A-2-4, | I | 0 | \| 0-5 | \| 95-10 | (85-100\|45-70 | 5-15 |  | 0-14 | NP |
| I |  | I | I | \| A-1-b | I |  | 1 | \| | $i \quad i$ |  |  |  | , |
| I | 32-60 | \| Sand | \|SP-SM, SP, | SM\|A-3, A-2-4, |  | 0 | \| 0-5 | \| 95-10 | $0\|85-100\| 45-70$ | 0-15 |  | 0-14 | NP |
| \| |  | I | \| | \| A-1-b | I |  | I | I | \| | |  | I |  |  |
| I |  | I | 1 | 1 | I |  | I | 1 | 1 I |  | I |  | , |
| 190816: \| |  | I |  | I | I |  |  |  | 11 |  | I |  | I |
| Kalkaska--------\| | 0-7 | \| Sand | \| SM | \|A-3, A-2-4, | 1 | 0 | \| 0-5 | \|95-10 | $0\|85-100\| 45-70$ | 5-15 |  | 0-14 | NP |
| I |  |  |  | \| A-1-b | , |  |  | \| | 1 \| |  |  |  |  |
| I | 7-15 | \| Sand | \|SP-SM, SM | \|A-3, A-2-4, | I | 0 | \| 0-5 | \|95-10 | $0\|85-100\| 45-75$ | 5-30 |  | 0-14 | NP |
| I |  | I | I | $1 \mathrm{~A}-1-\mathrm{b}$ | , |  | 1 | 1 | 1 । |  |  |  | 1 |
| I | 15-32 | \| Sand | \| SM | \|A-3, A-2-4, | 1 | 0 | \| 0-5 | \|95-10 | $0\|85-100\| 45-70$ | 5-15 |  | 0-14 | NP |
| I |  | 1 | I | \| A-1-b | I |  | 1 | I | 11 |  |  |  | 1 |
| 1 | 32-60 | \| Sand | \| SP-SM, SP, | SM\|A-3, A-2-4, | I | 0 | \| 0-5 | \|95-10 | $0\|85-100\| 45-70$ | 0-15 |  | 0-14 | NP |
| I |  | I | I | \| A-1-b | , |  | 1 |  | i i |  | , |  |  |
| I |  | I | 1 | 1 | I |  | I | 1 | 1 I | , | I |  | I |
| 190817: \| |  | I | I | 1 | I |  | 1 |  | 1 I |  |  |  | I |
| Kalkaska--------\| | 0-7 | \| Sand | \| SM | \|A-3, A-2-4, | I | 0 | 1 0-5 | \|95-10 | \| $85-100 \mid 45-70$ | 5-15 |  | 0-14 | NP |
| I |  | I | I | \| $\mathrm{A}-1-\mathrm{b}$ | I |  | 1 | \| | 1 । |  |  |  | I |
| I | 7-15 | \| Sand | \|SP-SM, SM | \|A-3, A-2-4, | I | 0 | \| 0-5 | \| 95-10 | $0\|85-100\| 45-75$ | 5-30 |  | 0-14 | NP |
| I |  | I | I | \| A-1-b | I |  | 1 |  | 11 |  |  |  | , |
| I | 15-32 | \| Sand | \| SM | \|A-3, A-2-4, | I | 0 | 1 0-5 | \|95-10 | $0\|85-100\| 45-70$ | 5-15 |  | 0-14 | \| NP |
| I |  | I | 1 | \| A-1-b | I |  |  |  | 1 । |  |  |  | I |
| I | 32-60 | \| Sand | \|SP-SM, SP, | SM\|A-3, A-2-4, | I | 0 | 1 0-5 | \|95-10 | $0\|85-100\| 45-70$ | 0-15 |  | 0-14 | NP |
| I |  | I | I | \| A-1-b | I |  | 1 | 1 | \| | |  |  |  | I |
| I |  | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 I | I |  |  | 1 |

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

Map unit symbol and soil name	Depth	USDA texture	Classification		Fragments			Percentage passing sieve number--			$\begin{aligned} & \text { \| \|Liquid\| Plas- } \\ & \text { \| limit\|ticity } \end{aligned}$			
			1	,	>10	\| 3-10		1	I	I				
			\| Unified	1 AASHTO \|	in	1	in	4	\| 10	40	1200		\|index	
I	In	I	I	I	Pct	I	Pct	I	1 l	1	1 Pct	1		
		1	I	1 I		1		1	1 I	I		I		
190837: \|		1	I	1 \|		1		1	11	I	1	1		
Mancelona-------\|	0-8	\| Loamy sand	\|SP-SM, SM	\|A-2-4, A-1-b		0	1	0-8	\| 90-100	\|75-95	35-80	110-35	0-14	1 NP
	8-25	\|Loamy sand, sand,	\|SP-SM, SM	\|A-3, A-2-4,		0	,	0-15	180-100	\|55-95	30-75	\| 5-30	0-14	\| NP
I		\| gravelly loamy sand	I	$\mid \mathrm{A}-1-\mathrm{b}$ \|		1			1	I		\|		
	25-30	\|Sandy loam, gravelly	\|SC-SM, SC	$\|A-6, A-4, A-2\|$	0	1	0-15	\| 85-100	\|55-95	45-95	\|20-75	120-35	8-15	
I		\| sandy clay loam,	I	I		1			\| I		I	1		
,		\| gravelly sandy loam		1 \|		1			1 I					
	30-60	\|Very gravelly coarse	\| SP-SM, SW,	\|A-3, A-2,		0	1	0-15	140-90	\|30-85	20-60	\| 0-15	\| 0-14	\| NP
I		I sand, sand	I GP, GW	$\mid \mathrm{A}-1-\mathrm{b}$ \|		1			1 \|	I		I		
		I		1 \|		1		I	1	I				
East Lake-------1	0-8	\| Loamy sand	\|SP-SM, SM	\|A-2-4, A-1		0	I	0-15	\| 95-100	\|85-100	40-75	110-30	0-14	\| NP
,	8-26	\| Loamy sand, sand	\| SP-SM, SP,	SM\|A-3, A-2-4,		0	1	0-15	185-100	\|70-100	35-75	\| 0-30	0-14	NP
,		I		$\mathrm{A}-1$		1			1 ।	1				
	26-60	\| Gravelly coarse sand	\|SP, SP-SM,	\|A-3, A-2-4,		0	,	0-15	140-95	\|30-85	20-60	\| 0-10	\| 0-14	I NP
		I	I GP, GP-GM	$\text { \| } \mathrm{A}-1-\mathrm{b}$		I			I I			I		
I		I		1 \|		1			1 I	1	I	I		
190838: \|		,	1	I		1			1 I	I	1	1		
Mancelona------- -	0-8	\| Loamy sand	\|SP-SM, SM	$\mid \mathrm{A}-2-4, \mathrm{~A}-1-\mathrm{b}$ \|	0	,	0-8	190-100	\|75-95	35-80	110-35	0-14	I NP	
I	8-25	\| Loamy sand, sand,	\|SP-SM, SM	\|A-3, A-2-4,		0	1	0-15	180-100	\|55-95	30-75	\| 5-30	0-14	NP
I		\| gravelly loamy sand	1	$\mid \mathrm{A}-1-\mathrm{b}$ \|		1			1	I		I		
	25-30	\|Sandy loam, gravelly	\|SC-SM, SC	$\|A-6, A-4, A-2\|$	0	,	0-15	185-100	\|55-95	45-95	120-75	120-35	\| 8-15	
I		\| sandy clay loam,		1 \|		1			$\mid$ $1$					
,		\| gravelly sandy loam		1 I		1								
I	30-60	\|Very gravelly coarse	\| SP-SM, SW,	$\mid A-3, A-2,1$	0	1	0-15	140-90	\|30-85	20-60	\| 0-15	\| 0-14	I NP	
I		I sand, sand	I GP, GW	$\mid \mathrm{A}-1-\mathrm{b}$ \|		1			1 I	,	,	,		
I		1	I	1 \|		1		I	1		1	1		
East Lake-------	0-8	\| Loamy sand	\|SP-SM, SM	$\mid \mathrm{A}-2-4, \mathrm{~A}-1$ \|	0	1	0-15	195-100	\|85-100	40-75	110-30	0-14	I NP	
	8-26	\|Loamy sand, sand	\| SP-SM, SP,	SM\|A-3, A-2-4,		0	,	0-15	185-100	\|70-100	35-75	\| 0-30	0-14	NP
		I		A-1		1			I I					
	26-60	\|Gravelly coarse sand	\|SP, SP-SM,	$\mid A-3, A-2-4,1$	0	1	0-15	140-95	\|30-85	20-60	\| 0-10	\| 0-14	I NP	
I		I	I GP, GP-GM	$\mid \mathrm{A}-1-\mathrm{b}$ \|		,			I ।					
I		I		1 \|		1			1 I	I	I	I		
190839: \|		1	1	1 \|		1		1	\|		1	1		
Mancelona------- -	0-8	\| Gravelly sandy loam	\| SM, SC-SM	$\mid \mathrm{A}-1-\mathrm{b}$ - \|	0	1	0-5	170-80	\|55-75	35-55	115-35	115-25	\| NP-7	
I	8-25	\| Loamy sand, sand,	\|SP-SM, SM	$\mid A-3, A-2-4,1$	0	1	0-5	180-100	\|55-95	30-75	\| 5-30	\| 0-14	I NP	
I		\| gravelly loamy sand		$\mid \mathrm{A}-1-\mathrm{b}$ \|		1			1					
	25-30	\|Sandy loam, gravelly	\|SC-SM, SC	$\|A-6, A-4, A-2\|$	0		0-5	185-100	\|55-95	45-95	\|20-75	120-35	\| 8-15	
I		\| sandy clay loam,	1	1 \|		1			1 I	I	1			
I		\| gravelly sandy loam		1 1		1			1 1	I		1		
	30-60	\|Very gravelly coarse	\|SP-SM, SW,	\|A-3, A-2,		0	1	0-10	140-90	\|30-85	20-60	\| 0-15	0-14	I NP
,		I sand, sand	\\| GP, GW	$\mid \mathrm{A}-1-\mathrm{b}$ \|		1		I	11	,	I	,		
I		I	I	1 \|		1		1	11		I	1		
Richter---------	0-8	\| Sandy loam	\| SM, SC-SM	$\|\mathrm{A}-4, \mathrm{~A}-2\|$	0	1	0	\| 100	\|90-100	55-80	\|25-50	115-25	\| 2-7	
I	8-27	\| Fine sandy loam	\|SC, SM, SC-	SM\|A-4, A-6,		0	1	0	I 100	\|90-100	45-90	\|15-45	110-30	\| NP-16
I				$\mid \mathrm{A}-1, \mathrm{~A}-2-4$ \|		1		I	1 \|	I				
	27-60	\|Stratified loamy fine	\| SM, SC-SM,	SC\|A-4, A-2-4,		0	,	0	I 100	\|90-100	45-80	115-45	110-25	\| NP-10
		I sand to sandy loam	$1$	$\mid \mathrm{A}-1$ \|		1			1 \|	I		I		
I		1	1	1 l		1		1	1 I	I	1	1		

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

Map unit symboland soil name	Depth	USDA texture	\| Classification		Fragments			Percentage passing sieve number--				$\mid$ \|Liquid	Plas-$\mid$ limit\|ticity\| $\mid$ index				
			1	I	>10	1	3-10	I	1 \|								
			\| Unified	1 AASHTO \|	in	1	in	14	\| 10	40		200					
I	In	I	I	I	Pct	1	Pct	I	I				Pct				
I		I	1	1 \|		,		1	1 I								
193360: \|		1	1	1		1		1	I								
Shavenaugh------1	0-5	\| Sand	\|SP-SM, SP	\|A-3		0	I	0	185-95	185-95 \|50-80		0-15		0-14	I	NP	
I	5-8	\|Sand, gravelly sand	\|SP-SM, SP	\|A-3, A-1		0	,	0	170-95	\|70-95	50-80		0-15		0-14	I	NP
I	8-16	\|Sand, gravelly sand	\|SP-SM, SP	$\mid \mathrm{A}-1, \mathrm{~A}-3$ \|	0	1	0	170-95	170-95 \|50-80		0-15		0-14	I	NP		
I	16-28	\|Sand, gravelly sand	\|SP-SM, SP	\|A-1, A-3		0	1	0	170-95	170-95 \|50-80		0-15		0-14	I	NP	
I	28-34	\|Sand, gravelly sand	\|SP-SM, SP	$\mid \mathrm{A}-1, \mathrm{~A}-3$ \|	0	I	0	170-95	\|70-95	50-80		0-15		0-14	I	NP	
I	34-44	\|Loamy sand, gravelly	\| SP-SM	$\|A-2, A-3, A-1\|$	0	I	0	\| 55-95	\|55-95	35-80		0-30		0-14	I	NP	
I		\| loamy sand	I	\|			1		I	1 \|							
I	44-80	\|Gravelly sand, very	\|GP-GM, GM,	GP\|A-3, A-1		0	1	0	\| 30-85	\|30-85	0-80		0-30		0-14	I	NP
I		\| gravelly sand, very	1	I		I		I	1 I								
I		\| gravelly loamy sand,	I	1		I		I	1 I								
I		\| stratified sand to	I	1		I		I	1 I								
I		\| gravelly sand	I	1		I		I	1 I	1				I			
I		,	I	1 I		I		I	1 I								
193362: \|		1	I	1 \|		I		I	1 I					,			
Benzonia-------- -	0-5	\| Sand	\|SP-SM, SP	\|A-3, A-2		0	,	0	\|85-100	\|85-100	40-90		0-15		0-14		NP
I	5-11	\| Sand	\|SP-SM, SP	\|A-3, A-2		0	,	0	\|85-100	\|85-100	40-90		0-15		0-14	I	NP
I	11-15	\| Sand	\|SP-SM, SP	\|A-3, A-2		0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP
I	15-20	\| Sand	\|SP-SM, SP	$\|\mathrm{A}-3, \mathrm{~A}-2\|$	0	,	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP	
\|	20-27	\| Sand	\|SP-SM, SP	$\|\mathrm{A}-3, \mathrm{~A}-2\|$	0	I	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP	
I	27-35	\| Sand	\|SP-SM, SP	\|A-3, A-2		0	1	0	\|85-100	\|85-100	40-90		0-15		0-14		NP
I	35-80	\| Loamy sand, sand	\|SP-SM, SM	\|A-3, A-2		0	1	0	\|85-100	\|85-100	40-90		5-30		0-14	I	NP
I		$1$		1 \|		I			1 I					I			
193363: \|		I	I	1 \|		I		I	1 I					I			
Benzonia--------\|	0-5	\| Sand	\|SP-SM, SP	\|A-3, A-2		0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP
I	5-11	\| Sand	\|SP-SM, SP	\|A-3, A-2		0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP
I	11-15	I Sand	\|SP-SM, SP	\|A-3, A-2		0	1	0	185-100	\|85-100	40-90		0-15		0-14	I	NP
I	15-20	\| Sand	\|SP-SM, SP	$\|\mathrm{A}-3, \mathrm{~A}-2\|$	0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP	
I	20-27	ISand	\|SP-SM, SP	$\|\mathrm{A}-3, \mathrm{~A}-2\|$	0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP	
I	27-35	\| Sand	\|SP-SM, SP	$\|\mathrm{A}-3, \mathrm{~A}-2\|$	0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP	
,	35-80	\| Loamy sand, sand	\|SP-SM, SM	\|A-3, A-2		0	I	0	\| 85-100	\|85-100	40-90		5-30		0-14	I	NP
I		$1$	I	1 \|		I		1	1 I								
193364: \|		I	I	1 \|		I		1	1 I								
Benzonia--------\|	0-5	\| Sand	\|SP-SM, SP	\|A-3, A-2		0	1	0	\|85-100	\|85-100	40-90		0-15		0-14	I	NP
I	5-11	\| Sand	\|SP-SM, SP	\|A-3, A-2		0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP
I	11-15	\| Sand	\|SP-SM, SP	\|A-3, A-2		0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP
I	15-20	ISand	\|SP-SM, SP	$\|\mathrm{A}-3, \mathrm{~A}-2\|$	0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP	
I	20-27	\| Sand	\|SP-SM, SP	$\|\mathrm{A}-3, \mathrm{~A}-2\|$	0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	I	NP	
I	27-35	\| Sand	\|SP-SM, SP	$\|\mathrm{A}-3, \mathrm{~A}-2\|$	0	1	0	\| 85-100	\|85-100	40-90		0-15		0-14	1	NP	
	35-80	\|Loamy sand, sand	\|SP-SM, SM	\|A-3, A-2		0	1	0	\| 85-100	\|85-100	40-90		5-30		0-14	1	NP
,		1	I	1 I		1		1	1 I	I							

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

Map unit symbol and soil name	Depth	1 USDA texture	\| Classification				Fragments			Percentage passingsieve number--						Liquid\|						
		I	Un		I	AASHTO				$>10$in	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 3-10 \\ \text { in } \end{gathered}$	I	\|	1	I		\| limit	ticity			
				Unified			14	10	140					200								
	In	I	I		I	I	Pct	I	Pct	I	I	I				Pct						
		1	1		I	1		I		1	I	I										
193503 :		I	I		I	,		I		I	,	1										
Shavenaugh	0-5	\| Sand	\| SP-SM	M, SP	\|A-3	I	0	1	0	185-95	185-95	150-80		0-15		0-14		NP				
	5-8	\|Sand, gravelly sand	\|SP-SM	M, SP	\|A-3,	A-1	0	I	0	170-95	170-95	150-80		0-15		0-14		NP				
	8-16	\|Sand, gravelly sand	\| SP-SM	M, SP	\|A-1,	A-3	0	I	0	170-95	170-95	150-80		0-15		0-14		NP				
	16-28	\|Sand, gravelly sand	\| SP-SM	M, SP	\|A-1,	A-3 \|	0	I	0	170-95	170-95	150-80		0-15		0-14	,	NP				
	28-34	\|Sand, gravelly sand	\| SP-SM	M, SP	\|A-1,	A-3	0	I	0	170-95	170-95	150-80		0-15		0-14	I	NP				
	34-44	\|Loamy sand, gravelly	\| SP-SM		\|A-2,	A-3, A-1\|	0	I	0	\| 55-95	\|55-95	\| 35-80		0-30		0-14	I	NP				
		\| loamy sand			I	,		I		I	।											
	44-80	\| Gravelly sand, very	\| GP-GM	M, GM,	GP\|A-3,	A-1	0	I	0	\| 30-85	\|30-85	\| 0-80		0-30		0-14		NP				
		\| gravelly sand, very	I		I	I		I			1	1										
		\| gravelly loamy sand,	1		I	I		1			,	I										
		\| stratified sand to	I		I	I		I			I	I										
		\| gravelly sand	I		I	I		1		I	,	I										
		I	I		I	I		I		1	,	I										
193504:		I	I		I	I		I		I	1	1			I							
Spinks----------	0-5	\| Sand	\| SP-SM	M, SP	\|A-3	I	0	I	0	\|85-100	\|85-100	140-85		0-15		0-14		NP				
\|	5-10	\|Sand, fine sand	\|SP-SM	M, SP	\|A-3,	A-2	0	I	0	\|85-100	\|85-100	140-85		0-35		0-14	1	NP				
	10-17	\|Sand, fine sand	\|SP-SM	M, SP	\|A-3,	A-2	0	I	0	\|85-100	\|85-100	140-85		0-35		0-14		NP				
	17-62	\| Loamy fine sand, loamy	\| SP-SM	M, SM,	SP\|A-3,	A-2	0	I	0	\|85-100	\|85-100	140-85		0-55		0-14	1	NP				
		I sand, fine sand, sand			I	-		I														
	62-72	\| Loamy fine sand, loamy	\| SP-SM	M, SM,	SP\|A-3,	A-2	0	,	0	\|85-100	\|85-100	140-85		0-55		0-14		NP				
		I sand, fine sand, sand										I										
	72-80	\|Sand, fine sand	\| SP-SM	M, SP	\|A-1,	A-3, A-21	0	I	0	\|75-100	\|75-100	\|35-85		0-35		0-14	I	NP				
\|					I	-3,					I											
Shavenaugh------ \|	0-5	\| Sand	\| SP-SM	M, SP	\|A-3	I	0	1	0	185-95	185-95	150-80		0-15		0-14	,	NP				
	5-8	\|Sand, gravelly sand	\| SP-SM	SM, SP	\|A-3,	A-1	0	I	0	170-95	170-95	150-80		0-15		0-14		NP				
	8-16	\|Sand, gravelly sand	\| SP-SM	SM, SP	\|A-1,	A-3 \|	0	1	0	170-95	170-95	150-80		0-15		0-14	1	NP				
	16-28	\|Sand, gravelly sand	\| SP-SM	M, SP	\|A-1,	A-3	0	I	0	170-95	170-95	150-80		0-15		0-14		NP				
	28-34	\| Sand, gravelly sand	\| SP-SM	SM, SP	\|A-1,	A-3 \|	0	1	0	170-95	170-95	150-80		0-15		0-14	,	NP				
I	34-44	\|Loamy sand, gravelly	\| SP-SM		\|A-2,	A-3, A-1\|	0	1	0	\| 55-95	155-95	135-80		0-30		0-14	,	NP				
		\| loamy sand	I			\|		1			$1$											
	44-80	\|Gravelly sand, very	\| GP-GM	M, GM,	GP\|A-3,	A-1 \|	0	1	0	130-85	130-85	\| 0-80		0-30		0-14	I	NP				
		\| gravelly sand, very			I	I		1		i					,							
		\| gravelly loamy sand,	I		I	I		1		i	I	I										
		\| stratified sand to	1		I	,		1		1	I											
		\| gravelly sand	1		I	I		1		I	,											
		\|	1		I	,		I		I	I											
193505: \|		I	I		1	1		1		I	1	1			I							
Spinks---------- -	0-5	ISand	\| SP-SM	M, SP	\|A-3	,	0	1	0	\|85-100	\|85-100	140-85		0-15		0-14		NP				
-	5-10	\|Sand, fine sand	\| SP-SM	SM, SP	\|A-3,	A-2	0	1	0	\| 85-100	\|85-100	\|40-85		0-35		0-14	1	NP				
	10-17	\|Sand, fine sand	\| SP-SM	M, SP	\|A-3,	A-2	0	1	0	\|85-100	\|85-100	140-85		0-35		0-14	,	NP				
	17-62	\|Loamy fine sand, loamy	\| SP-SM	M, SM,	SP\|A-3,	A-2 \|	0	I	0	\|85-100	\|85-100	$140-85$		0-55		0-14	,	NP				
		\| sand, fine sand, sand	I		\|	1		1			$1$	I										
I	62-72	\| Loamy fine sand, loamy	\|SP-SM	M, SM,	SP\|A-3,	A-2 I	0	1	0	\| 85-100	\|85-100	140-85		0-55		0-14	I	NP				
I		I sand, fine sand, sand	।		I	- 1		1		I	\|	I										
	72-80	\| Sand, fine sand	\| SP-SM	M, SP	\|A-1,	A-3, A-21	0	1	0	175-100	\|75-100	\|35-85		0-35		0-14		NP				
1		I	I		1	,		1		1	I	1	I		I							

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

Map unit symbol \|	Depth	USDA texture	\| Classification			Fragments		Percentage passing sieve number--						
and soil name \|			1	I	>10	3-10	I	I	1	1	\|Liquid	Plas-		
1		1	\| Unified	1 AASHTO \|	in	1 in	14	\| 10	140	1200	1	lindex		
I	In	I	I	I	Pct	1 Pct	I	I	1	1	1 Pct	I		
I		I	1	1 I		1 -	1	1	I	1	1 -	I		
193507: \|		I	I	1 \|		1	I	I	I	1	I	I		
Shavenaugh------1	0-5	\|Sand	\|SP-SM, SP	\|A-3		0	0	185-95	\| 85-95	150-80	\| 0-15	\| 0-14	\| NP	
I	5-8	\|Sand, gravelly sand	\|SP-SM, SP	$\|\mathrm{A}-3, \mathrm{~A}-1 \quad\|$	0	0	170-95	170-95	150-80	\| 0-15	\| 0-14	NP		
I	8-16	\|Sand, gravelly sand	\|SP-SM, SP	$\mid \mathrm{A}-1, \mathrm{~A}-3$ \|	0	0	170-95	170-95	150-80	\| 0-15	\| 0-14	NP		
I	16-28	\|Sand, gravelly sand	\|SP-SM, SP	$\mid \mathrm{A}-1, \mathrm{~A}-3$ \|	0	0	170-95	170-95	150-80	\| 0-15	\| 0-14	I NP		
I	28-34	\|Sand, gravelly sand	\|SP-SM, SP	$\mid \mathrm{A}-1, \mathrm{~A}-3$ \|	0	0	170-95	170-95	150-80	\| 0-15	0-14	I NP		
I	34-44	\|Loamy sand, gravelly	\|SP-SM	$\|A-2, A-3, A-1\|$	0	0	\| 55-95	\| 55-95	\|35-80	\| 0-30	\| 0-14	\| NP		
I		\| loamy sand	I	1 \|		1	I	I	I	1	1	,		
I	44-80	\|Gravelly sand, very	\|GP-GM, GM,	GP\|A-3, A-1		0	0	130-85	\| 30-85	\| 0-80	\| 0-30	\| 0-14	I NP	
I		\| gravelly sand, very	I	1 \|		1	I	I	I	I	I	I		
I		\| gravelly loamy sand,	I	1 I		I	I	I	I	I	I	I		
I		\| stratified sand to	I	1 I		I	I	I	I	1	1	1		
I		\| gravelly sand	I	1		I	I	I	I	1	I	I		
I		I	I	1 I		,	I	I	I	I	I	I		
193508: \|		I	I	1		,	I	I	I	1	1	,		
Madaus----------\|	0-12	\|Muck	\| PT	\|A-8		0	0	\| 100	\| 100	\| 100	190-100	1 0-0	\| NP	
I	12-34	\|Marly silt loam	\| ML	\|A-4		0	0	I 100	\| 100	190-100	170-90	125-35	\|NP-10	
I	34-38	\|Marly silt loam	\|ML	\|A-4		0	0	I 100	\| 100	\|90-100	170-90	\| 25-35	\|NP-10	
I	38-62	\|Sand	\|SP, SP-SM	\|A-3		0	0	I 100	$\text { \| } 100$	150-90	$\text { \| } 0-15$	\| 0-14		
I	62-80	\|Clay	\|CL, CH	\|A-6, A-7		0	0	I 100	$100$	\|90-100	$0 \mid 80-100$	$140-55$	$120-35$	
I		I	I	1 I		,	I	I	I	I	,	I		
193509: \|		1	1	1 I		1	I	1		1		1		
Boyer------------\|	0-3	\|Fine sandy loam	\|SC-SM, SM	\|A-2, A-4		0	10	155-99	\| 55-99	135-70	\|15-55	110-20	\| NP-10	
-	3-4	\|Sandy clay loam,	\|SC-SM, SM	\|A-2, A-4		0	0	\| 55-99	\| 55-99	135-70	115-55	110-40	\| NP-20	
I		\| gravelly sandy loam	I	$1$ i		I		\|	I	$1$		-		
1	4-14	\|Gravelly sandy loam,	sandy clay loam	$\begin{aligned} & \text { \|SC-SM, SC, } \\ & \text { CL-ML } \end{aligned}$	\|A-4, A-2		0	10	\|55-99	\| 55-99	\|35-70	\|15-55	\|10-40	\|NP-20
1	14-30	\|Gravelly sandy loam,	\|SC-SM, SC,	\|A-4, A-2		0	0	\| 55-99	\| 55-99	135-70	\|15-55	110-40	\| NP-20	
I		\| sandy clay loam	\| CL-ML	\|			,	I	\|					
I	30-45	\|Very gravelly sand,	\|SP, SP-SM,	$\|A-3, A-2, A-1\|$	0	10	130-85	\| 30-85	\| 0-75	\| 0-35	\| 0-14	I NP		
I		\| sand, gravelly sand,	\| GP, GP-GM	1 \|		I	1	I	I	I	I	I		
I		\| gravelly loamy sand		1 \|		,	I	I	1	1		I		
I	45-80	\|Stratified gravelly	ISP, SP-SM,	$\|A-3, A-2, A-1\|$	0	10	130-85	\| 30-85	\| 0-75	\| 0-35	\| 0-14	I NP		
I		\| sand to sand, very	\| GP, GP-GM	1 \|		1	I	I	I	I	1	I		
I		\| gravelly sand,	1	1		1	I	1	I	I	1	I		
I		\| gravelly loamy sand	I	1		I	I	1	I	I	I	,		
1		1	1	1		1	I	1	I	1	1	I		

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

\|		I	Clas	sification	Fra	me	nts	P	Percenta	ge pass	ing				
Map unit symbol	Depth	1 USDA texture	1	1				1	sieve	number-		\|Liqui	Plas-		
and soil name		,	,	I \|	>10	I	3-10	1	I	,	I	limit	\|ticity		
1		1	\| Unified	1 AASHTO \|	in	1	in	14	\| 10	140	200	1	\|index		
I	In	I	I	1 \|	Pct	I	Pct	I	1	I	I	Pct	\|		
\|		,	,	1 \|		I		I	I	1	I	I	I		
193511:		I	,	1 \|		I		1	1	1	I	I	1		
Boyer-----------\|	0-3	\|Fine sandy loam	\|SC-SM, SM	\|A-2, A-4	0	I	0	\|55-99	\|55-99	\|35-70	\|15-55	110-20	\| NP-10		
,	3-4	\|Sandy clay loam,	\|SC-SM, SM	\|A-2, A-4	0	I	0	\| 55-99	\|55-99	\| 35-70	\|15-55	\|10-40	\| NP-20		
I		\| gravelly sandy loam		1 \|		I		\|	\|	\|	1	1	।		
1	4-14	\|Gravelly sandy loam,	\|SC-SM, SC,	\|A-4, A-2	0	I	0	\| 55-99	\|55-99	\| 35-70	\|15-55	110-40	\| NP-20		
I		\| sandy clay loam	\| CL-ML	,		I		\|	,	,	I	1	1		
I	14-30	\| Gravelly sandy loam,	\| SC-SM, SC,	\|A-4, A-2	0	I	0	\| 55-99	\|55-99	\| 35-70	\|15-55	110-40	\| NP-20		
I		\| sandy clay loam	\| CL-ML	,		I		1	\|	1					
I	30-45	\|Very gravelly sand,	\|SP, SP-SM,	$\|A-3, A-2, A-1\|$	0	I	0	\| 30-85	\|30-85	\| 0-75	0-35	\| 0-14	NP		
I		\| sand, gravelly sand,	\| GP, GP-GM	-		I		1	1	1	1	\|	I		
I		\| gravelly loamy sand		,		I		I	1	I		1	1		
I	45-80	\|Stratified gravelly	\|SP, SP-SM,	$\|A-3, A-2, A-1\|$	0	I	0	130-85	\|30-85	\| 0-75	0-35	\| 0-14	NP		
I		I sand to sand, very	\\| GP, GP-GM	,		I		I	I	I	1	,	I		
I		\| gravelly sand,	I	I		I		I	I	I	I	I	I		
I		\| gravelly loamy sand	,	I		I		I	I	1	I	1	I		
I			,	I		,		I	I	1	1	1	I		
Shavenaugh------\|	0-5	\| Sand	\|SP-SM, SP	\|A-3	0	,	0	185-95	185-95	150-80	\| 0-15	\| 0-14	NP		
I	5-8	\|Sand, gravelly sand	\|SP-SM, SP	\|A-3, A-1	0	I	0	170-95	170-95	150-80	0-15	\| 0-14	NP		
I	8-16	\|Sand, gravelly sand	\|SP-SM, SP	\|A-1, A-3	0	I	0	170-95	170-95	150-80	\| 0-15	\| 0-14	NP		
I	16-28	\|Sand, gravelly sand	\|SP-SM, SP	$\mid \mathrm{A}-1, \mathrm{~A}-3$ \|	0	I	0	170-95	170-95	\| 50-80	\| 0-15	\| 0-14	NP		
I	28-34	\| Sand, gravelly sand	\|SP-SM, SP	$\mid \mathrm{A}-1, \mathrm{~A}-3$ \|	0	I	0	170-95	170-95	\| 50-80	\| 0-15	\| 0-14	NP		
I	34-44	\|Loamy sand, gravelly	\| SP-SM	$\|A-2, A-3, A-1\|$	0	I	0	\| 55-95	\|55-95	\| 35-80	1 0-30	\| 0-14	NP		
I		\| loamy sand		1 \|		I			1	I	,	,	I		
I	44-80	\|Gravelly sand, very	\\| GP-GM, GM,	GP\|A-3, A-1		0	I	0	130-85	130-85	1 0-80	1 0-30	\| 0-14	NP	
I		\| gravelly sand, very	I	1 \|		I		I	I	1	1	I	I		
I		\| gravelly loamy sand,	I	1		1		I	1	1	1	I	I		
I		\| stratified sand to	I	1		I		I	I	I	1	I	I		
I		\| gravelly sand	I	1		I		I	1	I	1	I	I		
I		1	I	1		1		I	1	1	I	I	I		
193513:		I	I	1 I		1		I	I	I	1	1	1		
Dair------------\|	0-4	\|Muck	\| PT	\|A-8		0	,	0	\| 100	\| 100	\| 100	\| 90-100	\| ---	\| NP	
I	4-7	\|Mucky loam, loam, mucky	\| SC-SM	\|A-2		0	,	0	\| 100	\| 100	160-90	\| 30-75	115-20	\| NP-10	
,		\| sandy loam	,	1 \|		,		I	1	1		,			
I	7-11	\| Sand	\|SP, SP-SM	\|A-2, A-3		0	1	0	190-100	\|90-100	145-90	\| 0-15	\| 0-14	NP	
I	11-21	\| Sand	\|SP, SP-SM	\|A-2, A-3		0	1	0	\| 90-100	\|90-100	\|45-90	\| 0-15	\| 0-14	NP	
I	21-50	\| Sand	\|SP, SP-SM	\|A-2, A-3		0	1	0	\| 90-100	\|90-100		\|45-90	\| 0-15	\| 0-14	NP
1	50-80	\| Sand	\|SP, SP-SM	\|A-2, A-3		0	I	0	\|90-100	\|90-100		\|45-90	\| 0-15	\| 0-14	NP
।			I	1 \|		1		I	I	I	,	1	I		
Adrian----------\|	0-7	\| Muck	\| PT	\|A-8		0	1	0	\| 100	\| 100	\| 100	\|90-100	1 0-0	NP	
I	7-20	\|Muck	\| PT	\|A-8		0	1	0	\| 100	\| 100	190-100	\| 40-100	1 0-0	NP	
I	20-35	\|Muck	\| PT	\|A-8		0	1	0	\| 100	\| 100	\|90-100	\| 40-100	1 0-0	NP	
1	35-80	\| Sand	\|SP-SM, SP	\|A-3		0	,	0	I 100	\| 100	150-70	0-15	\| 0-14	NP	
1		1	I	1 I		1		I	1	1	1	1	1		

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

Map unit symbol Depth   and soil name   		I USDA texture	Classification		I	Fragments		Percentage passing sieve number--						
		1												
		Unified	AASHTO		$\begin{array}{r} >10 \\ \text { in } \end{array}$	$\left\lvert\, \begin{gathered} 3-10 \\ \mid \\ \text { in } \\ \hline \end{gathered}\right.$	I	1						
		1		$\begin{array}{llllll}\text { \| } & 4 & 10 & 10 & \text { \| }\end{array}$			200							
	In		I	I	I	I	Pct	1 Pct	1 I	I	Pct	1		
	1 - 1	1	I	1	I		1	1 I l	,	,	1			
631172 :	1	1	1	1	I		1	1 I I	1	1	1			
Fogg	0-2	\| Sand	\|SP-SM, SM	\|A-2, A-3	I	0	1 0-3	\|75-100	75-100	35-90	\| 0-30	0-14	\| NP	
	2-7	\| Loamy sand, sand	\|SP-SM, SM	\|A-2, A-3	I	0	1 0-3	\|75-100	75-100	35-90	\| 0-30	0-14	\\| NP	
	7-13	\| Sand	\|SP-SM, SP	\|A-3	I	0	1 0-3	\|75-100	75-100	35-90	\| 0-30	0-14	\\| NP	
	13-21	\| Sand	\|SP-SM, SP	\|A-3	I	0	1 0-3	\|75-100	75-100	35-90	\| 0-30	\| 0-14	\\| NP	
	21-34	\| Sand	\|SP-SM, SP	\|A-3	I	0	1 0-3	\|75-100	75-100	35-90	\| 0-30	\| 0-14	\| NP	
	34-43	\| Loamy sand, sandy loam,	\| SC-SM, SP-SM	\|A-2, A-3	I	0	1 0-3	\|75-100	75-100	35-90	\|10-65	0-30	\| NP-15	
		\| loamy fine sand, loam	I	,	I		1	$1$ $1$ $1$						
	43-48	\| Loamy sand, sandy loam,	\|SP-SM, SC-SM	\|A-2, A-3	I	0	1 0-3	\|75-100	75-100	35-90	\|10-65	0-30	\| NP-10	
		\| loam, loamy fine sand		I	I		1	1 \|		1	1 1	I		
	48-55	\| Sandy loam, loam	\|SC, SC-SM	\|A-2, A-4	I	0	1 0-3	\|75-100	75-100	35-90	1 0-65	0-30	\| NP-15	
	55-80	\| Loamy sand, sand	\|SM, SP-SM	\|A-2, A-3	I	0	1 0-3	\|75-100	75-100	35-90	\| 0-30	0-14	\| NP	
		$1$			I			$1$			1			
Benzonia	0-5	\| Sand	\|SP-SM, SP	\|A-3, A-2	I	0	10	\|85-100	85-100	40-90	\| 0-15	\| 0-14	\| NP	
	5-11	\| Sand	\|SP-SM, SP	\|A-3, A-2	I	0	10	\|85-100	85-100	40-90	\| 0-15	\| 0-14	\| NP	
	11-15	\| Sand	\|SP-SM, SP	\|A-3, A-2	I	0	10	\|85-100	85-100	40-90	\| 0-15	0-14	\\| NP	
	15-20	I Sand	\|SP-SM, SP	\|A-3, A-2	1	0	10	\|85-100	85-100	40-90	\| 0-15	0-14	I NP	
	20-27	\| Sand	\|SP-SM, SP	\|A-3, A-2	1	0	10	\|85-100	85-100	40-90	0-15	0-14	\| NP	
	27-35	\| Sand	\|SP-SM, SP	\|A-3, A-2	1	0	10	\|85-100	85-100	40-90	\| 0-15	\| 0-14	\| NP	
	35-80	\| Loamy sand, sand	\|SP-SM, SM	\|A-3, A-2	I	0	$10$	\|85-100	85-100	40-90	\| 5-30	\| 0-14	I NP	
			I	1	I		I	\|			I			
631173 :	1	1	I	I	I		1	\|	I					
Fogg-	0-2	\| Sand	\|SP-SM, SM	$\mathrm{A}-2, \mathrm{~A}-3$	I	0	1 0-3	\|75-100	75-100	35-90	1 0-30	\| 0-14	I NP	
	2-7	\| Loamy sand, sand	\|SP-SM, SM	\|A-2, A-3	I	0	1 0-3	\|75-100	75-100	35-90	1 0-30	\| 0-14	I NP	
	7-13	\| Sand	\|SP-SM, SP	\|A-3	1	0	1 0-3	\|75-100	75-100	35-90	1 0-30	\| 0-14	I NP	
	13-21	\| Sand	\|SP-SM, SP	\|A-3	1	0	1 0-3	\|75-100	75-100	35-90	1 0-30	\| 0-14	I NP	
	21-34	\| Sand	\|SP-SM, SP	\|A-3	1	0	1 0-3	\|75-100	75-100	35-90	1 0-30	\| 0-14	\| NP	
	34-43	\|Loamy sand, sandy loam,	\|SC-SM, SP-SM	\|A-2, A-3	I	0	1 0-3	\|75-100	75-100	35-90	\|10-65	1 0-30	\| NP-15	
		\| loamy fine sand, loam			I		1	\|					I	
	43-48	\|Loamy sand, sandy loam,	\|SP-SM, SC-SM	\|A-2, A-3	I	0	\| 0-3	\|75-100	75-100	35-90	\|10-65	1 0-30	\| NP-10	
		\| loam, loamy fine sand			I		1	I   1   I						
	48-55	\|Sandy loam, loam	\|SC, SC-SM	\|A-2, A-4	I	0	1 0-3	\|75-100	75-100	35-90	\| 0-65	1 0-30	\| NP-15	
	55-80	\| Loamy sand, sand	\|SM, SP-SM	\|A-2, A-3	I	0	1 0-3	\|75-100	75-100	35-90	1 0-30	\| 0-14	\| NP	
					I		I	\|			,	1 \|	I	
Benzonia	0-5	\| Sand	\|SP-SM, SP	\|A-3, A-2	I	0	10	\|85-100	85-100	40-90	\| 0-15	\| 0-14	\| NP	
	5-11	\| Sand	\|SP-SM, SP	\|A-3, A-2	I	0	10	\|85-100	85-100	40-90	0-15	\| 0-14	\\| NP	
	11-15	\| Sand	\|SP-SM, SP	\|A-3, A-2	I	0	10	\|85-100	85-100	40-90	\| 0-15	\| 0-14	\\| NP	
	15-20	I Sand	\|SP-SM, SP	\|A-3, A-2	,	0	10	\|85-100	85-100	40-90	0-15	\| 0-14	\| NP	
	20-27	I Sand	\|SP-SM, SP	\|A-3, A-2	I	0	10	\|85-100	85-100	40-90	\| 0-15	0-14	NP	
	27-35	\| Sand	\|SP-SM, SP	\|A-3, A-2	,	0	10	\|85-100	85-100	40-90	\| 0-15	\| 0-14	\| NP	
	35-80	\| Loamy sand, sand	\|SP-SM, SM	\|A-3, A-2	,	0	10	\|85-100	85-100	40-90	1 5-30	\| 0-14		\| NP
		I	\|	-	,		1	1 \|		1	-	I		

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

Map unit symbol and soil name	Depth	USDA texture	Classification		1	Fragments			$\begin{gathered} \text { Percentage passing } \\ \text { sieve number-- } \end{gathered}$						Liquid\|		
					Plas-												
			I	I			>10	I	3-10	1	I	1				limit	ticity
			\| Unified	1 AASHTO	1	in	1	in	4	10	40		200	1		\|index	
	In	I	I	I		Pct	I	Pct	I	I	1				Pct		
		I	1	I			I		I	1	I						
680971:		,	,	I			I		I	I	I						
Nessen--	0-4	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-95	185-95	\| 50-85		0-15		0-14	NP	
	4-11	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-95	185-95	\| 50-85		0-15		0-14	NP	
	11-15	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-95	185-95	\| 50-85		0-15		0-14	NP	
	15-24	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-95	185-95	\| 50-85		0-15		0-14	NP	
	24-39	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-95	185-95	150-85		0-15		0-14	NP	
	39-44	\| Gravelly sand,	\| GP-GM,	\|A-3, A-1	I	0	I	0	150-85	150-85	\| 50-80		0-30		0-14	NP	
		\| stratified sand to	\| SP-SM, SP	\|			I			I	1						
		\| gravelly sand,	I	I			I			I	I			I			
		\| gravelly loamy sand,	I	I			I			1	I					,	
		\\| sand	I	1			I		I	1	1						
	44-80	\|Stratified sand to	\| GP-GM,	\|A-3, A-1	I	0	I	0	150-85	\|50-85	\| 50-85		0-15		0-14	NP	
		\| gravelly sand, sand,	\| SP-SM, SP	\|			I		I	I	I						
		\| gravelly sand	I	1	I		I		I	I	I			I			
		I					I										
Kaleva-	0-3	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	\| 85-100	\|85-100	140-90		0-15	I	0-14	NP	
	3-9	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	\| 85-100	\|85-100	140-90		0-15		0-14	NP	
	9-11	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	\| 85-100	\|85-100	140-90		0-15		0-14	NP	
	11-16	I Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-100	\|85-100	140-90		0-15		0-14	NP	
	16-21	ISand	\|SP-SM, SP	\|A-3	,	0	I	0	\| 85-100	\|85-100	140-90		0-15		0-14	NP	
	21-70	I Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-100	\|85-100	140-90		0-15		0-14	NP	
	70-80	\| Sand	\|SP-SM, SP	\|A-3		0	I	0	\| 85-100	\|85-100	\|40-90		0-15		0-14	NP	
		I	I	I			I										
680972 :		,	I	I	I		I										
Nessen-	0-4	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-95	185-95	150-85		0-15		0-14	NP	
	4-11	I Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-95	185-95	150-85		0-15		0-14	NP	
	11-15	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-95	185-95	150-85		0-15		0-14	NP	
	15-24	I Sand	\|SP-SM, SP	\|A-3	\|	0	I	0	185-95	185-95	\| 50-85		0-15		0-14	NP	
	24-39	\| Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-95	185-95	\| 50-85		0-15		0-14	NP	
	39-44	\| Gravelly sand,	\| GP-GM,	\|A-3, A-1		0	I	0	150-85	150-85	\| 50-80		0-30		0-14	NP	
		\| stratified sand to	\| SP-SM, SP	\|	I		I		I		-						
		\| gravelly sand,	1	1			I		I	I	1			I			
		\| gravelly loamy sand,	I	I			I		i	i	1					I	
		I sand	1	1	I		I		i	I							
	44-80	\|Stratified sand to	\| GP-GM,	\|A-3, A-1	I	0	I	0	150-85	150-85	\| 50-85		0-15		0-14	NP	
		\| gravelly sand, sand,	\| SP-SM, SP	1	I		I		1								
		\| gravelly sand	I	1			I		i	i	1			I		,	
			I	1	I		I		I	I							
Kaleva----------	0-3	\| Sand	\|SP-SM, SP	\|A-3	I	0	,	0	\| 85-100	\|85-100	140-90		0-15	I	0-14	NP	
	3-9	I Sand	\|SP-SM, SP	\|A-3	1	0	I	0	185-100	\|85-100	\|40-90		0-15		0-14	NP	
	9-11	ISand	\|SP-SM, SP	\|A-3	I	0	I	0	185-100	\|85-100	140-90		0-15		0-14	NP	
	11-16	I Sand	\|SP-SM, SP	\|A-3	I	0	I	0	185-100	\|85-100	140-90		0-15		0-14	NP	
	16-21	ISand	\|SP-SM, SP	\|A-3	I	0	,	0	\| 85-100	\|85-100	140-90		0-15		0-14	NP	
	21-70	\| Sand	\|SP-SM, SP	\|A-3	I	0	1	0	185-100	\|85-100	\|40-90		0-15		0-14	NP	
	70-80	\| Sand	\|SP-SM, SP	\|A-3	I	0	1	0	185-100	\|85-100	\|40-90		0-15		0-14	NP	
		1	I	1	1		1		1	1	-	1				,	

Table 14.-Engineering Properties-Continued


Table 14.-Engineering Properties-Continued

(Sand, silt, and clay values are shown either as a range or as a representative value (rv). Absence of an entry indicates that data were not estimated. Soil properties are measured or inferred from direct observations in the field or laboratory)

Map unit symbol and soil name	Depth	Sand	1 1 1	Silt	1	Clay	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Permeability (Ksat)	1	Available water capacity	$\begin{array}{\|c\|} \hline \text { \| Shrink- \| } \\ \text { \| swell } \\ \text { \|potential\| } \\ \hline \end{array}$	Organic matter	
	In	Pct	I	Pct	I	Pct	g/cc	1	In/hr	I	In/in	Pct I	Pct	
			1		1	- I		I				1 - 1		
190775:	I		I		1	1		,				1 l		
Adrian----------	0-8	10	1	50	I	40	0.30-0.55	I	0.2-5.9	I	0.35-0.45	\| ---		75-90
	\| 8-24	10	1	65	1	25 \|	0.30-0.55	1	0.2-5.9	I	0.24-0.45	1 --- \|	80-95	
	24-60	94	I	1	I	0-10\|	1.40-1.65	I	5.9-20.0	I	0.03-0.10	0.0-2.9 \|	0.0-0.5	
	\|		I		1	I		I				1 I		
Houghton--------	- 0-10	10	1	50	I	40 I	0.10-0.35	I	0.2-5.9	I	0.35-0.45	I	75-90	
	\| 10-60	10	I	65	I	25 I	0.10-0.35	1	0.2-5.9	1	0.35-0.45	,	80-95	
	I		I		I	1		I		I		I		
190777:	,		1		I	1		1		I		I		
Alcona----------	0-8	67	1	23	I	5-15\|	1.10-1.60	,	0.6-5.9	1	0.12-0.18	$\mid 0.0-2.9$ \|	1.0-3.0	
	\| 8-12	85	1	7	1	2-15\|	1.25-1.70	1	0.6-5.9	,	0.10-0.17	1 0.0-2.9	0.6-1.0	
	12-18	86	1	4	1	5-15\|	1.35-1.70	1	0.6-5.9	I	0.08-0.17	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 18-24	66	1	19	1	10-20\|	1.35-1.70	I	0.6-2.0	,	0.13-0.20	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 24-60	84	I	4	1	5-18\|	1.50-1.70	1	0.6-2.0	I	0.08-0.20	$\mid 0.0-2.9$ \|	0.0-0.5	
	1		1		1	\|		,		I		1		
Richter---------	0-8	67	1	23	1	5-15\|	1.20-1.50	1	2.0-5.9	I	0.12-0.15	$\mid 0.0-2.9$ \|	2.0-4.0	
	\| 8-27	64	I	20	1	10-22\|	1.35-1.60	1	0.6-2.0	I	0.10-0.18	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 27-60	85	1	7	1	2-15\|	1.60-1.70	,	0.6-2.0	I	0.08-0.13	$\mid 0.0-2.9$ \|	0.0-0.5	
	I		1		I	1		I		I		I		
190778:	I		1		I	1		1		I		1 I		
Alcona----------	0-8	67	1	23	1	5-15\|	1.10-1.60	I	0.6-5.9	,	0.12-0.18	$\mid 0.0-2.9$ \|	1.0-3.0	
	\| 8-12	85	I	7	1	2-15\|	1.25-1.70	1	0.6-5.9	I	0.10-0.17	$\mid 0.0-2.9$ \|	0.6-1.0	
	\| 12-18	86	1	4	1	5-15\|	1.35-1.70	,	0.6-5.9	1	0.08-0.17	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 18-24	66	1	19	I	10-20\|	1.35-1.70	,	0.6-2.0	I	0.13-0.20	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 24-60	84	I	4	1	5-18\|	1.50-1.70	,	0.6-2.0	I	0.08-0.20	$\mid 0.0-2.9$ \|	0.0-0.5	
			1		1	I		,		I		1 1		
Richter---------	0-8	67	1	23	1	5-15\|	1.20-1.50	1	2.0-5.9	,	0.12-0.15	$\mid 0.0-2.9$ \|	2.0-4.0	
	\| 8-27	64	I	20	1	10-22\|	1.35-1.60	,	0.6-2.0	,	0.10-0.18	$\mid 0.0-2.9$ \|	0.0-0.5	
	- 27-60	85	I	7	1	2-15\|	1.60-1.70	1	0.6-2.0	I	0.08-0.13	$\mid 0.0-2.9$ \|	0.0-0.5	
			1		1	1		1		,		1 I		
190779:			1		1	I		1		1		1 1 1		
Alpena----------	0-4	67	1	23	1	5-15\|	1.25-1.55	1	2.0-20.0	1	0.05-0.14	$\mid$ 0.0-2.9 \|	2.0-4.0	
	\| 4-60	91	I	4	1	0-10\|	1.25-1.65	1	20.0-20.0	I	0.02-0.04	\| 0.0-2.9		0.0-0.5
	1		I		I	I		1		I		1 I		
190780:			1		I	।		I		I		1 I		
Au Gres---------	- 0-12	95	1	1	1	0-8 \|	1.30-1.55	I	5.9-20.0	,	0.07-0.10	\| 0.0-2.9		2.0-4.0
	\| 12-24	90	1	2	1	1-15\|	1.50-1.70	,	5.9-20.0	1	0.06-0.09	$\mid 0.0-2.9$ \|	0.6-1.0	
	\| 24-60	95	1	1	1	0-8 \|	1.50-1.70	I	5.9-20.0	,	0.05-0.07	$\mid 0.0-2.9$ \|	0.0-0.5	
	I		1		1	1		1		1		1 1		
Kalkaska--------	0-7	94	I	1	1	0-101	1.25-1.45	I	5.9-20.0	,	0.05-0.09	$\mid 0.0-2.9$ \|	1.0-4.0	
	\| 7-15	91	I	2	1	0-15\|	1.35-1.45	1	5.9-20.0	,	0.06-0.08	$\mid$ 0.0-2.9 \|	1.0-3.0	
	\| 15-32	94	1	1	1	0-10\|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	$\mid$ 0.0-2.9 \|	0.5-2.0	
	\| 32-60	94	I	1	1	0-10\|	1.35-1.50	1	5.9-20.0	,	0.04-0.06	$\mid 0.0-2.9$ \|	0.0-0.5	
	1		1		1	1		1		1		1 I		

Table 15.-Physical Soil Properties-Continued


Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	Sand	I	Silt	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Clay I } \\ & \text { \| } \\ & \end{aligned}$	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	$\begin{aligned} & \text { I } \\ & \text { i } \end{aligned}$	Permeabilit (Ksat)	$\begin{array}{r} \hline \mathrm{Y} \\ \text { I } \\ \text { I } \end{array}$	Available water capacity	$\begin{array}{\|c\|} \hline \text { Shrink- \| } \\ \text { \| swell } \\ \mid \text { potential } \end{array}$	Organic matter	
	In	Pct	I	Pct	1	Pct	g/cc	1	In/hr	I	In/in	1 Pct	Pct	
	,		I		I	I		1		I		,		
190794:			I		,	\|		I		I		I		
Emmet	0-8	68	I	24	I	3-12\|	1.30-1.65	,	2.0-5.9	1	0.12-0.15	\| 0.0-2.9	1.0-3.0	
	8-26	67	1	15	1	10-25\|	1.40-1.70	I	2.0-5.9	1	0.11-0.14	\| 0.0-2.9	0.0-0.5	
	26-32	61	I	18	1	10-22\|	1.50-1.75	I	0.6-2.0	I	0.11-0.18	\| 0.0-2.9	0.0-0.5	
	32-60	67	I	23	I	5-15\|	1.50-1.75	I	0.6-5.9	1	0.08-0.14	\| 0.0-2.9	0.0-0.5	
			I		I	I		,		1		1		
Leelanau-	0-8	82	,	9	1	2-15\|	1.35-1.60	1	5.9-20.0	1	0.07-0.10	\| 0.0-2.9	1.0-2.0	
	\| 8-28	82	1	9	1	2-15\|	1.30-1.60	I	5.9-20.0	1	0.05-0.10	\| 0.0-2.9	0.0-0.5	
	\| 28-36	66	1	19	1	10-20\|	1.30-1.70	I	2.0-5.9	1	0.06-0.14	\| 0.0-2.9	0.0-0.5	
	\| 36-60	82	I	9	I	2-15 \|	1.50-1.70	\|	5.9-20.0	1	0.05-0.10	\| 0.0-2.9		0.0-0.5
	1		I		I	I		I		I		I		
190795:			1		I	I		I		1		I		
Emmet	- 0-8	68	I	24	I	3-12\|	1.30-1.65	,	2.0-5.9	1	0.12-0.15	\| 0.0-2.9	1.0-3.0	
	\| 8-26	67	,	15	I	10-25\|	1.40-1.70	1	2.0-5.9	1	0.11-0.14	1 0.0-2.9	0.0-0.5	
	\| 26-32	61	1	18	1	10-22\|	1.50-1.75	1	0.6-2.0	1	0.11-0.18	\| 0.0-2.9	0.0-0.5	
	\| 32-60	67	,	23	1	5-15\|	1.50-1.75	I	0.6-5.9	1	0.08-0.14	$\mid 0.0-2.9$ \|	0.0-0.5	
			I		I	I		1		1		I		
Leelanau	- 0-8	82	I	9	I	2-15।	1.35-1.60	1	5.9-20.0	1	0.07-0.10	$\mid 0.0-2.9$ \|	1. 0-2.0	
	\| 8-28	82	1	9	1	2-15\|	1.30-1.60	1	5.9-20.0	1	0.05-0.10	\| 0.0-2.9	0.0-0.5	
	\| 28-36	66	1	19	1	10-20\|	1.30-1.70	1	2.0-5.9	1	0.06-0.14	\| 0.0-2.9	0.0-0.5	
	\| 36-60	82	I	9	1	2-15	1.50-1.70	I	5.9-20.0	1	0.05-0.10	\| 0.0-2.9	0.0-0.5	
			I		1			,		1		1		
190796:			I		I	I		1		1		I		
Emmet	0-8	68	1	24	1	3-12\|	1.30-1.65	,	2.0-5.9	1	0.12-0.15	$\mid 0.0-2.9$ \|	1.0-3.0	
	- 8-26	67	I	15	1	10-251	1.40-1.70	,	2.0-5.9	1	$0.11-0.14$	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 26-32	61	1	18	1	10-22\|	1.50-1.75	,	0.6-2.0	1	0.11-0.18	\| 0.0-2.9	0.0-0.5	
	\| 32-60	67	I	23	1	5-15\|	1.50-1.75	I	0.6-5.9	1	0.08-0.14	$\mid 0.0-2.9$ \|	0.0-0.5	
			I		I	I		I		1		I		
Leelanau-	0-8	82	1	9	I	2-15\|	1.35-1.60	,	5.9-20.0	1	0.07-0.10	\| 0.0-2.9		1.0-2.0
	\| 8-28	82	1	9	I	2-15\|	1.30-1.60	I	5.9-20.0	1	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 28-36	66	1	19	1	10-20\|	1.30-1.70	,	2.0-5.9	1	0.06-0.14	1 0.0-2.9	0.0-0.5	
	36-60	82	I	9	1	2-15\|	1.50-1.70	1	5.9-20.0	1	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
			I		I	I		1		1		1 I		
190797:	1		I		I	1		1		1		1		
Emmet	0-8	68	I	24	1	3-12\|	1.30-1.65	I	2.0-5.9	1	0.12-0.15	\| 0.0-2.9		1.0-3.0
	8-26	67	I	15	1	10-25\|	1.40-1.70	1	2.0-5.9	1	0.11-0.14	$\mid 0.0-2.9$ \|	0.0-0.5	
	26-32	61	1	18	1	10-22\|	1.50-1.75	I	0.6-2.0	1	0.11-0.18	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 32-60	67	1	23	1	5-15\|	1.50-1.75	1	0.6-5.9	1	0.08-0.14	$\mid$ 0.0-2.9 \|	0.0-0.5	
			1		1	I		1		1		1 l		
Leelanau--------	- 0-8	82	I	9	1	2-15\|	1.35-1.60	,	5.9-20.0	1	0.07-0.10	$\mid 0.0-2.9$ \|	1.0-2.0	
	\| 8-28	82	I	9	I	2-15\|	1.30-1.60	1	5.9-20.0	1	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 28-36	66	1	19	1	10-20\|	1.30-1.70	I	2. 0-5.9	1	0.06-0.14	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 36-60	82	1	9	1	2-15\|	1.50-1.70	1	5.9-20.0	1	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
	1		I		1	1		I		1		1 l		

Table 15.-Physical Soil Properties-Continued


Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	\| Depth	Sand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Silt	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Clay \|	Moist bulk density	$\begin{aligned} & 1 \\ & \text { I } \\ & 1 \end{aligned}$	Permeabil (Ksat)	$\begin{array}{r\|} \hline \text { Lity } \\ \\ \hline \end{array}$	Available water capacity	$\begin{array}{\|c\|} \hline \text { Shrink- } \\ \text { swell } \\ \mid \text { potential } \end{array}$	Organic matter
	1 In	Pct	I	Pct	1	Pct	g/cc	I	In/hr	I	In/in	Pct	Pct
	I		I		1	I		I		I		1 I	
190806:	,		1		1	,		I		1		1	
Emmet	- 0-8	68	1	24	I	3-12\|	1.30-1.65	I	2.0-5.9	1	0.12-0.15	\| 0.0-2.9	1.0-3.0
	\| 8-26	67	1	15	I	10-25\|	1.40-1.70	I	2.0-5.9	,	0.11-0.14	0.0-2.9	0.0-0.5
	\| 26-32	61	1	18	1	10-22\|	1.50-1.75	1	0.6-2.0	,	0.11-0.18	0.0-2.9	0.0-0.5
	\| 32-60	67	I	23	I	5-15\|	1.50-1.75	\|	0.6-5.9	1	0.08-0.14	\| 0.0-2.9	0.0-0.5
	,		1		,			I		1			
Omena	- 0-8	67	1	23	I	5-15\|	1.20-1.60	1	2.0-5.9	1	0.11-0.15	1 0.0-2.9	1.0-2.0
	\| 8-14	67	1	20	I	8-18\|	1.40-1.70	I	0.6-2.0	1	0.10-0.15	0.0-2.9	0.0-0.5
	\| 14-60	67	1	23	I	5-15\|	1.50-1.80	I	2.0-5.9	I	0.08-0.12	0.0-2.9	0.0-0.5
			I		I	,		,		,		,	
190807:	I		I		I	I		I		I		1	
Emmet	\| 0-8	68	I	24	I	3-12\|	1.30-1.65	I	2.0-5.9	1	0.12-0.15	1 0.0-2.9	1.0-3.0
	\| 8-26	67	I	15	I	10-25\|	1.40-1.70	I	2.0-5.9	1	0.11-0.14	0.0-2.9	0.0-0.5
	\| 26-32	61	1	18	I	10-22\|	1.50-1.75	,	0.6-2.0	1	0.11-0.18	1 0.0-2.9	0.0-0.5
	$132-60$	67	I	23	I	5-15\|	1.50-1.75		0.6-5.9	1	0.08-0.14	0.0-2.9	0.0-0.5
			1		I			I		1		1 1	
Omena	- 0-8	67	I	23	I	5-15\|	1.20-1.60	,	2.0-5.9	1	0.11-0.15	1 0.0-2.9	1.0-2.0
	\| 8-14	67	1	20	I	8-18\|	1.40-1.70	I	0.6-2.0	1	0.10-0.15	1 0.0-2.9	0.0-0.5
	\| 14-60	67	1	23	I	5-15\|	1.50-1.80	I	2.0-5.9	,	0.08-0.12	\| 0.0-2.9	0.0-0.5
	\|		I		I	I				1		I	
$190808 \text { : }$	\|		I		I			,		1			
Emmet-	- 0-8	68	1	24	I	3-12\|	1.30-1.65		2.0-5.9	1	0.12-0.15	1 0.0-2.9	1.0-3.0
	8-26	67	1	15	I	10-25\|	1.40-1.70	,	2.0-5.9	,	0.11-0.14	1 0.0-2.9	0.0-0.5
	26-32	61	1	18	I	10-22\|	1.50-1.75	I	0.6-2.0	1	0.11-0.18	1 0.0-2.9	0.0-0.5
	32-60	67	1	23	I	5-15\|	1.50-1.75	I	0.6-5.9	1	0.08-0.14	1 0.0-2.9	0.0-0.5
	।		I		I			I		,			
Omena	0-8	67	I	23	I	5-15\|	1.20-1.60		2.0-5.9	1	0.11-0.15	\| 0.0-2.9	1.0-2.0
	\| 8-14	67	1	20	1	8-18\|	1.40-1.70		0.6-2.0	,	0.10-0.15	1 0.0-2.9	0.0-0.5
	14-60	67	1	23	I	5-15\|	1.50-1.80	I	2.0-5.9	I	0.08-0.12	1 0.0-2.9	0.0-0.5
	1		1		I			I		,		I	
190809:	I		I		I	\|		I		I		,	
Emmet	0-8	68	I	24	I	3-12\|	1.30-1.65	,	2.0-5.9	I	0.12-0.15	\| 0.0-2.9	1.0-3.0
	\| 8-26	67	I	15	I	10-25\|	1.40-1.70	I	2.0-5.9	1	0.11-0.14	1 0.0-2.9	0.0-0.5
	26-32	61	1	18	1	10-22\|	1.50-1.75	,	0.6-2.0	1	0.11-0.18	\| 0.0-2.9	0.0-0.5
	32-60	67	1	23	I	5-15\|	1.50-1.75	,	0.6-5.9	1	0.08-0.14	\| 0.0-2.9	0.0-0.5
	\|		1		I			,		1		1 1	
Omena-	0-8	67	1		I	5-15\|	1.20-1.60	,	2.0-5.9	I	0.11-0.15	1 0.0-2.9	1.0-2.0
	8-14	67	1	20	I	8-18\|	1.40-1.70	I	0.6-2.0	I	0.10-0.15	1 0.0-2.9	0.0-0.5
	14-60	67	1	23	I	5-15\|	1.50-1.80	,	2.0-5.9	I	0.08-0.12	\| 0.0-2.9	0.0-0.5
	\|		1		I	I		I		1		1	
190811 :	1		1		I			I		1		1	
Hettinger-	\| 0-8	40	1	38	I	18-271	1.35-1.55	,	0.6-2.0	I	0.17-0.25	\| 0.0-2.9	2.0-10
	8-23	20	1	49	I	27-35\|	1.35-1.55	,	0.2-0.6	1	0.18-0.20	1 0.0-2.9	0.0-0.5
	23-60	18	1	48	I	27-501	1.50-1.75	,	0.1-0.2	1	0.10-0.20	\| 0.0-2.9	0.0-0.5
190812 :	\|		1		I	1		1		I		I	
Hettinger--	\| 0-8	40	1	38	I	18-27\|	1.35-1.55	1	0.6-2.0	I	0.17-0.25	\| 0.0-2.9	2.0-10
	\| 8-23	20	1	49	I	27-35।	1.35-1.55	1	0.2-0.6	1	0.18-0.20	1 0.0-2.9	0.0-0.5
	23-60	18	1	48	I	27-501	1.50-1.75	1	0.1-0.2	1	0.10-0.20	\| 0.0-2.9	0.0-0.5
	1		1		1			,		1		-	

Table 15.-Physical Soil Properties-Continued

Map unit symbol \| and soil name	Depth I	Sand	I	Silt	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline \text { Clay I } \\ & \text { I } \\ & \\ \hline \end{array}$	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	1 1 1	Permeability (Ksat)	I	Available water capacity	$\begin{array}{\|c\|} \hline \text { Shrink- \| } \\ \text { swell } \\ \text { \|potential } \end{array}$	Organic matter	
	In \|	Pct	I	Pct	I	Pct	g/cc	I	In/hr	1	In/in	1 Pct \|	Pct	
	- 1		,		,	- I		,		I		1 - 1		
190812: \|	1		1		1	I		1		I		1		
Tonkey----------\|	0-8 \|	44	I	41	I	10-20\|	1.10-1.50	I	2.0-5.9	I	0.20-0.24	\| 0.0-2.9		4.0-7.0
I	8-20 \|	83	1	4	I	8-18\|	1.30-1.80	I	2.0-5.9	I	0.10-0.15	0.0-2.9 I	0.0-0.5	
	20-60 \|	67	I	23	1	0-20\|	1.60-1.80	I	2.0-20.0	I	0.05-0.19	0.0-2.9	0.0-0.5	
	1		I		1	,		1		,		1		
190814: \|	1		I		I	,		I		I		1		
Kalkaska--------\|	0-7 \|	94	I	1	I	0-10\|	1.25-1.45	,	5.9-20.0	1	0.05-0.09	\| 0.0-2.9		1.0-4.0
	$7-15$	91	I	2	I	0-15\|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	0.0-2.9 \|	$1.0-3.0$	
	15-32 \|	94	I	1	1	0-10\|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-2.0
	32-60 \|	94	I	1	I	0-10\|	1.35-1.50	,	5.9-20.0	1	0.04-0.06	0.0-2.9 \|	0.0-0.5	
190815:	1		I		I			I		1		1		
Kalkaska--------\|	0-7 \|	94	I	1	I	0-10\|	1.25-1.45	I	5.9-20.0	1	0.05-0.09	\| 0.0-2.9		1.0-4.0
,	7-15 \|	91	I	2	I	0-15\|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	0.0-2.9	1.0-3.0	
	15-32 \|	94	1	1	I	0-10\|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-2.0
	$32-60 \text { i }$	94	I	1		0-10\|	1.35-1.50		5.9-20.0	1	0.04-0.06	\| 0.0-2.9		0.0-0.5
190816: \|	1		I		1	I		I		1		1		
Kalkaska--------\|	0-7 \|	94	1	1	1	0-10\|	1.25-1.45	1	5.9-20.0	1	0.05-0.09	\| 0.0-2.9		1.0-4.0
I	7-15 \|	91	I	2	1	0-15\|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		1.0-3.0
	15-32 \|	94	I	1	1	0-10\|	1.35-1.45	1	5.9-20.0	I	0.06-0.08	\| 0.0-2.9		0.5-2.0
	32-60 \|	94	I	1	I	0-10\|	1.35-1.50	1	5.9-20.0	1	0.04-0.06	\| 0.0-2.9		0.0-0.5
$190817 \text { : }$			I		I			I		1				
Kalkaska--------\|	0-7 \|	94	I	1	I	0-10\|	1.25-1.45	1	5.9-20.0	1	0.05-0.09	$\mid 0.0-2.9$ \|	1.0-4.0	
	7-15 \|	91	I	2	1	0-15\|	1.35-1.45	I	5.9-20.0	I	0.06-0.08	\| 0.0-2.9		1.0-3.0
,	15-32 \|	94	1	1	I	0-10\|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-2.0
	32-60 \|	94	I	1	1	0-10\|	1.35-1.50	1	5.9-20.0	1	0.04-0.06	\| 0.0-2.9		0.0-0.5
$190818 \text { : }$			I		I			I		I		1 1		
Kalkaska---------\|	0-7 \|	94	I	1	I	0-101	1.25-1.45	I	5.9-20.0	1	0.05-0.09	\| 0.0-2.9		1.0-4.0
	7-15 \|	91	I	2	I	0-15\|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		1.0-3.0
	15-32 \|	94	I	1	I	0-10\|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-2.0
	32-60 \|	94	I	1	I	0-10\|	1.35-1.50	,	5.9-20.0	1	0.04-0.06	\| 0.0-2.9		0.0-0.5
190819: \|	।		I		I	\|		I		I		1 1		
Kalkaska--------\|	0-7 \|	79	I	16	1	0-10\|	1.30-1.60	1	5.9-20.0	1	0.09-0.12	\| 0.0-2.9		0.5-2.0
,	7-15 \|	91	I	2	I	0-15\|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	1.0-3.0	
	15-32 \|	94	I	1	I	0-10\|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-2.0
	32-60 \|	94	I	1	I	0-10\|	1.35-1.50		5.9-20.0	I	0.04-0.06	\| 0.0-2.9		0.0-0.5
	1		I		1			,		1		1 I		
East Lake------- \|	$0-8 \quad \mid$	79	I		I	0-10\|	1.30-1.60	I	5.9-20.0	1	0.09-0.12	\| 0.0-2.9		0.5-2.0
I	8-26 ।	79	1	16	I	0-101	1.30-1.60	,	5.9-20.0	1	0.07-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
	26-60 \|	91	I	4	I	0-10\|	1.50-1.65	1	20.0-20.0	I	0.02-0.06	\| 0.0-2.9		0.0-0.5
I	1		I		1	1		I		1		1 I		
190820: \|	1		I		1	1		I		1		1 I		
Kiva------------\|	0-6 \|	67	I	19	I	10-18\|	1.20-1.60	,	0.6-2.0	I	0.10-0.15	\| 0.0-2.9		0.5-2.0
I	6-20 \|	67	I	19	I	10-18\|	1.30-1.60	,	0.6-2.0	I	0.09-0.19	$\mid 0.0-2.9$ \|	0.0-0.5	
	20-60 \|	91	I	6	I	0-5 \|	1.50-1.70	I	20.0-20.0	I	0.02-0.04	\| 0.0-2.9		0.0-0.5
I	1		1		1	I		,		I		1 1		
Mancelona------- -	0-8 \|	67	I	23	1	5-15\|	1.35-1.65	I	2.0-5.9	I	0.08-0.12	\| 0.0-2.9		0.5-3.0
I	8-25 \|	82	1	9	I	2-15।	1.30-1.65	1	5.9-20.0	1	0.06-0.12	$\mid 0.0-2.9$ \|	0.6-1.0	
I	25-30 \|	67	1	15	I	10-25\|	1.30-1.65	I	2.0-5.9	1	0.06-0.16	\| 0.0-2.9		0.0-0.5
	30-60 \|	91	I	4	I	0-10\|	1.45-1.65	I	20.0-20.0	1	0.02-0.04	\| 0.0-2.9		0.0-0.5
I	1		I		1	1		I		1		1 I		

Table 15.-Physical Soil Properties-Continued


Table 15.-Physical Soil Properties-Continued


Table 15.-Physical Soil Properties-Continued

$\begin{aligned} & \text { Map unit symbol } \\ & \text { and soil name } \end{aligned}$	Depth	Sand	$\begin{aligned} & \text { I } \\ & \text { I } \end{aligned}$	Silt	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { I } \end{aligned}$	Clay	Moist bulk density	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \hline \end{aligned}$	Permeability (Ksat)	1	Available water capacity	$\begin{array}{\|c\|} \hline \text { Shrink- } \\ \text { \| swell } \\ \text { \|potential \| } \end{array}$	Organic matter
	In	Pct	I	Pct	I	Pct	g/cc	I	In/hr	I	In/in	Pct	Pct
			1		,	I		,				1 \|	
190835 :			1		1	I		I				1 1	
Mancelona-------\|	0-8	79	1	16	1	0-10\|	1.35-1.65	I	2.0-5.9	I	0.08-0.12	\| 0.0-2.9	0.5-3.0
	8-25	82	1	9	I	2-15\|	1.30-1.65	,	5.9-20.0	I	0.06-0.12	0.0-2.9	0.6-1.0
	25-30	67	,	15	1	10-25\|	1.30-1.65	I	2.0-5.9	I	0.06-0.16	0.0-2.9	0.0-0.5
	30-60	91	I	4	I	0-10\|	1.45-1.65	I	20.0-20.0	I	0.02-0.04	0.0-2.9	0.0-0.5
			I		I	,		,				1 1	
East Lake-------\|	0-8	79	1	16	1	0-10\|	1.30-1.60	I	5.9-20.0	I	0.09-0.12	\| 0.0-2.9	0.5-2.0
	8-26	79	1	16	1	0-10\|	1.30-1.60	I	5.9-20.0	I	0.07-0.10	0.0-2.9	0.0-0.5
	26-60	91	I	4	1	0-10\|	1.50-1.65	I	20.0-20.0	I	0.02-0.06	0.0-2.9	0.0-0.5
			I		1	,		I				,	
190836:			I		1	1		I		I		1	
Mancelona-------\|	0-8	79	I	16	1	0-10\|	1.35-1.65	I	2.0-5.9	I	0.08-0.12	1 0.0-2.9	0.5-3.0
	$8-25$	82	1	9	I	2-15\|	1.30-1.65	I	5.9-20.0	1	0.06-0.12	0.0-2.9	$0.6-1.0$
	25-30	67	1	15	I	10-25\|	1.30-1.65	I	2.0-5.9	1	0.06-0.16	1 0.0-2.9	0.0-0.5
	$30-60$	91	I	4	I	0-10\|	1.45-1.65	I	20.0-20.0	1	0.02-0.04	0.0-2.9	0.0-0.5
			,		1	1		I		I		,	
East Lake-------	0-8	79	I	16	1	0-10\|	1.30-1.60	I	5.9-20.0	I	0.09-0.12	0.0-2.9	0.5-2.0
	8-26	79	1	16	1	0-10\|	1.30-1.60	I	5.9-20.0	I	0.07-0.10	\| 0.0-2.9	0.0-0.5
	26-60	91	I	4	1	0-10\|	1.50-1.65	,	20.0-20.0	I	0.02-0.06	1 0.0-2.9	0.0-0.5
			I		1	1		I		1		I	
190837:			I		I	1		I		1		1 1	
Mancelona	0-8	79	1	16	1	0-101	1.35-1.65	I	2.0-5.9	1	0.08-0.12	1 0.0-2.9	0.5-3.0
	8-25	82	1	9	I	2-15\|	1.30-1.65	-	5.9-20.0	1	0.06-0.12	\| 0.0-2.9	0.6-1.0
	25-30	67	1	15	1	10-25।	1.30-1.65	,	2.0-5.9	1	0.06-0.16	1 0.0-2.9	0.0-0.5
	30-60	91	1	4	I	0-10\|	1.45-1.65	,	20.0-20.0	I	0.02-0.04	0.0-2.9	0.0-0.5
			I		1			,		I			
East Lake-------\|	0-8	79	I	16	1	0-10\|	1.30-1.60	,	5.9-20.0	1	0.09-0.12	\| 0.0-2.9	0.5-2.0
	8-26	79	1	16	1	0-10\|	1.30-1.60	,	5.9-20.0	1	0.07-0.10	1 0.0-2.9	0.0-0.5
	26-60	91	1	4	1	0-10\|	1.50-1.65	I	20.0-20.0	1	0.02-0.06	1 0.0-2.9	0.0-0.5
			I		1	1		I		I		I	
190838:			I		1	1		I		I		I	
Mancelona-------\|	0-8	79	I	16	1	0-10\|	1.35-1.65	I	2.0-5.9	I	0.08-0.12	\| 0.0-2.9	0.5-3.0
	8-25	82	I	9	I	2-15\|	1.30-1.65	I	5.9-20.0	1	0.06-0.12	\| 0.0-2.9	0.6-1.0
	25-30	67	1	15	I	10-25।	1.30-1.65	I	2.0-5.9	1	0.06-0.16	1 0.0-2.9	0.0-0.5
	30-60	91	1	4	1	0-10\|	1.45-1.65	,	20.0-20.0	I	0.02-0.04	\| 0.0-2.9	0.0-0.5
			1		1	1		,		1		1 1	
East Lake-------\|	$0-8$	79	1	$16$	1	0-10\|	1.30-1.60	I	$5.9-20.0$	1	0.09-0.12	\| 0.0-2.9	$0.5-2.0$
	8-26	79	1	16	1	0-101	1.30-1.60	I	5.9-20.0	1	0.07-0.10	1 0.0-2.9	0.0-0.5
	26-60	91	1	4	1	0-10\|	1.50-1.65	,	20.0-20.0	1	0.02-0.06	\| 0.0-2.9	0.0-0.5
\|			1		I	1		I		I		1	
190839:			1		I	1		I		I		,	
Mancelona-------\|	0-8	67	1	23	1	5-15\|	1.35-1.65	,	2.0-5.9	I	0.08-0.12	1 0.0-2.9	0.5-3.0
	8-25	82	1	9	I	2-15\|	1.30-1.65	,	5.9-20.0	1	0.06-0.12	1 0.0-2.9	0.6-1.0
	25-30	67	1	15	1	10-25\|	1.30-1.65	I	2.0-5.9	,	0.06-0.16	1 0.0-2.9	0.0-0.5
	30-60	91	1	4	I	0-10\|	1.45-1.65	,	20.0-20.0	1	0.02-0.04	0.0-2.9	0.0-0.5
			1		1			I		I		I	
Richter---------	0-8	67	1	23	1	5-15\|	1.20-1.50	I	2.0-5.9	I	0.12-0.15	1 0.0-2.9	2.0-4.0
	8-27	64	1	20	1	10-22\|	1.35-1.60	,	0.6-2.0	I	0.10-0.18	1 0.0-2.9	0.0-0.5
	27-60	85	1	7	1	2-15\|	1.60-1.70	I	0.6-2.0	,	0.08-0.13	\| 0.0-2.9	0.0-0.5
			I		I	I		,		I		I	

Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	Sand	1	Silt	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Clay	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Permeabili (Ksat)		Available water capacity		Shrink- swell potential	Organic matter
	1 In	Pct	I	Pct	I	Pct	g/cc	I	In/hr	1	In/in		Pct I	Pct
	I		I		I	1		1		1			I	
190840:	I		I		,	,		1		I			1	
Neste	\| 0-6	29	1	54	I	7-27\|	1.25-1.60	,	0.6-2.0	1	0.20-0.24		0.0-2.9	1.0-3.0
	\| 6-8	30	I	55	I	5-25\|	1.40-1.60	I	0.6-2.0	,	0.15-0.22		0.0-2.9	0.0-0.5
	\| 8-28	8	I	55	I	35-40\|	1.40-1.65	1	0.1-0.2	1	0.08-0.17		3.0-5.9	0.0-0.5
	\| 28-60	8	,	55	1	35-40\|	1.55-1.70	,	0.1-0.2	1	0.10-0.17		3.0-5.9	0.0-0.5
190841:	,		I		I	1		I		I			,	
Nester	\| 0-6	29	1	54	1	7-27\|	1.25-1.60	I	0.6-2.0	1	0.20-0.24		0.0-2.9	1.0-3.0
	\| 6-8	30	,	55	1	5-25\|	1.40-1.60	1	0.6-2.0	1	0.15-0.22		0.0-2.9 I	0.0-0.5
	\| 8-28	8	I	55	1	35-40\|	1.40-1.65	I	0.1-0.2	1	0.08-0.17		3.0-5.9	0.0-0.5
	\| 28-60	8	I	55	1	35-40\|	1.55-1.70	1	0.1-0.2	1	0.10-0.17		3.0-5.9	0.0-0.5
190842 :			I		I	I		1		I			1	
Nester-	\| 0-6	29	I	54	1	7-27\|	1.25-1.60	,	0.6-2.0	1	0.20-0.24		0.0-2.9	1.0-3.0
	\| 6-8	30	1	55	1	5-25\|	1.40-1.60	1	0.6-2.0	1	0.15-0.22		0.0-2.9	0.0-0.5
	\| 8-28	8	,	55	1	35-40\|	1.40-1.65	1	0.1-0.2	I	0.08-0.17		3.0-5.9 I	0.0-0.5
	\| 28-60	8	I	55	1	35-40\|	1.55-1.70	1	0.1-0.2	I	0.10-0.17		3.0-5.9 \|	0.0-0.5
190843:	,		,		I			,		I			,	
Nester	\| 0-6	29	I	54	1	7-27\|	1.25-1.60	,	0.6-2.0	1	0.20-0.24		0.0-2.9	1.0-3.0
	\| 6-8	30	I	55	1	5-25\|	1.40-1.60	1	0.6-2.0	1	0.15-0.22		0.0-2.9	0.0-0.5
	\| 8-28	8	I	55	1	35-40\|	1.40-1.65	,	0.1-0.2	1	0.08-0.17		3.0-5.9	0.0-0.5
	\| 28-60	8	I	55		35-40\|	1.55-1.70	1	0.1-0.2	1	0.10-0.17		3.0-5.9 \|	0.0-0.5
190844 :	I		I		1	I		1		1			,	
Nester	\| 0-6	29	1	54	1	7-271	1.25-1.60	1	0.6-2.0	1	0.20-0.24		0.0-2.9	1.0-3.0
	\| 6-8	30	1	55	1	5-25\|	1.40-1.60	,	0.6-2.0	I	0.15-0.22		0.0-2.9 I	0.0-0.5
	\| 8-28	8	1	55	1	35-401	1.40-1.65	1	0.1-0.2	1	0.08-0.17		3.0-5.9 I	0.0-0.5
	\| 28-60	8	I	55	1	35-40\|	1.55-1.70	I	0.1-0.2	I	0.10-0.17		3.0-5.9 \|	0.0-0.5
	\|		I		1			,		I			1	
190847:	I		I		1	1		I		I			1	
Richter	\| 0-8	67	I	23	1	5-15\|	1.20-1.50	,	2.0-5.9	1	0.12-0.15		0.0-2.9 I	2.0-4.0
	\| 8-27	64	I	20	1	10-22।	1.35-1.60	,	0.6-2.0	1	0.10-0.18		0.0-2.9 I	0.0-0.5
	\| 27-60	85	I	7	1	2-15\|	1.60-1.70	I	0.6-2.0	I	0.08-0.13		0.0-2.9 \|	0.0-0.5
	\|		I		I	I		I		I				
Alcona	0-8	67	I	23	I	5-15\|	1.10-1.60	,	0.6-5.9	1	0.12-0.18		0.0-2.9 \|	1.0-3.0
	\| 8-12	85	I	7	I	2-15।	1.25-1.70	1	0.6-5.9	1	0.10-0.17		0.0-2.9 ।	0.6-1.0
	\| 12-18	86	I	4	1	5-15\|	1.35-1.70	I	0.6-5.9	I	0.08-0.17		0.0-2.9 \|	0.0-0.5
	\| 18-24	66	1	19	1	10-20\|	1.35-1.70	I	0.6-2.0	1	0.13-0.20		0.0-2.9 I	0.0-0.5
	\| 24-60	84	I	4	1	5-18\|	1.50-1.70	1	0.6-2.0	I	0.08-0.20		0.0-2.9 \|	0.0-0.5
	I		I		1	I		I		1			1	
190848:	I		I		1	1		I		I			1	
Richter	\| 0-8	67	I	23	I	5-15\|	1.20-1.50	I	2.0-5.9	I	0.12-0.15		0.0-2.9 \|	2.0-4.0
	\| 8-27	64	I	20	I	10-22।	1.35-1.60	I	0.6-2.0	1	0.10-0.18		0.0-2.9 I	0.0-0.5
	\| 27-60	85	I	7	1	2-15\|	1.60-1.70	I	0.6-2.0	I	0.08-0.13		0.0-2.9 \|	0.0-0.5
	\|		,		I			I		I			,	
Alcona	\| 0-8	67	I	23	I	5-15\|	1.10-1.60	1	0.6-5.9	1	0.12-0.18		0.0-2.9	1.0-3.0
	\| 8-12	85	I	7	1	2-15\|	1.25-1.70	I	0.6-5.9	I	0.10-0.17		0.0-2.9 I	0.6-1.0
	\| 12-18	86	1	4	1	5-15\|	1.35-1.70	I	0.6-5.9	1	0.08-0.17		0.0-2.9 ।	0.0-0.5
	\| 18-24	66	1	19	1	10-20\|	1.35-1.70	I	0.6-2.0	I	0.13-0.20		0.0-2.9 I	0.0-0.5
	\| 24-60	84	I	4	I	5-18\|	1.50-1.70	I	0.6-2.0	I	0.08-0.20		0.0-2.9 \|	0.0-0.5
	I		,		1	I		I		1		I	1	

Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	Sand	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Silt	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Clay I	```Moist ```	$\begin{aligned} & \text { I } \\ & \hline \end{aligned}$	Permeability (Ksat)	I	$\begin{gathered} \text { Available } \\ \text { water } \\ \text { capacity } \end{gathered}$		$\begin{gathered} \text { Shrink- } \\ \text { swell } \\ \text { potential } \end{gathered}$		Organic matter	
I	In	Pct	1	Pct	I	Pct	g/cc	I	In/hr	I	In/in		Pct	I	Pct	
I			I		1	I		I		I						
190849: \|			I		I	1		I		I				I		
Roscommon------- \|	0-6	94	1	1	1	0-10\|	0.90-1.60	I	5.9-20.0	,	0.07-0.18		0.0-2.9	1	4.0-15	
1	6-60	94	1	1	I	0-10\|	1.45-1.70	,	5.9-20.0	I	0.05-0.09	I	0.0-2.9	1	0.0-0.5	
,			1		I			,		I						
Markey---------- \|	0-20	10	1	50	I	40 I	0.10-0.35	I	0.2-5.9	I	0.35-0.45	I	---	1	75-90	
,	20-60	94	1	1	I	0-10\|	1.40-1.65	I	5.9-20.0	I	0.03-0.08	I	0.0-2.9	1	0.0-0.5	
1			1		I	1		I		I				1		
190850: \|			1		I	1		I		I				1		
Sanilac---------\|	0-6	30	1	55	I	10-20\|	1.35-1.50	1	0.6-2.0	,	0.20-0.24		0.0-2.9	1	1.0-3.0	
I	6-16	30	1	55	I	10-20\|	1.45-1.70	I	0.6-2.0	I	0.16-0.24		0.0-2.9	1	0.0-0.5	
,	16-24	30	1	56	1	10-18\|	1.45-1.70	I	0.2-0.6	I	0.17-0.22	1	0.0-2.9	1	0.0-0.5	
I	24-60	27	1	54	1	10-27\|	1.45-1.70	,	0.2-0.6	,	0.10-0.22		0.0-2.9	1	0.0-0.5	
,			I		I	I		,		I				I		
190851: \|			I		I	I		,		I		,		1		
Tonkey---------- \|	0-8	67	1	20	I	8-18\|	1.10-1.60	I	2.0-5.9	1	0.13-0.15		0.0-2.9	1	4.0-7.0	
I	8-20	67	1	20	I	8-18\|	1.30-1.80	1	2.0-5.9	I	0.10-0.15	1	0.0-2.9	1	0.0-0.5	
I	20-60	67	1	23	I	0-20\|	1.60-1.80	I	2.0-20.0	I	0.05-0.19		0.0-2.9	1	0.0-0.5	
I			1		I	I		I		,				1		
Munuscong------- -	0-10	67	1	23	I	5-15\|	1.30-1.65	I	2.0-5.9	I	0.13-0.15		0.0-2.9	1	2.0-3.0	
	10-24	67	1	20	1	8-18\|	1.30-1.70	,	2.0-5.9	I	0.12-0.17		0.0-2.9	1	0.0-0.5	
,	24-60	2	I	42	I	40-801	1.35-1.70	I	0.1-0.2	I	0.08-0.18	I	6.0-8.9	1	0.0-0.5	
I			1		1	I		I		I				1		
Iosco----------- \|	0-8	83	1	4	I	10-15\|	1.25-1.40	I	5.9-20.0	I	0.10-0.12		0.0-2.9	I	1.0-4.0	
I	8-27	91	1	2	1	0-15\|	1.35-1.60	I	5.9-20.0	I	0.06-0.11		0.0-2.9	1	0.0-1.0	
I	27-34	18	1	52	1	18-35\|	1.50-1.70	,	0.2-0.6	I	0.16-0.20		3.0-5.9	-	0.0-0.5	
1	34-60	18	1	52	1	15-35\|	1.50-1.70	I	0.2-0.6	I	0.17-0.20		3.0-5.9		0.0-0.5	
1			1		I	1		I		I		I		1		
190852: \|			1		1	1		,		I				1		
Tonkey----------\|	0-8	67	1	20	I	8-18\|	1.10-1.60		2.0-5.9	I	0.13-0.15		0.0-2.9	1	4.0-7.0	
\|	8-20	67	1	20	I	8-18\|	1.30-1.80	\\|	2.0-5.9	I	0.10-0.15		0.0-2.9	1	0.0-0.5	
I	20-60	67	1	23	I	0-20\|	1.60-1.80	,	2.0-20.0	I	0.05-0.19	।	0.0-2.9	1	0.0-0.5	
I			1		I	I		I		I				1		
Munuscong------- -	0-10	67	1	23	I	5-15\|	1.30-1.65	I	2.0-5.9	I	0.13-0.15	I	0.0-2.9	1	2.0-3.0	
\|	10-24	67	1	20	1	8-18।	1.30-1.70	,	2.0-5.9	I	0.12-0.17		0.0-2.9		0.0-0.5	
1	24-60	2	1	42	1	40-801	1.35-1.70	I	0.1-0.2	I	0.08-0.18	I	6.0-8.9		0.0-0.5	
I			1		1	1		1		I		I		1		
Iosco----------- \|	0-8	83	1	4	I	10-15।	1.25-1.40	I	5.9-20.0	I	0.10-0.12		0.0-2.9	1	1.0-4.0	
I	8-27	91	1	2	1	0-15\|	1.35-1.60	I	5.9-20.0	I	0.06-0.11		0.0-2.9	-	0.0-1.0	
1	27-34	18	1	52	1	18-35।	1.50-1.70	I	0.2-0.6	I	0.16-0.20		3.0-5.9	1	0.0-0.5	
1	34-60	18	1	52	1	15-35\|	1.50-1.70	I	0.2-0.6	I	0.17-0.20	\|	3.0-5.9	I	0.0-0.5	
1			I		I	\|		,		I		\|		,		
190854: \|			1		I			I		I				1		
Wallace---------\|	0-8	95	1	1	I		1.35-1.45	I	5.9-20.0	I	0.07-0.09		0.0-2.9	1	0.5-2.0	
I	8-24	92	1	2	1	2-101	1.75-2.05	1	0.6-5.9	1	0.01-0.04		0.0-2.9		0.5-2.0	
I	24-60	95	1	1	1	0-8 \|	1.45-1.60	I	5.9-20.0	I	0.04-0.05	I	0.0-2.9	1	0.0-0.5	
\|			1		I	1		1		I		I		1		

Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name		Sand I	Silt	I	Clay \|	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	I	Permeabilit (Ksat)	1	Available water capacity	$\begin{array}{\|c\|} \hline \text { Shrink- } \\ \text { swell } \\ \text { \|potential } \end{array}$	Organic matter	
	1 In	Pct I	Pct	I	Pct	g/cc	I	In/hr	I	In/in	Pct	Pct	
	I	-1		I	1		I				1 I		
190854:	I	I		I	1		I				1 I		
Kalkaska	\| 0-7	94	1	I	0-10\|	1.25-1.45	I	5.9-20.0	I	0.05-0.09	\| 0.0-2.9	1.0-4.0	
	\| 7-15	91	2	I	0-15\|	1.35-1.45	I	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	1.0-3.0	
	\| 15-32	94	1	I	0-10\|	1.35-1.45	I	5.9-20.0	I	0.06-0.08	0.0-2.9	0.5-2.0	
	\| 32-60	94 \\|	1	I	0-10\|	1.35-1.50	I	5.9-20.0	I	0.04-0.06	\| 0.0-2.9	0.0-0.5	
	I	I		I	,		I		I		1		
193237:	I	I		I	,		,		I		1		
Thompsonville-	\| 0-5	86-100\|	0-10	I	0-9 \|	1.30-1.50	I	5.9-20.0	I	0.07-0.09	0.0-2.9	3.0-5.0	
	\| 5-15	86-100\|	0-10	I	0-9 \|	1.30-1.70	1	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	0.5-2.0	
	\| 15-29	86-100	0-10	I	0-9	1.30-1.70	1	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	1.0-3.0	
	\| 29-37	86-100\|	0-10	I	0-9	1.40-1.70	1	5.9-20.0	,	0.06-0.08	\| 0.0-2.9	0.5-3.0	
	\| 37-55	86-100 \|	0-10	I	0-9 \|	1.40-1.70	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 55-72	0-19 \|	40-70	I	27-35।	1.50-1.70	I	0.1-0.2	,	0.16-0.18	$\mid 3.0-5.9$ \|	0.0-0.5	
	\| 72-80	0-85 \|	10-70	I	10-35\|	1.50-1.70	I	0.1-0.2	,	0.14-0.17	\| 3.0-5.9		0.0-0.5
	I	1		I	,		1		I		1 1		
Milnichol	\| 0-2	86-100\|	0-10	I	0-9 \|	1.30-1.50	I	5.9-20.0	I	0.07-0.09	\| 0.0-2.9	2.0-5.0	
	\| 2-12	86-100	0-10	I	0-9 \|	1.30-1.65	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 12-15	86-100	0-10	I	0-9	1.30-1.65	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 15-25	86-100\|	0-10	I	0-9 \|	1.40-1.65	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 25-33	86-100\|	0-10	I	0-9	1.40-1.65	I	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 33-47	86-100 1	0-10	I	0-9 \|	1.40-1.65	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9		0.0-0.5
	\| 47-50	45-85 ।	0-45	I	0-19\|	1.50-1.70	I	0.2-5.9	I	0.08-0.17	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 50-68	0-45 \|	15-70	I	27-35\|	1.50-1.70	I	0.2-0.6	,	0.14-0.17	\| 3.0-6.0		0.0-0.5
	\| 68-80	0-45 \|	15-80	I	12-35\|	1.50-1.70	1	0.2-0.6	1	0.14-0.22	$\|0.0-6.0\|$	0.0-0.5	
	\|	i		I	I		1		I		1 I		
$193255 \text { : }$	I			I			1		,		1		
Spinks	\| 0-5	86-1001	0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.07-0.09	$\mid$ 0.0-2.9 \|	2.0-5.0	
	\| 5-10	86-100	0-10	I	0-9 \|	1.40-1.70	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 10-17	86-100	0-10	I	0-9 \|	1.40-1.70	I	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 17-62	71-100	0-15	I	3-14\|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 62-72	71-100	0-15	I	3-14\|	1.40-1.70	I	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 72-80	86-100	0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.05-0.07	$\mid 0.0-2.9$ \|	0.0-0.5	
	I			I			I		,		1 1		
Coloma	1 0-3	86-100।	0-10	I	0-9 \|	1.35-1.65	1	5.9-20.0	1	0.07-0.12	$\mid$ 0.0-2.9 \|	2.0-5.0	
	\| 3-4	71-100 \|	0-15	I	0-14\|	1.35-1.65	I	5.9-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 4-8	\| 71-100		0-15	I	0-14।	1.50-1.65	1	5.9-20.0		0.05-0.10	$\mid$ 0.0-2.9 \|	0.5-1.0
	\| 8-15	\| 71-100		0-15	I	0-14\|	1.50-1.65	I	5.9-20.0	1	0.05-0.10	$\mid 0.0-2.9$ \|	0.5-1.0
	\| 15-25	\| 71-100		0-15	I	0-14\|	1.50-1.65	1	5.9-20.0	1	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5
	\| 25-40	71-100	0-15	I	0-14\|	1.50-1.65	1	5.9-20.0	1	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 40-80	71-100\|	0-15	I	0-14\|	1.50-1.65	1	5.9-20.0	,	0.05-0.10	$\mid$ 0.0-2.9 \|	0.0-0.5	
	।	1		I	1		1		1		1 I		
193256:	I			1			1		I		1		
Spinks	\| 0-5	\| 86-100		0-10	1	0-9 \|	1.40-1.70	,	5.9-20.0	1	0.07-0.09	1 0.0-2.9	2.0-5.0
	\| 5-10	\| 86-100		0-10	I	0-9 \|	1.40-1.70	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0
	\| 10-17	86-1001	0-10	1	0-9 \|	1.40-1.70	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 17-62	\| 71-100		0-15	I	3-14\|	1.40-1.70	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.0-0.5
	\| 62-72	\| 71-100		0-15	I	3-14\|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	$\mid$ 0.0-2.9 \|	0.0-0.5
	\| 72-80	\| 86-100		0-10	I	0-9 \|	1.40-1.70	I	5.9-20.0	1	0.05-0.07	$\mid$ 0.0-2.9 \|	0.0-0.5
				I	1		1		1		1 I		

Table 15.-Physical Soil Properties-Continued


Table 15.-Physical Soil Properties-Continued

Map unit symbol \| and soil name	Depth	\| Sand		Silt	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Clay	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	```Moist bulk density```	1	Permeabili (Ksat)	Y\|	Available water capacity	$\|$Shrink-   swell   \|potential	Organic matter	
I	In	1 Pct	Pct	I	Pct	I	g/cc	I	In/hr	I	In/in	Pct	Pct		
I		1		1		1		1		1		1 - 1			
193262 :		I		1		I		I		,		1 I			
Kaleva----------\|	0-3	\| 86-100		0-10	I	0-9	\|	1.25-1.45	1	5.9-20.0	1	0.07-0.09	0.0-2.9	2.0-5.0	
I	3-9	\| 86-100		0-10	I	0-9	,	1.35-1.45	I	5.9-20.0	1	0.06-0.08	0.0-2.9	0.5-2.0	
1	9-11	\| 86-100		0-10	1	0-9	\|	1.35-1.45	1	5.9-20.0	,	0.06-0.08	0.0-2.9	2. 0-5.0	
	11-16	\| 86-100		0-10	1	0-9	\|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-3.0	
	16-21	\| 86-100		0-10	1	0-9		1.35-1.45	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-3.0
	21-70	\| 86-100		0-10	I	0-9	,	1.35-1.50	1	5.9-20.0	1	0.05-0.07	\| 0.0-2.9		0.0-0.5
	70-80	\| 86-100		0-10	1	0-9	\|	1.35-1.50	1	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5	
193263 :				1				I		,		1			
Kaleva----------\|	0-3	\| 86-100		0-10	I	0-9		1.25-1.45	I	5.9-20.0	I	0.07-0.09	\| 0.0-2.9	2.0-5.0	
I	3-9	\| 86-100		0-10	1	0-9	\|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	9-11	\| 86-100		0-10	1	0-9	I	1.35-1.45	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	2.0-5.0	
I	11-16	\| 86-100		0-10	1	0-9	I	1.35-1.45	1	5.9-20.0	1	0.06-0.08	0.0-2.9	0.5-3.0	
	16-21	\| 86-100		0-10	I	0-9	।	1.35-1.45	I	5.9-20.0	1	0.06-0.08	0.0-2.9 \|	0.5-3.0	
	21-70	\| 86-100		0-10	1	0-9	I	1.35-1.50	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9		0.0-0.5
	70-80	\| 86-100		0-10	1	0-9	।	1.35-1.50	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5	
				I		I		I		1		I			
193265: \|		I		1		I		I		I		I			
Grattan---------\|	0-4	\| 86-100		0-10	1	0-9	I	1.35-1.55	I	5.9-20.0	1	0.07-0.09	\| 0.0-2.9	2.0-5.0	
	4-13	\| 86-100		0-10	1	0-9		1.35-1.55	1	5.9-20.0	,	0.06-0.08	\| 0.0-2.9		0.5-2.0
	13-18	\| 86-100		0-10	1	0-9		1.35-1.55	1	5.9-20.0	1	0.06-0.08	0.0-2.9 \|	0.5-3.0	
	18-25	\| 86-100		0-10	1	0-9	1	1.35-1.55	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	25-53	\| 86-100		0-10	1	0-9	1	1.35-1.55	I	5.9-20.0	1	0.06-0.08	0.0-2.9 \|	0.0-0.5	
	53-80	\| 86-100		0-10	1	0-9	1	1.35-1.55	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9		0.0-0.5
$193266 \text { : }$				1				I		1					
Grattan----------\|	0-4	\| 86-100		0-10	1	0-9		1.35-1.55	I	5.9-20.0	1	0.07-0.09	1 0.0-2.9	2.0-5.0	
	4-13	\| 86-100		0-10	1	0-9		1.35-1.55	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-2.0
	13-18	\| 86-100		0-10	1	0-9		1.35-1.55	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-3.0
I	18-25	\| 86-100		0-10	1	0-9	I	1.35-1.55	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-3.0
	25-53	\| 86-100		0-10	I	0-9	\|	1.35-1.55	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.0-0.5
\|	53-80	\| 86-100		0-10	1	0-9	1	1.35-1.55	1	5.9-20.0	1	0.05-0.07	\| 0.0-2.9		0.0-0.5
193267: \|		1		1		I		I		1		1 1			
Grattan---------\|	0-4	\| 86-100		0-10	1	0-9		1.35-1.55	I	5.9-20.0	1	0.07-0.09	\| 0.0-2.9		2.0-5.0
\|	4-13	\| 86-100		0-10	1	0-9		1.35-1.55	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-2.0
	13-18	\| 86-100		0-10	1	0-9		1.35-1.55	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-3.0
I	18-25	\| 86-100		0-10	1	0-9	I	1.35-1.55	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-3.0
	25-53	\| 86-100		0-10	1	0-9	,	1.35-1.55	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.0-0.5	
-	53-80	\| 86-100		0-10	1	0-9	I	1.35-1.55	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9		0.0-0.5
193269: \|		1 l		1		I		I		1		1 1			
Grattan---------\|	0-4	\| 86-100		0-10	1	0-9	I	1.35-1.55	1	5.9-20.0	1	0.07-0.09	\| 0.0-2.9		2.0-5.0
,	4-13	\| 86-100		0-10	1	0-9		1.35-1.55	1	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	13-18	\| 86-100		0-10	1	0-9		1.35-1.55	1	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
I	18-25	\| 86-100		0-10	1	0-9	।	1.35-1.55	1	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	25-53	\| 86-100		0-10	1	0-9		1.35-1.55	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.0-0.5
	53-80	\| 86-100		0-10	1	0-9	I	1.35-1.55	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9		0.0-0.5
I		1 I		1		1		1		1		1 I			

Table 15.-Physical Soil Properties-Continued


Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	\| Sand $\mid$	Silt	1	Clay \|	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	Permeability (Ksat)	\|	Available water capacity	$\begin{array}{\|c\|} \hline \text { Shrink- } \\ \text { \| swell } \\ \text { \|potential } \end{array}$	Organic matter		
I	In	I Pct	Pct	I	Pct	g/cc	I	In/hr	I	In/in	Pct \|	Pct		
I		1		I	I		I				1 \|			
193279: \|		1 I		1	,		,		I		I			
Benona----------\|	0-2	\| 86-100		0-10	1	0-9 \|	1.30-1.55	I	5.9-20.0	I	0.07-0.12	$\mid 0.0-2.9$ \|	2.0-5.0	
\|	2-6	\| 86-100		0-10	I	0-14\|	1.30-1.55	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
I	6-9	\| 86-100		0-10	1	0-9 \|	1.40-1.60	1	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	9-17	\| 86-100		0-10	1	0-9 \|	1.40-1.60	1	5.9-20.0	I	0.06-0.08	1 0.0-2.9	0.5-3.0	
	17-28	\| 86-100		0-10	1	0-9 \|	1.40-1.60	1	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-1.0	
	28-46	\| 86-100		0-10	1	0-9 \|	1.40-1.60	1	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-1.0	
	46-80	\| 71-100		0-15	I	2-14\|	1.55-1.65	1	5.9-20.0	1	0.06-0.10	0.0-2.9 \|	0.0-0.5	
		1 I		1	I		I		I		I			
193284: \|		1 I		1	1		I		I		1 I			
Udorthents------\|	0-80	\| 45-85		5-45	1	7-19\|	1.40-1.60	1	0.2-0.6	1	0.20-0.22	$\mid 0.0-2.9$ \|	2.0-5.0	
I		1 \|		1	1		,		I		,			
Udipsamments----\|	0-80	\| 71-100		0-10	1	0-10\|	1.35-1.65	1	5.9-20.0	1	0.05-0.09	$\mid 0.0-2.9$ \|	0.5-1.0	
		1 I		1	1		1		1		I			
193285:		1 I		1	,		I		I		1 1			
Lumley----------\|	0-3	161	57	1	37 I	0.05-0.14	1	0.2-5.9	I	0.55-0.65	\| 0.0-0.0		70-100	
1	3-6	161	57	1	37 I	0.05-0.14	1	0.2-5.9	I	0.55-0.65	$10.0-0.0$ \|	70-100		
I	6-8	110 \|	65	1	25 I	0.30-0.55	I	0.2-5.9	I	0.35-0.45	$10.0-0.0$ \|	55-100		
I	8-20	110 \|	65	1	25 I	0.30-0.55	I	0.2-5.9	I	0.35-0.45	$10.0-0.0$ \|	55-100		
	20-45	110 \|	65	1	25 I	0.30-0.55	1	0.2-5.9	I	0.35-0.45	$\mid 0.0-0.0$ \|	55-100		
	45-53	110 \|	65	1	25 \|	0.13-0.23	,	0.2-5.9	,	0.35-0.45	$\mid 0.0-0.0$ \|	70-100		
	53-80	$\text { \| } 10$	65	1	25 \|	0.13-0.23	1	0.2-5.9	1	0.35-0.45	$\|0.0-0.0\|$	70-100		
		1 I		1	,		1		I		1			
Makinen--------- -	0-4	I 10 I	65	1	25 I	0.30-0.55	1	0.2-5.9	,	0.35-0.45	\| 0.0-0.0		55-100	
I	4-14	\| 10		65	1	25 I	0.30-0.55	1	0.2-5.9	I	0.35-0.45	$\mid 0.0-0.0$ \|	55-100	
	14-22	I 10 \|	65	1	25 I	0.30-0.55	1	0.2-5.9	I	0.35-0.45	$\mid 0.0-0.0$ \|	55-100		
I	22-31	\\| 10		65	1	25 I	0.13-0.23	I	0.2-5.9	I	0.35-0.45	$10.0-0.0$ \|	70-100	
	31-80	\| 86-100		0-10	1	0-10\|	1.40-1.65	1	5.9-20.0	,	0.05-0.07	\| 0.0-2.9		0.0-0.5
		1 I		1	I		I		1		1			
$193286 \text { : }$		I I		1			I		,		1			
Histosols-------\|	0-45	\| 10 I	65	1	25 I	0.30-0.55	1	0.2-5.9	I	0.35-0.45	\| 0.0-0.0		55-100	
\|	45-80	\| 86-100		0-10	1	0-9 \|	1.40-1.60	1	5.9-20.0	,	0.05-0.07	\| 0.0-2.9		0.0-0.5
I		1 I		1	1		1		1		1			
Aquents---------1	0-80	\| 86-100		0-10	1	0-9 \|	1.40-1.60	1	5.9-20.0	I	0.05-0.07	\| 0.0-2.9		0.0-0.5
\|		1 I		1	,		1		1		1 \|			
193287: \|		1 I		I	1		1		1		1			
Quartzipsamments\|	0-80	\| 86-100		0-10	1	0-5 \|	1.30-1.60	1	5.9-20.0	I	0.03-0.08	\| 0.0-2.9		0.0-0.1
		1 I		1	1		1		1		1 I			
$193288 \text { : }$		11		1	1		I		,		1 1			
Udipsamments----\|	0-80	\| 71-100		0-10	1	0-101	1.35-1.65	1	5.9-20.0	,	0.05-0.09	\| 0.0-2.9		0.5-1.0
I		1 I		1	I		I		,		1 I			
193342: \|		$1 \quad 1$		1	1		I		I		1 1			
Gorvan---------- \|	0-4	\| 5-50		50-80	1	7-26\|	1.10-1.60	1	0.2-0.6	,	0.20-0.24	$\mid 0.0-2.9$ \|	2.0-20	
I	4-11	\| 5-50		30-80	1	7-26\|	1.48-1.80	1	0.2-0.6	I	0.17-0.22	$\mid 0.0-2.9$ \|	2.0-5.0	
I	11-27	\| 5-50		30-80	1	7-35\|	1.48-1.80	1	0.2-0.6	1	0.15-0.22	$\mid 0.0-5.9$ \|	0.0-0.5	
	27-80	\| 86-100		0-10	1	0-9 \|	1.46-1.80	1	5.9-20.0	I	0.05-0.07	\| 0.0-2.9		0.0-0.5
I		1 I		1	1		I		,		1 I			

Table 15.-Physical Soil Properties-Continued

Map unit symbol \| and soil name $\qquad$	Depth	I Sand I	Silt	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	Clay \|	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	1	Permeability (Ksat)	\|	Available water capacity	$\begin{array}{\|c\|} \hline \text { Shrink- \| } \\ \text { \| swell } \mid \\ \mid \text { potential \| } \end{array}$	Organic matter		
I	In	1 Pct \|	Pct	I	Pct	g/cc	I	In/hr	I	In/in	Pct \|	Pct		
I		1 \|		I	I						1 \|			
193342: \|		1 I		1	1		I		I		1			
Houghton--------\|	0-12	\| 10		50	1	40 \|	0.30-0.55	I	0.2-5.9	I	0.35-0.45	$\mid 0.0-0.0$ \|	55-100	
	12-26	\| 10		65	1	25 \|	0.30-0.55	I	0.2-5.9	I	0.35-0.45	0.0-0.0	55-100	
	26-80	\| 10	65	1	25 \|	0.30-0.55	I	0.2-5.9	I	0.35-0.45	0.0-0.0 \|	55-100		
		1 \|		I	I						1 1			
Glendora--------\|	0-6	\| 71-90		3-15	I	0-14\|	1.00-1.35	I	5.9-20.0	I	0.10-0.12	$\mid 0.0-2.9$ \|	10-20	
\|	6-9	\| 71-100		3-15	I	0-14\|	1.40-1.65	1	5.9-20.0	I	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
	9-30	\| 86-100		0-15	I	0-14\|	1.40-1.65	1	5.9-20.0	I	0.05-0.10	0.0-2.9	0.0-0.5	
	30-80	\| 86-100		0-15	I	0-14\|	1.40-1.65	I	5.9-20.0	I	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
		1 I		1	I		I		I		I			
193349: \|		1 I		1	1		1		I		1			
Spinks----------\|	0-5	\| 86-100		0-10	1	0-9 \|	1.40-1.70	I	5.9-20.0	I	0.07-0.09	$\mid 0.0-2.9$ \|	2.0-5.0	
,	5-10	\| 86-100		0-10	I	0-9 \|	1.40-1.70	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	10-17	\| 86-100		0-10	1	0-9 \|	1.40-1.70	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	17-62	\| 71-100		0-15	1	3-14\|	1.40-1.70	1	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	0.0-0.5	
I	62-72	\| 71-100		0-15	I	3-14\|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.0-0.5	
	72-80	\| 86-100		0-10	1	0-9 \|	1.40-1.70	\|	5.9-20.0	,	0.05-0.07	\| 0.0-2.9		0.0-0.5
I		1		I					1		I			
Coloma---------- \|	0-3	\| 86-100		0-10	1	0-9 \|	1.35-1.65	I	5.9-20.0	1	0.07-0.12	$\mid 0.0-2.9$ \|	2.0-5.0	
I	3-4	\| 71-100		0-15	I	0-14\|	1.35-1.65	1	5.9-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.5-2.0	
I	4-8	\| 71-100		0-15	I	0-14\|	1.50-1.65	I	5.9-20.0	I	0.05-0.10	$\mid 0.0-2.9$ \|	0.5-1.0	
I	8-15	\| 71-100		0-15	I	0-14\|	1.50-1.65	I	5.9-20.0	,	0.05-0.10	$\mid 0.0-2.9$ \|	0.5-1.0	
	15-25	\| 71-100		0-15	1	0-14\|	1.50-1.65	1	5.9-20.0	,	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
	25-40	\| 71-100		0-15	I	0-14\|	1.50-1.65	1	5.9-20.0	1	0.05-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
	40-80	\| 71-100		0-15	1	0-14\|	1.50-1.65	I	5.9-20.0	,	0.05-0.10	\| 0.0-2.9		0.0-0.5
		1		I	I		I		1		I			
193351: \|		1 I		1	I		I		1		1 \|			
Benona----------	0-2	\| 86-100		0-10	1	0-9 \|	1.30-1.55	I	5.9-20.0	,	0.07-0.12	$\mid 0.0-2.9$ \|	2.0-5.0	
I	2-6	\| 86-100		0-10	I	0-14\|	1.30-1.55	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
I	6-9	\| 86-100		0-10	1	0-9 \|	1.40-1.60	1	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
1	9-17	\| 86-100		0-10	1	0-9 \|	1.40-1.60	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
I	17-28	\| 86-100		0-10	1	0-9 \|	1.40-1.60	I	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-1.0	
	28-46	\| 86-100		0-10	I	0-9 \|	1.40-1.60	1	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-1.0	
	46-80	\| 71-100		0-15	1	2-14\|	1.55-1.65	,	5.9-20.0	I	0.06-0.10	\| 0.0-2.9		0.0-0.5
		1		1	I		I		1		1 \|			
193354: \|		1		1			1		,		1 \|			
Quartzipsamments\|	0-80	\| 86-100		0-10	1	0-5 \|	1.30-1.60	I	5.9-20.0	I	0.03-0.08	\| 0.0-2.9		0.0-0.1
		1		1	1		I		I		1 \|			
$193357 \text { : }$		1 \|		1	1		I		1		1 1			
Shavenaugh------1	0-5	\| 86-100		0-10	1	0-9 \|	1.30-1.55	1	5.9-20.0	1	0.07-0.09	\| 0.0-2.9		2.0-5.0
I	5-8	\| 86-100		0-10	1	0-9 \|	1.30-1.70	1	5.9-20.0	I	0.03-0.11	$\mid 0.0-2.9$ \|	0.5-3.0	
I	8-16	\| 86-100।	0-10	1	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.03-0.11	$\mid 0.0-2.9$ \|	0.5-1.0		
,	16-28	\| 86-100		0-10	I	0-9 \|	1.30-1.70	I	5.9-20.0	,	0.03-0.11	$\mid 0.0-2.9$ \|	0.5-1.0	
	28-34	\| 86-100		0-10	1	0-9 \|	1.30-1.70	I	5.9-20.0	1	0.03-0.11	$\mid$ \| 0.0-2.9		0.5-1.0
	34-44	\| 71-90		3-15	1	5-14\|	1.30-1.70	I	5.9-20.0	1	0.03-0.11	$\mid 0.0-2.9$ \|	0.0-0.5	
	44-80	\| 71-100		0-10	1	0-9 \|	1.30-1.70	I	5.9-20.0	,	0.02-0.06	$\mid 0.0-2.9$ \|	0.0-0.5	
1		1 l		1	1		1		1		1 I			

Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	I Sand I	Silt	Clay	```Moist ```	1	Permeability (Ksat)	1	$\begin{gathered} \text { Available } \\ \text { water } \\ \text { capacity } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Shrink- } \\ \text { swell } \\ \text { \|potential } \end{array}$	Organic matter	
	1 In	Pct	Pct	Pct	g/cc	I	In/hr	I	In/in	Pct \|	Pct	
	I									1 - 1		
193359 :	I			I		I				1 1		
Shavenaugh	\| 0-5	86-100\|	0-10	0-9	1.30-1.55	I	5.9-20.0	I	0.07-0.09	\| 0.0-2.9	2.0-5.0	
	\| 5-8	\| 86-100		0-10	0-9	1.30-1.70	1	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.5-3.0
	\| 8-16	\| 86-100		0-10	0-9	1.30-1.70	I	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.5-1.0
	\| 16-28	\| 86-100		0-10	0-9	1.30-1.70	1	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.5-1.0
	\| 28-34	\| 86-100		0-10	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.5-1.0
	\| 34-44	\| 71-90		3-15	5-14\|	1.30-1.70	1	5.9-20.0		0.03-0.11	1 0.0-2.9	0.0-0.5
	\| 44-80	\| 71-100		0-10	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.02-0.06	\| 0.0-2.9	0.0-0.5
193360 :						I		I		1		
Shavenaugh	$\text { \| } 0-5$	86-100\|	0-10	0-9	1.30-1.55	I	5.9-20.0	I	0.07-0.09	\| 0.0-2.9	2.0-5.0	
	\| 5-8	\| 86-100		0-10	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.5-3.0
	\| 8-16	\| 86-100		0-10	0-9	1.30-1.70	I	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.5-1.0
	\| 16-28	\| 86-100		0-10	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.5-1.0
	\| 28-34	\| 86-100		0-10	0-9 \|	1.30-1.70	1	5.9-20.0	,	0.03-0.11	1 0.0-2.9	0.5-1.0
	\| 34-44	\| 71-90		3-15	5-14\|	1.30-1.70	1	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.0-0.5
	\| 44-80	\| 71-100		0-10	0-9 \|	1.30-1.70	,	5.9-20.0	I	0.02-0.06	\| 0.0-2.9	0.0-0.5
	I	।				I		I		1 I		
193362 :	I	1				1		I		1		
Benzonia	\| 0-5	\| 86-100		0-10	0-9	1.25-1.45	I	5.9-20.0	,	0.07-0.09	$\mid 0.0-2.9$ \|	2.0-5.0
	\| 5-11	86-100	0-10	0-9	1.35-1.45	I	5.9-20.0	I	0.05-0.08	\| 0.0-2.9	0.5-2.0	
	\| 11-15	\| 86-100		0-10	0-9	1.35-1.45	I	5.9-20.0	I	0.06-0.08	1 0.0-2.9	2.0-5.0
	\| 15-20	\| 86-100		0-10	0-9	1.35-1.45	I	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	2.0-5.0
	\| 20-27	\| 86-100		0-10	0-9	1.35-1.45	I	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	0.5-3.0
	\| 27-35	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	,	0.06-0.08	\| 0.0-2.9	0.5-3.0
	\| 35-80	\| 71-100		0-10	0-14\|	1.35-1.45	I	5.9-20.0	1	0.06-0.11	1 0.0-2.9	0.0-0.5
193363:	\|			,		I		,		1		
Benzonia	$\text { \| } 0-5$	\| 86-100		0-10	0-9 \|	1.25-1.45	I	5.9-20.0	,	0.07-0.09	$\mid 0.0-2.9$ \|	2.0-5.0
	\| 5-11	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.05-0.08	\| 0.0-2.9	0.5-2.0
	\| 11-15	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0
	\| 15-20	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0		0.06-0.08	\| 0.0-2.9	2.0-5.0
	\| 20-27	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	,	0.06-0.08	\| 0.0-2.9	0.5-3.0
	\| 27-35	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	,	0.06-0.08	$\mid$ 0.0-2.9 \|	0.5-3.0
	\| 35-80	\| 71-100		0-10	0-14\|	1.35-1.45	1	5.9-20.0	,	0.06-0.11	\| 0.0-2.9	0.0-0.5
$193364 \text { : }$				,		I		I		,		
Benzonia	\| 0-5	\| 86-100		0-10	0-9 \|	1.25-1.45	I	5.9-20.0	1	0.07-0.09	$\mid 0.0-2.9$ \|	2.0-5.0
	\| 5-11	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.05-0.08	$\mid 0.0-2.9$ \|	0.5-2.0
	\| 11-15	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0
	\| 15-20	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0
	\| 20-27	\| 86-100		0-10	0-9 \|	1.35-1.45	,	5.9-20.0		0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0
	\| 27-35	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	0.5-3.0
	\| 35-80	\| 71-100		0-10	0-14\|	1.35-1.45	1	5.9-20.0	,	0.06-0.11	$\mid 0.0-2.9$ \|	0.0-0.5
193365 :	1					I		I		$10.0-2.9$		
Benzonia-	\| 0-5	\| 86-100		0-10	0-9	1.25-1.45	I	5.9-20.0	I	0.07-0.09	$\mid 0.0-2.9$ \|	2.0-5.0
	\| 5-11	\| 86-100।	0-10	0-9	1.35-1.45	I	5.9-20.0	I	0.05-0.08	$10.0-2.9$	0.5-2.0	
	\| 11-15	\| 86-100।	0-10	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 15-20	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0
	\| 20-27	\| 86-100।	0-10	0-9 \|	1.35-1.45	I	5.9-20.0		0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 27-35	\| 86-100		0-10	0-9 \|	1.35-1.45	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0
	\| 35-80	\| 71-100		0-10	0-14\|	1.35-1.45	I	5.9-20.0	I	0.06-0.11	$\mid$ 0.0-2.9 \|	0.0-0.5
				1		1		I		1 l		

Table 15.-Physical Soil Properties-Continued

Map unit symbol \| and soil name	Depth	$\begin{array}{\|l\|l\|} \hline \text { Sand } \\ & \\ \hline \end{array}$	Silt	Clay ${ }^{\text {\| }}$	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	1	Permeability   (Ksat)	1	Available water capacity	$\begin{array}{\|c\|} \hline \text { \| Shrink- \| } \\ \text { swell } \\ \mid \text { potential } \end{array}$	Organic matter	
I	In	1 Pct	Pct	Pct I	g/cc	1	In/hr	I	In/in	1 Pct	Pct	
								I		,		
193371: \|		I		I				I		1		
Dair------------\|	0-4	\| 10	50	40 ।	0.30-0.50	1	0.2-5.9	I	0.35-0.45	1 --- \|	60-100	
I	4-7	\| 23-85		5-45	7-26\|	1.35-1.50	1	0.6-2.0	I	0.13-0.15	0.0-2.9	10-20
	7-11	\| 86-100		0-10	0-9 \|	1.40-1.60	1	5.9-20.0	I	0.06-0.08	0.0-2.9	0.5-1.0
	11-21	\| 86-100		0-10	0-9 \|	1.40-1.60	1	5.9-20.0	1	0.05-0.07	1 0.0-2.9	0.0-0.5
	21-50	\| 86-100		0-10	0-9	1.40-1.60	I	5.9-20.0	I	0.05-0.07	0.0-2.9	0.0-0.5
	50-80	\| 86-100		0-10	0-9	1.40-1.60	1	5.9-20.0	I	0.05-0.07	0.0-2.9	0.0-0.5
,		I						I		1		
Pipestone-------\|	0-2	\| 86-100		0-10	0-9 \|	1.30-1.50	1	5.9-20.0	1	0.07-0.09	\| 0.0-2.9	2.0-5.0
-	2-9	\| 86-100		0-10	0-9 \|	1.30-1.70	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	0.5-2.0
I	9-12	\| 86-100		0-10	0-9 \|	1.30-1.70	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	2.0-5.0
	12-24	\| 86-100		0-10	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-3.0
	24-32	\| 86-100		0-10	0-9	1.40-1.65	1	5.9-20.0	I	0.06-0.08	1 0.0-2.9	0.0-0.5
	32-80	\| 86-100		0-10	0-9 \|	1.40-1.65	I	5.9-20.0	I	0.05-0.07	\| 0.0-2.9	0.0-0.5
		\|		I		I		,		I		
193423: \|		I				I		1		I		
Benona---------- -	0-2	\| 86-100		0-10	0-9 \|	1.30-1.55	I	5.9-20.0	I	0.07-0.12	\| 0.0-2.9	2.0-5.0
I	2-6	\| 86-100		0-10	0-14\|	1.30-1.55	1	5.9-20.0	I	0.06-0.08	0.0-2.9	0.5-2.0
I	6-9	\| 86-100		0-10	0-9 \|	1.40-1.60	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	0.5-3.0
,	9-17	\| 86-100		0-10	0-9 \|	1.40-1.60	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-3.0
	17-28	\| 86-100		0-10	0-9 \|	1.40-1.60	I	5.9-20.0	1	0.06-0.08	0.0-2.9	0.5-1.0
	28-46	\| 86-100		0-10	0-9	1.40-1.60	1	5.9-20.0	1	0.06-0.08	0.0-2.9	0.5-1.0
	46-80	\| 71-100		0-15	2-14\|	1.55-1.65	1	5.9-20.0	,	0.06-0.10	\| 0.0-2.9	0.0-0.5
		\|		,		I		I		I		
193494: \|		I		I		1		I		I		
Nordhouse------- \|	0-3	\| 86-100		0-10	0-5 \|	1.30-1.55	I	5.9-20.0	I	0.07-0.09	\| 0.0-2.9	2.0-5.0
\|	3-11	\| 86-100		0-10	0-5 \|	1.40-1.65	।	5.9-20.0	I	0.06-0.08	1 0.0-2.9	0.5-2.0
	11-40	\| 86-100		0-10	0-5 \|	1.40-1.65	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-1.0
	40-60	\| 86-100		0-10	0-5	1.40-1.65	1	5.9-20.0	I	0.05-0.07	0.0-2.9	0.0-0.5
	60-80	\| 86-100		0-10	0-5 \|	1.40-1.65	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5
193496: \|		1				I		I		I		
Nordhouse-------\|	0-3	\| 86-100		0-10	0-5 \|	1.30-1.55	I	5.9-20.0	I	0.07-0.09	\| 0.0-2.9	2.0-5.0
-	3-11	\| 86-100		0-10	0-5 \|	1.40-1.65	।	5.9-20.0	I	0.06-0.08	1 0.0-2.9	0.5-2.0
	11-40	\| 86-100		0-10	0-5 \|	1.40-1.65	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-1.0
	40-60	\| 86-100		0-10	0-5 \|	1.40-1.65	।	5.9-20.0	I	0.05-0.07	\| 0.0-2.9	0.0-0.5
	60-80	\| 86-100		0-10	0-5 \|	1.40-1.65	\|	5.9-20.0	I	0.05-0.07	\| 0.0-2.9	0.0-0.5
$193497 \text { : }$						1		1		I		
Nordhouse	0-3	\| 86-100		0-10	0-5 \|	1.30-1.55	1	5.9-20.0	1	0.07-0.09	1 0.0-2.9	2.0-5.0
,	3-11	\| 86-100		0-10	0-5 \|	1.40-1.65	I	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	0.5-2.0
	11-40	\| 86-100		0-10	0-5 \|	1.40-1.65	1	5.9-20.0	I	0.06-0.08	0.0-2.9	0.5-1.0
	40-60	\| 86-100		0-10	0-5 \|	1.40-1.65	1	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5
	60-80	\| 86-100		0-10	0-5 \|	1.40-1.65	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5
193498: \|				,		I		I		I		
Nordhouse------- \|	0-3	\| 86-100		0-10	0-5	1.30-1.55	1	5.9-20.0	I	0.07-0.09	\| 0.0-2.9	2.0-5.0
I	3-11	\| 86-100		0-10	0-5 \|	1.40-1.65	1	5.9-20.0	,	0.06-0.08	1 0.0-2.9	0.5-2.0
I	11-40	\| 86-100		0-10	0-5 \|	1.40-1.65	1	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	0.5-1.0
I	40-60	\| 86-100		0-10	0-5 \|	1.40-1.65	1	5.9-20.0	I	0.05-0.07	1 0.0-2.9	0.0-0.5
	60-80	\| 86-100		0-10	0-5 \|	1.40-1.65	1	5.9-20.0	I	0.05-0.07	\| 0.0-2.9	0.0-0.5
				I		1		1		1		

Table 15.-Physical Soil Properties-Continued


Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	I Sand $\mid$	Silt	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { I } \end{aligned}$	$\begin{aligned} & \hline \text { Clay } \\ & \\ & \\ & \hline \end{aligned}$	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { i } \end{aligned}$	Permeability (Ksat)	1	Available water capacity	$\mid$ Shrink-   $\mid$ swell   $\mid$ potential $\mid$	Organic matter		
	\| In	Pct	Pct	I	Pct	g/cc	I	In/hr	I	In/in	Pct	Pct		
	I	1 \|		I	I		,		I		1 I			
193505:	I	I		1	,		,		I		1 I			
Spinks	\| 0-5	86-100\|	0-10	I	0-9	1.40-1.70	I	5.9-20.0	1	0.07-0.09	0.0-2.9	2.0-5.0		
	\| 5-10	\| 86-100		0-10	I	0-9	1.40-1.70	,	5.9-20.0	1	0.06-0.08	0.0-2.9	0.5-2.0	
	\| 10-17	\| 86-100		0-10	I	0-9	1.40-1.70	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	\| 17-62	\| 71-100		0-15	I	3-14\|	1.40-1.70	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	0.0-0.5	
	\| 62-72	\| 71-100		0-15	I	3-14\|	1.40-1.70	1	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	0.0-0.5	
	\| 72-80	\| 86-100		0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5	
	I			I	I		I		1		1			
Shavenaugh	\| 0-5	\| 86-100		0-10	I	0-9	1.30-1.55	1	5.9-20.0	1	0.07-0.09	\| 0.0-2.9	2.0-5.0	
	\| 5-8	\| 86-100		0-10	I	0-9	1.30-1.70	1	5.9-20.0	1	0.03-0.11	1 0.0-2.9	0.5-3.0	
	\| 8-16	\| 86-100		0-10	I	0-9	1.30-1.70	1	5.9-20.0	1	0.03-0.11	1 0.0-2.9	0.5-1.0	
	\| 16-28	\| 86-100		0-10	I	0-9 \|	1.30-1.70	1	5.9-20.0	1	0.03-0.11	$10.0-2.9$	0.5-1.0	
	\| 28-34	\| 86-100		0-10	,	0-9 \|	1.30-1.70	1	5.9-20.0	I	0.03-0.11	1 0.0-2.9	0.5-1.0	
	\| 34-44	\| 71-90		3-15	I	5-14\|	1.30-1.70	1	5.9-20.0	1	0.03-0.11	\| 0.0-2.9	0.0-0.5	
	$144-80$	\| 71-100		0-10	\|	0-9 \|	1.30-1.70	1	5.9-20.0	I	0.02-0.06	\| 0.0-2.9	0.0-0.5	
	\|			I	1		1		1		,			
193506:	I	1 I		I	I		,		1					
Spinks	\| 0-5	\| 86-100		0-10	I	0-9 \|	1.40-1.70	,	5.9-20.0	1	0.07-0.09	\| 0.0-2.9	2.0-5.0	
	\| 5-10	\| 86-100		0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	0.5-2.0	
	\| 10-17	\| 86-100		0-10	,	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	\| 17-62	\| 71-100		0-15	,	3-14\|	1.40-1.70	,	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	0.0-0.5	
	\| 62-72	\| 71-100		0-15	I	3-14\|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.0-0.5	
	\| 72-80	\| 86-100		0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5	
	\|	I I		I	,		,		1		,			
Shavenaugh	\| 0-5	\| 86-100		0-10	I	0-9 \|	1.30-1.55	1	5.9-20.0	1	0.07-0.09	\| 0.0-2.9	2.0-5.0	
	\| 5-8	\| 86-100		0-10	,	0-9 \|	1.30-1.70	,	5.9-20.0	1	0.03-0.11	1 0.0-2.9	0.5-3.0	
	\| 8-16	\| 86-100		0-10	I	0-9 \|	1.30-1.70		5.9-20.0	1	0.03-0.11	$10.0-2.9$	0.5-1.0	
	\| 16-28	\| 86-100		0-10	I	0-9 \|	1.30-1.70	,	5.9-20.0	1	0.03-0.11	\| 0.0-2.9		0.5-1.0
	\| 28-34	\| 86-100		0-10	,	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.5-1.0	
	$\text { \| } 34-44$	\| 71-90		3-15	I	5-14\|	1.30-1.70	,	5.9-20.0	I	0.03-0.11	\| 0.0-2.9	0.0-0.5	
	\| 44-80	\| 71-100		0-10	,	0-9 \|	1.30-1.70	,	5.9-20.0	I	0.02-0.06	\| 0.0-2.9	0.0-0.5	
	I	1		I	1		I		1		I			
193507:	I	1 I		,	I		I		1		I			
Spinks	\| 0-5	\| 86-100		0-10	I	0-9 \|	1.40-1.70	I	5.9-20.0	1	0.07-0.09	\| 0.0-2.9		2.0-5.0
	\| 5-10	\| 86-100		0-10	I	0-9 \|	1.40-1.70	,	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-2.0
	\| 10-17	\| 86-100		0-10	I	0-9 \|	1.40-1.70	,	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	0.5-2.0	
	\| 17-62	\| 71-100		0-15	1	3-14\|	1.40-1.70	-	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.0-0.5	
	\| 62-72	\| 71-100		0-15	1	3-14\|	1.40-1.70	I	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	0.0-0.5	
	\| 72-80	\| 86-100		0-10	1	0-9 \|	1.40-1.70	,	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5	
	\|	\|		1	,		I		1		,			
Shavenaugh------	\| 0-5	\| 86-100		0-10	I	0-9 \|	1.30-1.55	I	5.9-20.0	1	0.07-0.09	\| 0.0-2.9		2.0-5.0
	\| 5-8	\| 86-100		0-10	1	0-9 \|	1.30-1.70	I	5.9-20.0	1	0.03-0.11	\| 0.0-2.9		0.5-3.0
	\| 8-16	\| 86-100		0-10	1	0-9 \|	1.30-1.70	I	5.9-20.0	1	0.03-0.11	1 0.0-2.9	0.5-1.0	
	\| 16-28	\| 86-100		0-10	1	0-9 \|	1.30-1.70	,	5.9-20.0	1	0.03-0.11	\| 0.0-2.9		0.5-1.0
	\| 28-34	\| 86-100		0-10	I	0-9 \|	1.30-1.70	I	5.9-20.0	1	0.03-0.11	$10.0-2.9$	0.5-1.0	
	\| 34-44	\| 71-90		3-15	I	5-14\|	1.30-1.70	I	5.9-20.0	1	0.03-0.11	\| 0.0-2.9		0.0-0.5
	\| 44-80	\| 71-100		0-10	1	0-9 \|	1.30-1.70	1	5.9-20.0	1	0.02-0.06	\| 0.0-2.9		0.0-0.5
	1	1 I		1	1		1		1		1			

Table 15.-Physical Soil Properties-Continued

Map unit symbol \| and soil name	Depth	\| Sand		Silt	1	Clay I	```Moist bulk density```	1	Permeabili (Ksat)	I	Available water capacity	$\begin{array}{\|c\|} \hline \text { Shrink- \| } \\ \text { \| swell } \\ \text { \|potential } \end{array}$	$\begin{aligned} & \text { Organic } \\ & \text { matter } \end{aligned}$	
I	In	1 Pct	Pct	I	Pct	g/cc	I	In/hr	I	In/in	1 Pct	Pct		
I		1			- I		\|		1		1 - 1			
193508: \|				I	1		I		1		1 1			
Madaus----------\|	0-12	\| 10	50	I	40 I	0.25-0.45	I	0.2-5.9	,	0.35-0.45	1 0.0-0.0	25-100		
	12-34	\| 0-50	50-80	I	7-25\|	0.25-0.45	I	0.1-0.2	I	0.20-0.22	\| 0.0-2.9		10-20	
	34-38	\| 0-50		50-80	I	7-25\|	0.25-0.45	I	0.1-0.2	I	0.20-0.22	0.0-2.9 \|	10-20	
	38-62	\| 86-100		0-10	1	0-9 \|	1.50-1.65	I	5.9-20.0	I	0.05-0.07	\| 0.0-2.9		0.0-0.5
	62-80	\| 0-45		10-39	I	40-701	1.55-1.70	I	0.1-0.2	I	0.08-0.10	\| 6.0-8.9		0.0-0.5
		1 I		1	,		I		1		1 \|			
193509: \|		I		I	,		I		I		1 I			
Boyer-----------\|	0-3	\| 45-85		5-45	I	7-19\|	1.35-1.60	1	0.6-2.0	1	0.16-0.18	\| 0.0-2.9		2.0-5.0
I	3-4	\| 45-85		5-45	I	7-34\|	1.30-1.60	I	2.0-5.9	I	0.15-0.18	\| 0.0-5.9		0.5-2.0
I	4-14	\| 45-85		5-45	I	7-34\|	1.35-1.60	I	2.0-5.9	1	0.15-0.18	\| 0.0-5.9		0.0-0.5
	14-30	\| 45-85		5-45	,	7-34\|	1.35-1.60	I	2.0-5.9	1	0.15-0.18	\| 0.0-5.9		0.0-0.5
	30-45	\| 71-100		0-14	I	0-14\|	1.40-1.55	1	5.9-20.0	1	0.02-0.10	$\mid 0.0-2.9$ \|	0.0-0.5	
	45-80	\| 71-100		0-14	I	0-14\|	1.40-1.55	\|	5.9-20.0	I	0.02-0.10	\| 0.0-2.9		0.0-0.5
					I				I		1 ।			
Shavenaugh------1	0-5	\| 86-100		0-10	1	0-9 \|	1.30-1.55	I	5.9-20.0	I	0.07-0.09	\| 0.0-2.9		2. 0-5.0
,	5-8	\| 86-100		0-10	I	0-9 \|	1.30-1.70	I	5.9-20.0	1	0.03-0.11	\| 0.0-2.9		0.5-3.0
I	8-16	\| 86-100		0-10	I	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.03-0.11	\| 0.0-2.9		0.5-1.0
	16-28	\| 86-100		0-10	1	0-9 \|	1.30-1.70	1	5.9-20.0	I	0.03-0.11	\| 0.0-2.9		0.5-1.0
	28-34	86-100 \|	0-10	I	0-9 \|	1.30-1.70	1	5.9-20.0	1	0.03-0.11	$\mid 0.0-2.9$ \|	0.5-1.0		
	34-44	\| 71-90		3-15	I	5-14 \|	1.30-1.70	1	5.9-20.0	I	0.03-0.11	$\mid 0.0-2.9$ \|	0.0-0.5	
	44-80	71-100\|	0-10	I	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.02-0.06	\| 0.0-2.9		0.0-0.5	
		1 \|		I	,		I		I		1 \|			
193510: \|		I		I	1		1		I		1 I			
Boyer-----------\|	0-3	\| 45-85		5-45		7-19\|	1.35-1.60	1	0.6-2.0	I	0.16-0.18	\| 0.0-2.9		2.0-5.0
I	3-4	\| 45-85		5-45	I	7-34\|	1.30-1.60	I	2.0-5.9	I	0.15-0.18	\| 0.0-5.9		0.5-2.0
	4-14	45-85 \|	5-45	1	7-34\|	1.35-1.60	1	2.0-5.9	I	0.15-0.18	\| 0.0-5.9		0.0-0.5	
	14-30	\| 45-85		5-45	I	7-34\|	1.35-1.60	1	2.0-5.9	1	0.15-0.18	\| 0.0-5.9		0.0-0.5
	30-45	\| 71-100		0-14	I	0-14\|	1.40-1.55	I	5.9-20.0	1	0.02-0.10	\| 0.0-2.9		0.0-0.5
	45-80	\| 71-100		0-14	I	0-14\|	1.40-1.55	I	5.9-20.0	I	0.02-0.10	\| 0.0-2.9		0.0-0.5
I				1			I		I		1 \|			
Shavenaugh------1	0-5	\| 86-100		0-10		0-9 \|	1.30-1.55	I	5.9-20.0	I	0.07-0.09	$\mid 0.0-2.9$ \|	2.0-5.0	
-	5-8	\| 86-100		0-10	I	0-9 \|	1.30-1.70	I	5.9-20.0	1	0.03-0.11	$\mid 0.0-2.9$ \|	0.5-3.0	
	8-16	86-100\|	0-10		0-9 \|	1.30-1.70	I	5.9-20.0	I	0.03-0.11	\| 0.0-2.9		0.5-1.0	
	16-28	\| 86-100		0-10	I	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.03-0.11	$\mid 0.0-2.9$ \|	0.5-1.0	
	28-34	\| 86-100		0-10	I	0-9 \|	1.30-1.70	I	5.9-20.0	1	0.03-0.11	$\mid 0.0-2.9$ \|	0.5-1.0	
	34-44	$71-90$ ।	3-15	I	5-14 \|	1.30-1.70	I	5.9-20.0	I	0.03-0.11	$\mid 0.0-2.9$ \|	0.0-0.5		
	44-80	\| 71-100		0-10	I	0-9 \|	1.30-1.70	I	5.9-20.0	I	0.02-0.06	\| 0.0-2.9		0.0-0.5
\|		I		I	I		I		I		1 I			
193511: \|				I	I		1		I		1 I			
Boyer-----------\|	0-3	\| 45-85		5-45		7-19	1.35-1.60	I	0.6-2.0	I	0.16-0.18	\| 0.0-2.9		2. 0-5.0
I	3-4	$\mid 45-85$ \|	5-45	I	7-34।	1.30-1.60	I	2. 0-5.9	I	0.15-0.18	$\|0.0-5.9\|$	0.5-2.0		
,	4-14	\| 45-85		5-45	I	7-34।	1.35-1.60	I	2.0-5.9	1	0.15-0.18	$\mid 0.0-5.9$ \|	0.0-0.5	
I	14-30	$\mid 45-85$ \|	5-45	I	7-34।	1.35-1.60	I	2.0-5.9	I	0.15-0.18	$\|0.0-5.9\|$	0.0-0.5		
	30-45	71-100\|	0-14	I	0-14\|	1.40-1.55	I	5.9-20.0	I	0.02-0.10	\| 0.0-2.9		0.0-0.5	
	45-80	\| 71-100		0-14		0-14 \|	1.40-1.55	I	5.9-20.0	I	0.02-0.10	\| 0.0-2.9		0.0-0.5
1		1 I		1	I		1		I		1 I			

Table 15.-Physical Soil Properties-Continued

| Map unit symbol \| and soil name | Depth | Sand | Silt | I | Clay | ```Moist bulk density``` | 1 | Permeability (Ksat) | \| | Available water capacity | \| Shrink- | swell |potential | $\begin{gathered} \hline \text { Organic } \\ \text { matter } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | In | 1 Pct | Pct | I | Pct | $\mathrm{g} / \mathrm{cc}$ | I | In/hr | 1 | In/in | \| Pct | | Pct |
| \| |  | 1 |  | 1 | I |  | I |  | I |  | 1 - 1 |  |
| 193511: \| |  | I |  | I |  |  | I |  | I |  | 1 1 |  |
| Shavenaugh------\| | 0-5 | \| 86-100| | 0-10 | 1 | 0-9 | 1.30-1.55 | I | 5.9-20.0 | 1 | 0.07-0.09 | \| 0.0-2.9 | | 2. 0-5.0 |
| , | 5-8 | \| 86-100| | 0-10 | I | 0-9 | 1.30-1.70 | I | 5.9-20.0 | I | 0.03-0.11 | 0.0-2.9 \| | 0.5-3.0 |
| I | 8-16 | \| 86-100| | 0-10 | 1 | 0-9 | 1.30-1.70 | I | 5.9-20.0 | 1 | 0.03-0.11 | \| 0.0-2.9 | | 0.5-1.0 |
|  | 16-28 | \| 86-100| | 0-10 | I | 0-9 | 1.30-1.70 | I | 5.9-20.0 | I | 0.03-0.11 | 0.0-2.9 \| | 0.5-1.0 |
|  | 28-34 | \| 86-100| | 0-10 | 1 | 0-9 | 1.30-1.70 | I | 5.9-20.0 | I | 0.03-0.11 | 0.0-2.9 I | 0.5-1.0 |
|  | 34-44 | \| 71-90 | | 3-15 | I | 5-14\| | 1.30-1.70 | I | 5.9-20.0 | I | 0.03-0.11 | \| 0.0-2.9 | | 0.0-0.5 |
|  | 44-80 | \| 71-100| | 0-10 | I | 0-9 | 1.30-1.70 | 1 | 5.9-20.0 | I | 0.02-0.06 | \| 0.0-2.9 | | 0.0-0.5 |
|  |  | 1 \| |  | , | \| |  | I |  | I |  | 1 \| |  |
| 193513 : |  | I |  | I |  |  | 1 |  | I |  | , |  |
| Dair------------\| | 0-4 | I 10 | 50 | I | 40 | 0.30-0.50 | I | 0.2-5.9 | 1 | 0.35-0.45 | 1 --- \| | 60-100 |
| I | 4-7 | \| 23-85 | | 5-45 | I | 7-26\| | 1.35-1.50 | I | 0.6-2.0 | 1 | 0.13-0.15 | 0.0-2.9 \| | 10-20 |
| I | 7-11 | \| 86-100| | 0-10 | I | 0-9 | 1.40-1.60 | I | 5.9-20.0 | 1 | 0.06-0.08 | 0.0-2.9 । | 0.5-1.0 |
|  | 11-21 | \| 86-100| | 0-10 | I | 0-9 | 1.40-1.60 | I | 5.9-20.0 | I | 0.05-0.07 | \| 0.0-2.9 | | 0.0-0.5 |
|  | 21-50 | \| 86-100| | 0-10 | I | 0-9 | 1.40-1.60 | I | 5.9-20.0 | I | 0.05-0.07 | \| 0.0-2.9 | | 0.0-0.5 |
|  | 50-80 | \| 86-100| | 0-10 | 1 | 0-9 | 1.40-1.60 | I | 5.9-20.0 | 1 | 0.05-0.07 | \| 0.0-2.9 | | 0.0-0.5 |
|  |  | 1 \| |  | I |  |  | I |  | I |  | 1 |  |
| Adrian----------\| | 0-7 | 110 | 50 | I | 40 | 0.30-0.55 | I | 0.2-5.9 | 1 | 0.35-0.45 | 0.0-0.0 I | 55-100 |
| I | 7-20 | 110 \| | 65 | 1 | 25 | 0.30-0.55 | I | 0.2-5.9 | I | 0.35-0.45 | \| 0.0-0.0 | | 55-100 |
|  | 20-35 | \| 10 | | 65 | 1 | 25 I | 0.30-0.55 | I | 0.2-5.9 | 1 | 0.35-0.45 | \| 0.0-0.0 | | 55-100 |
|  | 35-80 | \| 86-100| | 0-10 | I | 0-10\| | 1.40-1.65 | I | 5.9-20.0 | I | 0.05-0.07 | \| 0.0-2.9 | | 0.0-0.5 |
|  |  | I |  | I | \| |  | I |  | I |  | I |  |
| 193514: \| |  | 1 |  | 1 | I |  | I |  | 1 |  | 1 I |  |
| Platteriver-----\| | 0-1 |  | 50 | 1 | 40 |  | I | 5.9-20.0 | I | --- | 1 --- \| | 25-100 |
| । | 1-3 | \| 86-100| | 0-10 | I | 0-5 | 1.30-1.55 | I | 5.9-20.0 | 1 | 0.07-0.09 | 0.0-2.9 | 2. 0-5.0 |
| I | 3-14 | \| 86-100| | 0-10 | I | 0-5 | 1.40-1.60 | I | 5.9-20.0 | 1 | 0.06-0.08 | $\mid 0.0-2.9$ \| | 0.5-2.0 |
| I | 14-20 | \| 86-100| | 0-10 | I | 0-5 | 1.50-1.65 | I | 5.9-20.0 | 1 | 0.06-0.08 | $\mid 0.0-2.9$ \| | 0.5-1.0 |
|  | 20-29 | \| 86-100| | 0-10 | I | 0-5 | 1.50-1.65 | I | 5.9-20.0 | I | 0.06-0.08 | \| 0.0-2.9 | | 0.5-1.0 |
|  | 29-80 | \| 86-100| | 0-10 | I | 0-5 | 1.50-1.65 | I | 5.9-20.0 | I | 0.05-0.07 | \| 0.0-2.9 | | 0.0-0.5 |
|  |  | i $1$ |  | , |  |  |  |  | I |  | 1 । |  |
| Pipestone-------\| | 0-2 | \| 86-100| | 0-10 | I | 0-9 | 1.30-1.50 | I | 5.9-20.0 | 1 | 0.07-0.09 | $\mid 0.0-2.9$ \| | 2.0-5.0 |
|  | 2-9 | \| 86-100| | 0-10 | I | 0-9 | 1.30-1.70 | 1 | 5.9-20.0 | 1 | 0.06-0.08 | 0.0-2.9 \| | 0.5-2.0 |
| I | 9-12 | \| 86-100| | 0-10 | I | 0-9 | 1.30-1.70 | I | 5.9-20.0 | I | 0.06-0.08 | $\mid 0.0-2.9$ \| | 2.0-5.0 |
|  | 12-24 | \| 86-100| | 0-10 | I | 0-9 | 1.40-1.70 | 1 | 5.9-20.0 | 1 | 0.06-0.08 | $\mid 0.0-2.9$ \| | 0.5-3.0 |
|  | 24-32 | \| 86-100| | 0-10 | I | 0-9 | 1.40-1.65 | I | 5.9-20.0 | I | 0.06-0.08 | \| 0.0-2.9 | | 0.0-0.5 |
|  | 32-80 | \| 86-100| | 0-10 | I | 0-9 | 1.40-1.65 | I | 5.9-20.0 | 1 | 0.05-0.07 | \| 0.0-2.9 | | 0.0-0.5 |
|  |  | 1 I |  | I |  |  | I |  | I |  | 1 I |  |
| 202010: \| |  | I |  | I | I |  | I |  | I |  | 1 1 1 |  |
| Houghton--------\| | 0-12 | 110 \| | 50 | 1 | 40 | 0.30-0.55 | I | 0.2-5.9 | 1 | 0.35-0.45 | \| 0.0-0.0 | | 55-100 |
|  | 12-26 | $\text { \| } 10 \text { i }$ | 65 | 1 | 25 | 0.30-0.55 | I | 0.2-5.9 | I | 0.35-0.45 | \| 0.0-0.0 | | 55-100 |
|  | 26-80 | \| 10 | | 65 | 1 | 25 | 0.30-0.55 | I | 0.2-5.9 | I | 0.35-0.45 | \| 0.0-0.0 | | 55-100 |
|  |  | I |  | 1 |  |  | I |  | I |  | 1 I |  |
| Adrian----------\| | 0-7 | I 10 | 50 | 1 | 40 | 0.30-0.55 | I | 0.2-5.9 | 1 | 0.35-0.45 | \| 0.0-0.0 | | 55-100 |
| , | 7-20 | 110 \| | 65 | 1 | 25 | 0.30-0.55 | I | 0.2-5.9 | I | 0.35-0.45 | \| 0.0-0.0 | | 55-100 |
| I | 20-35 | 110 \| | 65 | 1 | 25 I | 0.30-0.55 | I | 0.2-5.9 | 1 | 0.35-0.45 | \| 0.0-0.0 | | 55-100 |
|  | 35-80 | \| 86-100| | 0-10 | I | 0-101 | 1.40-1.65 | I | 5.9-20.0 | 1 | 0.05-0.07 | \| 0.0-2.9 | | 0.0-0.5 |
|  |  | 1 I |  | I | 1 |  | 1 |  | I |  | 1 I |  |

Table 15.-Physical Soil Properties-Continued


Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	Sand	Silt	Clay	Moist bulk density	1	Permeability (Ksat)	I	$\begin{gathered} \text { Available } \\ \text { water } \\ \text { capacity } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Shrink- } \\ \text { swell } \\ \text { \|potential } \end{array}$	Organic matter	
	\| In	Pct	Pct	Pct	g/cc	I	In/hr	I	In/in	1 Pct	Pct	
	I	1		I		\|		I		1 - 1		
631171 :	I	1				I				1 1		
Benzoni	\| 0-5	86-100	0-10	0-9	1.25-1.45	1	5.9-20.0	I	0.07-0.09	0.0-2.9	2.0-5.0	
	\| 5-11	86-100 \|	0-10	0-9	1.35-1.45	-	5.9-20.0	I	0.05-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 11-15	86-100\|	0-10	0-9	1.35-1.45	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 15-20	86-100	0-10	0-9	1.35-1.45	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 20-27	86-100	0-10	0-9	1.35-1.45	I	5.9-20.0		0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 27-35	86-100 \|	0-10	0-9	1.35-1.45	\\|	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 35-80	71-100\|	0-10	0-14\|	1.35-1.45	I	5.9-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.0-0.5	
	\|			\|		I		I		1 I		
631172 :	I					,		I		1 1		
Fogg	\| 0-2	86-100	0-10	0-9 \|	1.30-1.55	,	5.9-20.0	,	0.07-0.12	\| 0.0-2.9		2.0-5.0
	\| 2-7	71-100\|	0-15	0-14\|	1.40-1.65	I	5.9-20.0	I	0.06-0.11	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 7-13	86-100	0-10	0-9 \|	1.40-1.65	I	5.9-20.0		0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 13-21	86-100	0-10	0-9 \|	1.40-1.65	I	5.9-20.0	-	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 21-34	86-100 \|	0-10	0-9 \|	1.40-1.65	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 34-43	23-90 \|	5-45	3-26\|	1.45-1.70	I	0.2-20.0	1	0.09-0.19	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 43-48	23-90 \|	5-45	3-26\|	1.45-1.70	I	0.2-20.0	1	0.09-0.19	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 48-55	23-90 \|	5-45	7-26\|	1.45-1.70	I	0.2-5.9	1	0.12-0.19	\| 0.0-2.9		0.0-0.5
	\| 55-80	76-100\|	0-15	0-14\|	1.40-1.65	I	2.0-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.0-0.5	
	I			,		,		I		1 1		
Benzonia	\| 0-5	86-100	0-10	0-9 \|	1.25-1.45	I	5.9-20.0	I	0.07-0.09	\| 0.0-2.9		2.0-5.0
	\| 5-11	86-100	0-10	0-9 \|	1.35-1.45		5.9-20.0	I	0.05-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 11-15	86-100	0-10	0-9	1.35-1.45	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 15-20	86-100	0-10	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 20-27	86-100।	0-10	0-9 \|	1.35-1.45	।	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 27-35	86-100	0-10	0-9 \|	1.35-1.45	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 35-80	71-100	0-10	0-14\|	1.35-1.45	I	5.9-20.0	I	0.06-0.11	$\mid$ 0.0-2.9 \|	0.0-0.5	
	\|	I		,		I		I		1 I		
631173 :	I					I		I		1 1		
Fogg--	\| 0-2	86-100	0-10	0-9 \|	1.30-1.55	I	5.9-20.0	I	0.07-0.12	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 2-7	71-100\|	0-15	0-14\|	1.40-1.65	I	5.9-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 7-13	86-100	0-10	0-9 \|	1.40-1.65	I	5.9-20.0	1	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 13-21	86-100	0-10	0-9 \|	1.40-1.65	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 21-34	86-100	0-10	0-9 ।	1.40-1.65	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 34-43	23-90 ।	5-45	3-26\|	1.45-1.70	1	0.2-20.0	I	0.09-0.19	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 43-48	23-90 ।	5-45	3-26\|	1.45-1.70	I	0.2-20.0	I	0.09-0.19	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 48-55	23-90 \|	5-45	7-26\|	1.45-1.70	I	0.2-5.9	I	0.12-0.19	$\mid 0.0-2.9$ \|	0.0-0.5	
	155-80	76-100\|	0-15	0-14\|	1.40-1.65	,	2.0-20.0	,	0.06-0.11	$\mid 0.0-2.9$ \|	0.0-0.5	
	1							I		1 1		
Benzonia-	\| 0-5	86-100	0-10	0-9 \|	1.25-1.45	I	5.9-20.0	I	0.07-0.09	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 5-11	86-1001	0-10	0-9 \|	1.35-1.45	I	5.9-20.0		0.05-0.08	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 11-15	86-100	0-10	0-9 \|	1.35-1.45	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 15-20	86-100	0-10	0-9	1.35-1.45	I	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 20-27	86-100	0-10	0-9 \|	1.35-1.45	I	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 27-35	86-100	0-10	0-9 \|	1.35-1.45	,	5.9-20.0	,	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 35-80	71-100	0-10	0-14\|	1.35-1.45	I	5.9-20.0	,	0.06-0.11	$\mid$ 0.0-2.9 \|	0.0-0.5	
						,		1		1 l		

Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	$\mid$ I Sand    1 $\mid$   1    $\mid$	Silt	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Clay \|	```Moist bulk density```	I	$\begin{aligned} & \text { Permeabili } \\ & \text { (Ksat) } \end{aligned}$	1	$\begin{gathered} \hline \text { Available } \\ \text { water } \\ \text { capacity } \\ \hline \end{gathered}$	$\begin{aligned} & \text { I Shrink- } \\ & \text { swell } \\ & \text { \|potential } \end{aligned}$		Organic matter	
	In	Pct	Pct	I	Pct	$\mathrm{g} / \mathrm{cc}$	1	In/hr	I	In/in	Pct		Pct	
		I		I	I		,		1		1			
631174 :		1		1	I		I		I		1			
Fogg	0-2	\| 86-100		0-10	I	0-9 \|	1.30-1.55	1	5.9-20.0	1	0.07-0.12	\| 0.0-2.9		2.0-5.0
	2-7	\| 71-100		0-15	I	0-14\|	1.40-1.65	1	5.9-20.0	1	0.06-0.11	1 0.0-2.9	-	0.5-2.0
	7-13	\| 86-100		0-10	,	0-9 \|	1.40-1.65	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	I	2.0-5.0
	13-21	\| 86-100		0-10	I	0-9	1.40-1.65	1	5.9-20.0	1	0.06-0.08	0.0-2.9		0.5-3.0
	21-34	\| 86-100		0-10	I	0-9 \|	1.40-1.65	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	I	0.5-3.0
	34-43	\| 23-90		5-45	,	3-26\|	1.45-1.70	1	0.2-20.0	1	0.09-0.19	1 0.0-2.9		0.0-0.5
	43-48	\| 23-90		5-45	1	3-26\|	1.45-1.70	1	0.2-20.0	1	0.09-0.19	\| 0.0-2.9	I	0.0-0.5
	48-55	\| 23-90		5-45	1	7-26\|	1.45-1.70	1	0.2-5.9	1	0.12-0.19	1 0.0-2.9	I	0.0-0.5
	55-80	\| 76-100		0-15	,	0-14\|	1.40-1.65	1	2.0-20.0	1	0.06-0.11	\| 0.0-2.9	I	0.0-0.5
				1			I		1		1			
Benzonia	0-5	\| 86-100		0-10	1	0-9 \|	1.25-1.45	1	5.9-20.0	I	0.07-0.09	\| 0.0-2.9		2.0-5.0
	5-11	\| 86-100		0-10	,	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.05-0.08	1 0.0-2.9		0.5-2.0
	11-15	\| 86-100		0-10	I	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9		2.0-5.0
	15-20	\| 86-100		0-10	I	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	I	2. 0-5.0
	20-27	\| 86-100		0-10	I	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	I	0.5-3.0
	27-35	\| 86-100		0-10	,	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	-	0.5-3.0
	35-80	\| 71-100		0-10	I	0-14\|	1.35-1.45	1	5.9-20.0	1	0.06-0.11	\| 0.0-2.9	I	0.0-0.5
		I $1$		I	I		1		I			1		
680939 :		1 I		I	1		1		1		1	I		
Fern	0-9	\| 71-100		0-15	I	0-14।	1.30-1.55	1	5.9-20.0	1	0.07-0.12	1 0.0-2.9		2. 0-5.0
	9-10	\| 71-100		0-15	I	0-14\|	1.30-1.60	1	5.9-20.0	I	0.06-0.11	\| 0.0-2.9	-	0.5-2.0
	10-24	\| 86-100		0-15	I	0-14।	1.30-1.60	,	5.9-20.0	1	0.06-0.11	\| 0.0-2.9		0.5-1.0
	24-29	\| 20-100		5-45	1	5-35।	1.50-1.70	,	0.2-2.0	1	0.06-0.19	\| 0.0-5.9		0.0-0.5
	29-42	\| 20-50		20-45	I	7-351	1.50-1.70	,	0.2-2.0	1	0.17-0.19	\| 3.0-5.9	,	0.0-0.5
	42-50	\| 20-50		20-45	I	7-35\|	1.50-1.70	1	0.2-2.0	1	0.17-0.19	\| 3.0-5.9	,	0.0-0.5
	50-80	\| 20-50		20-45	I	7-35\|	1.50-1.70	,	0.2-2.0	1	0.14-0.19	\| 3.0-5.9	I	0.0-0.5
				,	।		1		I					
Spinks	0-5	\| 86-100		0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.07-0.09	1 0.0-2.9		2.0-5.0
	5-10	\| 86-100		0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	I	0.06-0.08	1 0.0-2.9		0.5-2.0
	10-17	\| 86-100		0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9		0.5-2.0
	17-62	\| 71-100		0-15	I	3-14\|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.0-0.5
	62-72	\| 71-100		0-15	I	3-14\|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	,	0.0-0.5
	72-80	\| 86-100		0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.05-0.07	1 0.0-2.9	I	0.0-0.5
		1 \|		I	I		1		I		-	1		
680943 :		1 I		I	,		I		1		I	1		
Milnichol	0-2	\| 86-100		0-10	I	0-9 \|	1.30-1.50	1	5.9-20.0	1	0.07-0.09	1 0.0-2.9	1	2.0-5.0
	2-12	\| 86-100		0-10	I	0-9 \|	1.30-1.65	1	5.9-20.0	I	0.06-0.08	1 0.0-2.9		0.5-2.0
	12-15	\| 86-100		0-10	I	0-9 \|	1.30-1.65	,	5.9-20.0	I	0.06-0.08	\| 0.0-2.9		2.0-5.0
	15-25	\| 86-100		0-10	,	0-9 \|	1.40-1.65	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	,	0.5-3.0
	25-33	\| 86-100		0-10	I	0-9 \|	1.40-1.65	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	,	0.5-3.0
	33-47	\| 86-100		0-10		0-9 \|	1.40-1.65	1	5.9-20.0	1	0.05-0.07	1 0.0-2.9	1	0.0-0.5
	47-50	\| 45-85		0-45	I	0-19\|	1.50-1.70	I	0.2-5.9	1	0.08-0.17	1 0.0-2.9		0.0-0.5
	50-68	\| 0-45		15-70	I	27-35।	1.50-1.70	1	0.2-0.6	1	0.14-0.17	$13.0-6.0$	1	0.0-0.5
	68-80	\| 0-45		15-80	I	12-35\|	1.50-1.70	I	0.2-0.6	I	0.14-0.22	1 1 0.0-6.0	,	0.0-0.5
		1 I		I	1		I		1		1	1		

Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	Sand	Silt	I	Clay I	Moist bulk density	$\begin{aligned} & \text { I } \\ & \text { I } \end{aligned}$	Permeability (Ksat)	1	$\begin{gathered} \text { Available } \\ \text { water } \\ \text { capacity } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Shrink- } \\ \text { \| swell } \\ \text { \|potential } \end{array}$	Organic matter		
I	In	Pct	Pct	I	Pct	g/cc	I	In/hr	I	In/in	1 Pct	Pct		
I		I		I	I		I				1 \|			
680945: \|		,		I	,		I				1 1			
Fern------------\|	0-9	\| 71-100		0-15	I	0-14\|	1.30-1.55	I	5.9-20.0	I	0.07-0.12	0.0-2.9	2.0-5.0	
I	9-10	71-100\|	0-15	I	0-14\|	1.30-1.60	I	5.9-20.0	I	0.06-0.11	0.0-2.9	0.5-2.0		
	10-24	\| 86-100		0-15	I	0-14\|	1.30-1.60	I	5.9-20.0	1	0.06-0.11	0.0-2.9	0.5-1.0	
	24-29	20-100\|	5-45	,	5-35\|	1.50-1.70		0.2-2.0	I	0.06-0.19	0.0-5.9	0.0-0.5		
	29-42	20-50 \|	20-45	I	7-35\|	1.50-1.70	I	0.2-2.0	I	0.17-0.19	3.0-5.9	0.0-0.5		
	42-50	20-50	20-45	I	7-35\|	1.50-1.70	,	0.2-2.0	1	0.17-0.19	3.0-5.9 \|	0.0-0.5		
	50-80	20-50	20-45	I	7-35\|	1.50-1.70	I	0.2-2.0	I	0.14-0.19	3.0-5.9 \|	0.0-0.5		
680946: \|		,		I	I		I		1		,			
Fern------------\|	0-9	71-100\|	0-15	I	0-14\|	1.30-1.55	I	5.9-20.0	I	0.07-0.12	\| 0.0-2.9	2.0-5.0		
	9-10	71-100\|	0-15	I	0-14\|	1.30-1.60	1	5.9-20.0	1	0.06-0.11	0.0-2.9 \|	0.5-2.0		
	10-24	86-100\|	0-15	I	0-14\|	1.30-1.60	,	5.9-20.0	I	0.06-0.11	0.0-2.9 \|	0.5-1.0		
	24-29	20-100\|	5-45	I	5-35\|	1.50-1.70	,	0.2-2.0	1	0.06-0.19	0.0-5.9 \|	0.0-0.5		
	29-42	20-50 \|	20-45	I	7-35\|	1.50-1.70	\\|	0.2-2.0	1	0.17-0.19	3.0-5.9 \|	0.0-0.5		
	42-50	20-50	20-45	I	7-35\|	1.50-1.70	I	0.2-2.0	I	0.17-0.19	$\mid 3.0-5.9$ \|	0.0-0.5		
	50-80	20-50	20-45	I	7-35\|	1.50-1.70	I	0.2-2.0	I	0.14-0.19	$\mid 3.0-5.9$ \|	0.0-0.5		
		I		I	,		I		1		1 -			
680971: \|		I		I	,		I		I		1			
Nessen----------\|	0-4	\| 86-100		0-10	I	0-9	1.25-1.45	,	5.9-20.0	1	0.07-0.09	\| 0.0-2.9		2.0-5.0
I	4-11	\| 86-100		0-10	I	0-9	1.35-1.45	I	5.9-20.0	1	0.06-0.08	0.0-2.9 \|	0.0-2.0	
	11-15	\| 86-100		0-10	I	0-9	1.35-1.45	I	5.9-20.0	1	0.06-0.08	0.0-2.9 \|	2.0-5.0	
	15-24	86-100	0-10	I	0-9 \|	1.35-1.45	,	5.9-20.0	I	0.06-0.08	\| 0.0-2.9		0.5-2.0	
	24-39	\| 86-100		0-10	I	0-9 \|	1.35-1.45	\|	5.9-20.0	1	0.06-0.08	0.0-2.9 \|	0.5-2.0	
	39-44	\| 71-100		0-15	I	0-14\|	1.30-1.50	I	2.0-20.0	I	0.03-0.11	\| 0.0-2.9		0.0-0.5
	44-80	\| 86-100		0-10	I	0-9 \|	1.25-1.50	I	5.9-20.0	I	0.02-0.07	\| 0.0-2.9		0.0-0.5
				I	\|		,		I		1 1			
Kaleva----------\|	0-3	\| 86-100		0-10	I	0-9 \|	1.25-1.45	,	5.9-20.0	1	0.07-0.09	\| 0.0-2.9		2.0-5.0
I	3-9	\| 86-100		0-10	1	0-9	1.35-1.45	I	5.9-20.0	1	0.06-0.08	0.0-2.9 \|	0.5-2.0	
I	9-11	\| 86-100		0-10	1	0-9	1.35-1.45		5.9-20.0	1	0.06-0.08	\| 0.0-2.9		2.0-5.0
	11-16	86-100\|	0-10	I	0-9 \|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	0.0-2.9 \|	0.5-3.0		
	16-21	\| 86-100		0-10	I	0-9 \|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	\| 0.0-2.9		0.5-3.0
	21-70	86-100	0-10	I	0-9	1.35-1.50	1	5.9-20.0	1	0.05-0.07	$\mid 0.0-2.9$ \|	0.0-0.5		
	70-80	86-100	0-10	I	0-9 \|	1.35-1.50	,	5.9-20.0	1	0.05-0.07	\| 0.0-2.9		0.0-0.5	
I		1 \|		I	\|		,		I		1 \|			
680972: \|		1 I		1			I		1		1 l			
Nessen---------- -	0-4	\| 86-100		0-10	I	0-9	1.25-1.45	,	5.9-20.0	1	0.07-0.09	\| 0.0-2.9		2.0-5.0
I	4-11	\| 86-100		0-10	I	0-9	1.35-1.45	I	5.9-20.0	I	0.06-0.08	\| 0.0-2.9		0.0-2.0
I	11-15	86-100	0-10	I	0-9 \|	1.35-1.45	I	5.9-20.0	I	0.06-0.08	\| 0.0-2.9		2.0-5.0	
I	15-24	86-100 1	0-10	I	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	0.0-2.9 ।	0.5-2.0		
,	24-39	\| 86-100		0-10	1	0-9 \|	1.35-1.45	I	5.9-20.0	,	0.06-0.08	\| 0.0-2.9		0.5-2.0
I	39-44	71-100	0-15	I	0-14\|	1.30-1.50	I	2.0-20.0	,	0.03-0.11	\| 0.0-2.9		0.0-0.5	
	44-80	\| 86-100		0-10	I	0-9 \|	1.25-1.50	,	5.9-20.0	1	0.02-0.07	\| 0.0-2.9		0.0-0.5
\|		1 I		I	1		,		\\|		1 I			

Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name		$\begin{array}{lll} \hline \text { I } & \text { Sand } \\ \text { I } \\ & & \text { l } \\ \hline \end{array}$	Silt	I	Clay	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	I	Permeability (Ksat)	$\begin{array}{r} \hline 1 \\ 1 \\ 1 \\ \hline \end{array}$	Available water capacity	$\begin{array}{\|c\|} \hline \text { \| Shrink- \| } \\ \text { \| swell } \\ \text { \|potential } \end{array}$	Organic matter		
	1 In	Pct	Pct	I	Pct I	g/cc	I	In/hr	I	In/in	Pct	Pct		
	I	1 \|		I	I		I				1 \|			
680972	I	1 \|		1	I		,		1		1			
Kalev	\| 0-3	\| 86-100		0-10	I	0-9	1.25-1.45	1	5.9-20.0	1	0.07-0.09	0.0-2.9	2.0-5.0	
	\| 3-9	\| 86-100		0-10	I	0-9	1.35-1.45	1	5.9-20.0	I	0.06-0.08	0.0-2.9	0.5-2.0	
	\| 9-11	\| 86-100		0-10	I	0-9	1.35-1.45	I	5.9-20.0	1	0.06-0.08	0.0-2.9	2.0-5.0	
	\| 11-16	\| 86-100		0-10	1	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	0.0-2.9	0.5-3.0	
	\| 16-21	\| 86-100		0-10	I	0-9	1.35-1.45	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-3.0	
	\| 21-70	\| 86-100		0-10	1	0-9 \|	1.35-1.50	1	5.9-20.0	1	0.05-0.07	1 0.0-2.9	0.0-0.5	
	$170-80$	\| 86-100		0-10	I	0-9 \|	1.35-1.50	1	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5	
	I			I	1		1		I		,			
680973 :	I	- 1		I	,		I		,		1 1			
Nesse	\| 0-4	\| 86-100		0-10	I	0-9	1.25-1.45	I	5.9-20.0	I	0.07-0.09	\| 0.0-2.9	2.0-5.0	
	\| 4-11	\| 86-100		0-10	I	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.0-2.0	
	\| 11-15	\| 86-100		0-10	I	0-9	1.35-1.45	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	2.0-5.0	
	\| 15-24	\| 86-100		0-10	I	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	\| 24-39	\| 86-100		0-10	I	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	\| 39-44	\| 71-100		0-15	I	0-14\|	1.30-1.50	I	2.0-20.0	I	0.03-0.11	1 0.0-2.9	0.0-0.5	
	\| 44-80	\| 86-100		0-10	I	0-9 \|	1.25-1.50	I	5.9-20.0	I	0.02-0.07	1 0.0-2.9	0.0-0.5	
	\|			I	I		1		I		,			
Kalev	1 0-3	\| 86-100		0-10	I	0-9 \|	1.25-1.45	1	5.9-20.0	I	0.07-0.09	1 0.0-2.9	2.0-5.0	
	\| 3-9	\| 86-100		0-10	I	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	\| 9-11	\| 86-100		0-10	I	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	2.0-5.0	
	\| 11-16	\| 86-100		0-10	,	0-9	1.35-1.45	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	0.5-3.0	
	\| 16-21	\| 86-100		0-10	I	0-9 \|	1.35-1.45	I	5.9-20.0	I	0.06-0.08	1 0.0-2.9	0.5-3.0	
	\| 21-70	\| 86-100		0-10	I	0-9	1.35-1.50	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5	
	\| 70-80	\| 86-100		0-10	I	0-9	1.35-1.50	,	5.9-20.0	I	0.05-0.07	1 0.0-2.9	0.0-0.5	
	1	1 I		I	,		1		I		I			
680974 :	I			I	,		1		I		,			
Nessen	\| 0-4	\| 86-100		0-10	1	0-9 \|	1.25-1.45	,	5.9-20.0	I	0.07-0.09	1 0.0-2.9	2.0-5.0	
	\| 4-11	\| 86-100		0-10	I	0-9 \|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.0-2.0	
	\| 11-15	\| 86-100		0-10	I	0-9 \|	1.35-1.45	,	5.9-20.0	I	0.06-0.08	\| 0.0-2.9	2.0-5.0	
	\| 15-24	\| 86-100		0-10	I	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	\| 24-39	\| 86-100		0-10	1	0-9 \|	1.35-1.45	,	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	\| 39-44	\| 71-100		0-15	,	0-14।	1.30-1.50	,	2.0-20.0	1	0.03-0.11	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 44-80	\| 86-100		0-10	1	0-9 \|	1.25-1.50	I	5.9-20.0	I	0.02-0.07	1 0.0-2.9	0.0-0.5	
	I			I			I		I		1			
Kaleva	\| 0-3	\| 86-100		0-10	1	0-9 \|	1.25-1.45	I	5.9-20.0	1	0.07-0.09	1 0.0-2.9	2.0-5.0	
	\| 3-9	\| 86-100		0-10	1	0-9	1.35-1.45	,	5.9-20.0	I	0.06-0.08	$10.0-2.9$	0.5-2.0	
	\| 9-11	\| 86-100		0-10	1	0-9	1.35-1.45	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	2.0-5.0	
	\| 11-16	\| 86-100		0-10	1	0-9	1.35-1.45	1	5.9-20.0	I	0.06-0.08	$\mid 0.0-2.9$ \|	0.5-3.0	
	\| 16-21	\| 86-100		0-10	I	0-9 \|	1.35-1.45	1	5.9-20.0	1	0.06-0.08	$10.0-2.9$	0.5-3.0	
	\| 21-70	\| 86-100		0-10	,	0-9 \|	1.35-1.50	1	5.9-20.0	1	0.05-0.07	\| 0.0-2.9		0.0-0.5
	\| 70-80	\| 86-100		0-10	1	0-9 \|	1.35-1.50	I	5.9-20.0	I	0.05-0.07	\| 0.0-2.9		0.0-0.5
	I	1 I		1	1		1		1		1 I			

Table 15.-Physical Soil Properties-Continued


Table 15.-Physical Soil Properties-Continued

Map unit symbol and soil name	Depth	$\begin{array}{\|l\|l\|} \hline \text { Sand } \\ \hline \end{array}$	Silt	I	Clay \|	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	I	Permeabilit (Ksat)	1	Available water capacity	$\begin{array}{\|c\|} \hline \text { \| Shrink- \| } \\ \text { swell } \\ \text { \|potential } \end{array}$	Organic matter		
	In	1 Pct I	Pct	I	Pct	g/cc	I	In/hr	I	In/in	Pct	Pct		
	1 In	I		I	1		I		I		1 I			
894064 :		1 \|		I	I		I		I		1			
Fern-	0-9	\| 71-100		0-15	I	0-14\|	1.30-1.55	I	5.9-20.0	I	0.07-0.12	\| 0.0-2.9	2.0-5.0	
	9-10	\| 71-100		0-15	I	0-14\|	1.30-1.60	1	5.9-20.0	,	0.06-0.11	$\mid 0.0-2.9$ \|	0.5-2.0	
	10-24	\| 86-100		0-15	I	0-14\|	1.30-1.60	-	5.9-20.0	,	0.06-0.11	\| 0.0-2.9	0.5-1.0	
	24-29	\| 20-100		5-45	I	5-35\|	1.50-1.70	,	0.2-2.0	1	0.06-0.19	\| 0.0-5.9	0.0-0.5	
	29-42	\| 20-50		20-45	I	7-35\|	1.50-1.70	,	0.2-2.0	,	0.17-0.19	$\mid 3.0-5.9$ \|	0.0-0.5	
	42-50	\| 20-50		20-45	I	7-35\|	1.50-1.70	I	0.2-2.0	I	0.17-0.19	$\mid 3.0-5.9$ \|	0.0-0.5	
	50-80	\| 20-50		20-45	I	7-35\|	1.50-1.70	I	0.2-2.0	,	0.14-0.19	\| 3.0-5.9	0.0-0.5	
				I			I		I		1			
Remus-----------	0-9	\| 45-85		10-45	I	7-19\|	1.50-1.65	I	0.2-2.0	,	0.16-0.18	$\mid 0.0-2.9$ \|	2.0-5.0	
	9-15	\| 23-90		3-45	I	0-34\|	1.50-1.75	I	0.2-2.0	I	0.10-0.19	$\mid 0.0-2.9$ \|	0.5-1.0	
	15-24	\| 45-90		3-45	I	0-34\|	1.50-1.75	I	0.2-2.0	I	0.10-0.19	$\mid 0.0-5.9$ \|	0.5-1.0	
	24-35	$\mid 45-90$ \|	3-45	I	0-34।	1.50-1.75	I	0.2-2.0	1	0.10-0.19	$\mid 0.0-5.9$ \|	0.5-1.0		
	35-66	\| 23-80		10-45	I	7-34\|	1.50-1.75	I	0.2-0.6	I	0.16-0.19	$\mid$ 0.0-5.9 \|	0.0-0.5	
	66-80	\| 23-85		5-45	I	7-34\|	1.50-1.75	1	0.2-0.6	,	0.15-0.19	1 0.0-5.9	0.0-0.5	
				I	,		I		,		I			
$\begin{gathered} 894065: \\ \text { Fern-- } \end{gathered}$	\|	1 \|		I	I		,		I		I			
	0-9	\| 71-100		0-15	I	0-14\|	1.30-1.55	1	5.9-20.0	,	0.07-0.12	$\mid 0.0-2.9$ \|	2.0-5.0	
	9-10	\| 71-100		0-15	I	0-14\|	1.30-1.60	I	5.9-20.0	,	0.06-0.11	$\mid 0.0-2.9$ \|	0.5-2.0	
	10-24	\| 86-100		0-15	I	0-14\|	1.30-1.60	I	5.9-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.5-1.0	
	24-29	\| 20-100		5-45	I	5-35\|	1.50-1.70	I	0.2-2.0	1	0.06-0.19	$\mid 0.0-5.9$ \|	0.0-0.5	
	\| 29-42	\| 20-50		20-45	I	7-35\|	1.50-1.70	I	0.2-2.0	I	0.17-0.19	$\mid 3.0-5.9$ \|	0.0-0.5	
	\| 42-50	\| 20-50		20-45	I	7-35\|	1.50-1.70	I	0.2-2.0	I	0.17-0.19	$\mid 3.0-5.9$ \|	0.0-0.5	
	\| 50-80	\| 20-50		20-45	I	7-35 \|	1.50-1.70	I	0.2-2.0	1	0.14-0.19	$\mid 3.0-5.9$ \|	0.0-0.5	
							I		,		I			
Remus-----------	- 0-9	\| 45-85		10-45	I	7-19\|	1.50-1.65	I	0.2-2.0	I	0.16-0.18	\| 0.0-2.9		2.0-5.0
	\| 9-15	\| 23-90		3-45	I	0-34\|	1.50-1.75	I	0.2-2.0	I	0.10-0.19	$\mid 0.0-2.9$ \|	0.5-1.0	
	\| 15-24	\| 45-90		3-45	I	0-34\|	1.50-1.75	I	0.2-2.0	1	0.10-0.19	$\mid 0.0-5.9$ \|	0.5-1.0	
	\| 24-35	$\mid 45-90$ \|	3-45	I	0-341	1.50-1.75	1	0.2-2.0	1	0.10-0.19	$\|0.0-5.9\|$	0.5-1.0		
	\| 35-66	\| 23-80		10-45	I	7-34\|	1.50-1.75	I	0.2-0.6	1	0.16-0.19	$\mid 0.0-5.9$ \|	0.0-0.5	
	1 66-80	\| 23-85		5-45	I	7-34\|	1.50-1.75	I	0.2-0.6	I	0.15-0.19	$\mid 0.0-5.9$ \|	0.0-0.5	
				I	1		I		1		1 I			
$\begin{aligned} & 894104 \text { : } \\ & \text { Mollineaux } \end{aligned}$				I			1		1		1 1			
	- 0-6	\| 71-100		0-15	I	0-14\|	1.30-1.50	I	5.9-20.0	1	0.10-0.12	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 6-9	\| 71-100		0-15	I	0-14\|	1.30-1.70	I	5.9-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.0-1.0	
	\| 9-15	\| 71-100		0-15	I	0-14\|	1.40-1.70	1	5.9-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 15-27	\| 71-100		0-15	I	0-14\|	1.40-1.70	I	5.9-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.5-2.0	
	\| 27-38	\| 71-100		0-15	I	0-14\|	1.55-1.65	I	5.9-20.0	1	0.06-0.11	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 38-64	\| 30-50		15-50	I	10-35\|	1.50-1.70	I	0.2-2.0	1	0.15-0.19	$\mid 0.0-2.9$ \|	0.0-0.5	
	\| 64-80	\| 71-100		0-15	I	0-14।	1.55-1.65	1	5.9-20.0	I	0.06-0.11	$\mid 0.0-2.9$ \|	0.0-0.5	
	I						I		1		1 I			
Remus-----------	- 0-9	\| 45-85		10-45	I	7-19\|	1.50-1.65	1	0.2-2.0	1	0.16-0.18	$\mid 0.0-2.9$ \|	2.0-5.0	
	\| 9-15	$\mid$ 23-90 \|	3-45	I	0-341	1.50-1.75	1	0.2-2.0	1	0.10-0.19	$\|0.0-2.9\|$	0.5-1.0		
	\| 15-24	\| 45-90		3-45	I	0-34\|	1.50-1.75	,	0.2-2.0	1	0.10-0.19	$\mid 0.0-5.9$ \|	0.5-1.0	
	\| 24-35	$\mid 45-90$ \|	3-45	1	0-34।	1.50-1.75	I	0.2-2.0	1	0.10-0.19	$\mid 0.0-5.9$ \|	0.5-1.0		
	\| 35-66	\| 23-80		10-45	I	7-34\|	1.50-1.75	I	0.2-0.6	I	0.16-0.19	$\mid 0.0-5.9$ \|	0.0-0.5	
	\| 66-80	\| 23-85		5-45	I	7-34\|	1.50-1.75	1	0.2-0.6	1	0.15-0.19	$\mid 0.0-5.9$ \|	0.0-0.5	
	1	1 \|		1	1		I		1		1 I			

Table 15.-Physical Soil Properties-Continued

Map unit symbol \| and soil name	Depth	$\begin{array}{\|l\|l\|} \hline 1 & \text { Sand } \\ \mid & \\ \mid & \\ \hline \end{array}$	Silt	1	Clay	$\begin{gathered} \text { Moist } \\ \text { bulk } \\ \text { density } \end{gathered}$	1	Permeability (Ksat)	I	Available water capacity	$\begin{array}{\|c\|} \hline \text { \| Shrink- \| } \\ \text { swell } \\ \mid \text { potential } \end{array}$	Organic matter		
I	In	1 Pct	Pct	I	Pct	g/cc	I	In/hr	I	In/in	1 Pct	Pct		
\|							1		1		,			
894105: \|		,		,	I						1			
Mollineaux------\|	0-6	\| 71-100		0-15	1	0-14\|	1.30-1.50	1	5.9-20.0	1	0.10-0.12	\| 0.0-2.9	2.0-5.0	
,	6-9	\| 71-100		0-15	1	0-14\|	1.30-1.70	1	5.9-20.0	I	0.06-0.11	0.0-2.9	0.0-1.0	
I	9-15	\| 71-100		0-15	I	0-14\|	1.40-1.70	1	5.9-20.0	I	0.06-0.11	0.0-2.9	0.5-2.0	
	15-27	\| 71-100		0-15	I	0-14\|	1.40-1.70	1	5.9-20.0	I	0.06-0.11	1 0.0-2.9	0.5-2.0	
	27-38	\| 71-100		0-15	,	0-14\|	1.55-1.65	I	5.9-20.0	,	0.06-0.11	0.0-2.9	0.0-0.5	
	38-64	\| 30-50		15-50	,	10-35\|	1.50-1.70	1	0.2-2.0	I	0.15-0.19	1 0.0-2.9	0.0-0.5	
	64-80	\| 71-100		0-15	I	0-14\|	1.55-1.65	\|	5.9-20.0	,	0.06-0.11	0.0-2.9	0.0-0.5	
				,					I		1			
Remus------------	0-9	\| 45-85		10-45	,	7-19\|	1.50-1.65	I	0.2-2.0	I	0.16-0.18	0.0-2.9	2.0-5.0	
\|	9-15	\| 23-90		3-45	,	0-34\|	1.50-1.75	I	0.2-2.0	I	0.10-0.19	0.0-2.9	0.5-1.0	
	15-24	\| 45-90		3-45	I	0-341	1.50-1.75	1	0.2-2.0	1	0.10-0.19	1 0.0-5.9	0.5-1.0	
	24-35	\| 45-90		3-45	I	0-341	1.50-1.75	1	0.2-2.0	-	0.10-0.19	1 0.0-5.9	0.5-1.0	
	35-66	\| 23-80		10-45	I	7-34\|	1.50-1.75	I	0.2-0.6	I	0.16-0.19	\| 0.0-5.9	0.0-0.5	
	66-80	$\|23-85\|$	5-45	\|	7-34\|	1.50-1.75	\|	0.2-0.6	,	0.15-0.19	\| 0.0-5.9	0.0-0.5		
				I	I		I		I		I			
894165: \|		1 1		I	I				I		I			
Spinks----------\|	0-5	\| 86-100		0-10	I	0-9	1.40-1.70	1	5.9-20.0	I	0.07-0.09	\| 0.0-2.9	2.0-5.0	
	5-10	\| 86-100		0-10	1	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	0.5-2.0	
	10-17	\| 86-100		0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	17-62	\| 71-100		0-15	I	3-14\|	1.40-1.70	1	5.9-20.0	,	0.06-0.08	1 0.0-2.9	0.0-0.5	
	62-72	\| 71-100		0-15	\\|	3-14\|	1.40-1.70	1	5.9-20.0	I	0.06-0.08	1 0.0-2.9	0.0-0.5	
	72-80	\| 86-100		0-10	I	0-9 \|	1.40-1.70	1	5.9-20.0	,	0.05-0.07	\| 0.0-2.9	0.0-0.5	
		1 \|		I	I		I		I		I			
Tekenink, sandy \|		1 \|		1	I		1		,		I			
substratum-----।	0-8	\| 71-90		5-25	I	0-14।	1.30-1.60	1	2.0-5.9	1	0.10-0.12	\| 0.0-2.9	2.0-5.0	
-	8-16	\| 71-90		5-25	I	0-14\|	1.45-1.60	।	2.0-5.9	1	0.09-0.11	\| 0.0-2.9	0.5-2.0	
	16-21	\| 45-85		5-45	I	7-19\|	1.45-1.60	I	2.0-5.9	1	0.12-0.14	1 0.0-2.9	0.5-1.0	
	21-49	$\mid 45-90$ \|	5-45	I	0-191	1.45-1.60	I	2.0-5.9	1	0.09-0.14	1 0.0-2.9	0.5-1.0		
	49-62	\| 45-85		5-45	I	7-19\|	1.45-1.60	I	2.0-5.9	I	0.12-0.14	\| 0.0-2.9	0.5-1.0	
	62-72	\| 71-100		0-15	I	0-14\|	1.45-1.60	I	5.9-20.0	1	0.05-0.10	\| 0.0-2.9	0.0-0.5	
	72-80	\| 71-100		0-15	I	0-14\|	1.55-1.70	1	5.9-20.0	,	0.05-0.10	\| 0.0-2.9	0.0-0.5	
		1 \|		I	,		I		I		I			
899682: \|		1 l		I	I		1		,		I			
Kaleva----------\|	0-3	\| 86-100		0-10	I	0-9	1.25-1.45	1	5.9-20.0		0.07-0.09	\| 0.0-2.9	2.0-5.0	
	3-9	\| 86-100		0-10	I	0-9	1.35-1.45	I	5.9-20.0	I	0.06-0.08	0.0-2.9	0.5-2.0	
	9-11	\| 86-100		0-10	I	0-9	1.35-1.45	I	5.9-20.0	,	0.06-0.08	\| 0.0-2.9	2.0-5.0	
	11-16	\| 86-100		0-10	I	0-9 \|	1.35-1.45	I	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-3.0	
	16-21	\| 86-100		0-10	I	0-9	1.35-1.45	I	5.9-20.0	1	0.06-0.08	\| 0.0-2.9	0.5-3.0	
	21-70	\| 86-100		0-10	I	0-9	1.35-1.50	I	5.9-20.0	1	0.05-0.07	1 0.0-2.9	0.0-0.5	
	70-80	\| 86-100		0-10	I	0-9	1.35-1.50	I	5.9-20.0	1	0.05-0.07	\| 0.0-2.9	0.0-0.5	
		1 \|		I	\|		I		I		I			
899722: \|		1 \|		I	I		I		,		I			
Goodharbor------\|	0-1	\| 86-100		0-10	I	0-9	1.30-1.55	1	5.9-20.0	,	0.07-0.09	\| 0.0-2.9	2.0-5.0	
I	1-3	\| 86-100		0-10	1	0-9	1.40-1.65	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-2.0	
	3-23	\| 86-100		0-10	1	0-9	1.40-1.65		5.9-20.0	I	0.06-0.08	\| 0.0-2.9	0.5-1.0	
	23-40	\| 86-100		0-10	1	0-9 \|	1.40-1.65	1	5.9-20.0	1	0.06-0.08	1 0.0-2.9	0.5-1.0	
	40-80	\| 86-100		0-10	,	0-9 \|	1.40-1.65	I	5.9-20.0	I	0.05-0.07	\| 0.0-2.9	0.0-0.5	
				1	1		I		,		1			

Table 15.-Physical Soil Properties-Continued


Table 16.-Erosion Properties
(Entries under "Erosion factors" apply to the entire profile. Entries under "Wind erodibility group" and "Wind erodibility index" apply only to the surface layer)


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued

Map unit symbol and soil name	Depth (inches)	111	Erosion factors					$\begin{array}{r} \hline 1 \\ 1 \\ 1 \\ 1 \end{array}$	Wind erodibility group	1	
			Kw	I	Kf	1	T				
- \|				,		I					
190812:				I		\|		I			
Hettinger---------------\|	0-8	I	. 32	I	. 32	I	3	I	6		48
I	8-23	1	. 43	1	. 43	I		I			
I	23-60		. 43	1	. 43	I		I			
I				I		I		I			
Tonkey------------------\|	0-8	I	. 32	1	. 32	I	4	I	5	,	56
I	8-20	I	. 24	I	. 24	I		I			
,	20-60		. 24	1	. 24	,		I		\|	
- \|				I		I		I			
190814: \|				1		I		I			
Kalkaska----------------\|	0-7	I	. 15	I	. 15	I	5	I	1	I	220
,	7-15		. 15	I	. 15	I		I		I	
I	15-32	I	. 15	1	. 15	I		I			
I	32-60	1	. 15	1	. 15	I		I		I	
I				I		I		,		I	
190815:				1		I		I			
Kalkaska----------------\|	0-7		. 15	1	. 15	I	5	I	1	I	220
I	7-15	\|	. 15	1	. 15	I		I		I	
I	15-32		. 15	1	. 15	I		I		I	
1	32-60		. 15	I	. 15	I		I			
I				1		I		I		I	
190816: \|				1		I		I			
Kalkaska----------------\|	0-7	I	. 15	1	. 15	I	5	I	1		220
I	7-15		. 15	1	. 15	I		I			
I	15-32	I	. 15	1	. 15	I		I		1	
I	32-60	\|	. 15	1	. 15	I		1		,	
I				1		I		I			
190817: \|				I		I		I			
Kalkaska----------------\|	0-7	1	. 15	I	. 15	I	5	I	1	I	220
,	7-15	I	. 15	I	. 15	I		I			
,	15-32	\|	. 15	I	. 15	I		I		I	
1	32-60		. 15	I	. 15	I		I		\|	
I				I		I		I		\|	
190818: \|				I		I		I			
Kalkaska----------------\|	0-7	1	. 15	I	. 15	I	5	I	1	1	220
,	7-15	1	. 15	1	. 15	I		I			
I	15-32	\|	. 15	I	. 15	I		I			
,	32-60		. 15	I	. 15	I		I			
I				I		I		I			
190819: \|				I		I		I			
Kalkaska----------------\|	0-7	I	. 17	I	. 17	I	5	I	1		220
I	7-15	I	. 15	I	. 15	I		I		I	
I	15-32	1	. 15	I	. 15	I		I		1	
I	32-60		. 15	I	. 15	I		I			
I				I		I		I			
East Lake---------------\|	$0-8$	I	. 17	I	. 17	I	4	I	1	I	220
I	8-26	1	. 15	1	. 15	I		I		I	
,	26-60	1	. 10	I	. 15	I		I			
I				I		I		I		I	
190820: \|		1		I		I		I			
Kiva--------------------\|	0-6	1	. 24	1	. 32	I	3	I	5	I	86
I	6-20		. 20	1	. 28	I		I		1	
,	20-60		. 10	I	. 15	I		I		1	
I				1		1		I			
Mancelona---------------\|	0-8	I	. 17	I	. 24	I	4	I	3	1	86
I	8-25	1	. 17	I	. 24	I		I		1	
I	25-30	1	. 17	1	. 24	I		I		I	
I	30-60		. 10	1	. 15	I		I		I	
I				1		1		1		I	

Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued

Map unit symbol and soil name	I	Depth (inches)	I	Erosion factors					$\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \end{array}$	Wind erodibility group	1		
	I		,	Kw	\\|	Kf	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	T					
	I				I								
	1				1								
$\begin{aligned} & 190844: \\ & \text { Nester } \end{aligned}$	I		I		I		I		,				
	I		I		\|		I		1				
	I	0-6	I	. 32	I	. 32	I	3	I	5	I	56	
	I	6-8	1	. 32	I	. 32	I		I		I		
	I	8-28	I	. 32	I	. 32	I		I				
		28-60	I	. 32	I	. 32	I		,		I		
	I		I		I		I		I		I		
$\begin{aligned} & 190846 \text {. } \\ & \text { Pits, gravel } \end{aligned}$	I		I		I		I		I		I		
	I		I		I		I		I		1		
	I		1		I		I		I				
	I		I		I		I		I				
Richter	,	0-8	I	. 24	I	. 24	I	5	I	3	I	86	
	1	8-27	1	. 17	I	. 17	I		I		I		
	I	27-60	I	. 20	I	. 20	I		I		I		
			1		I		1		I				
Alcona	I	0-8	I	. 24	I	. 24	I	5	,	3	I	86	
	I	8-12	1	. 17	I	. 17	I		1				
	I	12-18	I	. 17	I	. 17	I		I		I		
	I	18-24	I	. 24	I	. 24	I		1		I		
	I	24-60	1	. 24	I	. 24	I		1		I		
	,		I		I		I		1				
190848:	I		1		I		I		1				
Richter	1	0-8	I	. 24	I	. 24	I	5	1	3	1	86	
	,	8-27	1	. 17	I	. 17	I		1				
	1	27-60	I	. 20	I	. 20	I		I				
	I		I		I		I		1				
Alcona-	1	0-8	I	. 24	I	. 24	I	5	1	3	I	86	
	I	8-12	I	. 17	I	. 17	I		1				
	I	12-18	1	. 17	I	. 17	I		1		\|		
	I	18-24	I	. 24	I	. 24	I		I		I		
	I	24-60	I	. 24	I	. 24	1		1		I		
	I		I		1		1		I		I		
190849:	I		I		I		1		1				
Roscommon	1	0-6	I	. 15	I	. 15	1	5	1	1	1	220	
	I	6-60	I	. 17	I	. 17	1		1				
	I		I		I		1		1				
Markey		0-20	I	---	I	---	1	4	1	2	1	134	
	I	20-60	I	. 10	I	. 15	1		1				
	,		I		I		1		1		1		
190850:	I		I		I		1		1				
Sanilac	1	0-6	I	. 32	I	. 32	1	5	1	5	,	56	
	I	6-16	1	. 32	I	. 32	1		1		I		
	I	16-24	I	. 37	I	. 37	1		1		1		
	I	24-60	I	. 43	I	. 43	1		1		I		
	,		I		I		1		1				
190851:	I		I		I		1		I				
Tonkey	1	0-8	I	. 24	I	. 24	1	4	1	3	1	86	
	I	8-20	I	. 24	1	. 24	1		1		1		
	I	20-60	I	. 24	I	. 24	1		1		I		
	I		I		I		1		1				
Munuscong-	1	0-10	I	. 20	I	. 20	1	4	1	3	I	86	
	1	10-24	1	. 24	I	. 24	1		1		I		
	I	24-60	I	. 28	I	. 28	1		1		1		
	I		I		I		1		1		,		
Iosco-	1	0-8	I	. 17	I	. 17	1	5	1	2	,	134	
	I	8-27	I	. 17	I	. 17	1		I		I		
	1	27-34	1	. 37	1	. 37	1		1		I		
	I	34-60	I	. 37	I	. 37	1		I		,		
	I		I		1		1		1				
190852:	I		I		I		1		1		,		
Tonkey		0-8	I	. 24	I	. 24	1	4	I	3	I	86	
	I	8-20	I	. 24	I	. 24	1		I		I		
	I	20-60	I	. 24	I	. 24	1		I		I		
	1		I		1		1		1		1		

Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued

Map unit symbol and soil name	Depth (inches)	I	Erosion factors					$\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \end{array}$	```Wind erodi- bility group```	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Wind erodibility index	
			Kw	1	Kf	I	T					
$\begin{aligned} & 193270: \\ & \text { Covert } \end{aligned}$				I		I		I		1		
		I		I		,			I			
	0-1	I	. 15	1	. 15	1	5	1	1		220	
	1-8	I	. 15	1	. 15	1		I				
	8-18	I	. 15	1	. 15	1		,				
	18-25	1	. 15	1	. 15	1		I				
	25-29	I	. 15	1	. 15	1		I		1		
	29-38	I	. 15	1	. 15	1		I		I		
	38-47	I	. 15	1	. 15	1		I				
	47-80	I	. 15	1	. 15	1		I				
				1		1		I				
193271:				1		1		1				
Pipestone-	0-2	1	. 15	1	. 15	1	5	I	1		220	
	2-9	I	. 15	1	. 15	1		I				
	9-12	I	. 15	1	. 15	1		I		I		
	12-24	I	. 15	1	. 15	1		I		\|		
	24-32	1	. 15	1	. 15	1		,				
	32-80	I	. 15	I	. 15	1		I				
				I		1		I		I		
193272:				1		1		1				
Dair	0-4		-	1	---	1	5	I	8		0	
	4-7	I	. 20	1	. 20	1		I				
	7-11	I	. 17	1	. 17	1		I		I		
	11-21	I	. 17	1	. 17	1		I				
	21-50	I	. 17	I	. 17	1		I				
	50-80	1	. 17	1	. 17	1		I				
				1		1		I				
193277:				1		1		I				
Benona-	0-2	I	. 15	1	. 15	1	5	1	1		220	
	2-6	I	. 15	I	. 15	1		I				
	6-9	I	. 15	1	. 15	1		I				
	9-17	I	. 15	1	. 15	1		I				
	17-28	I	. 15	1	. 15	1		I				
	28-46	I	. 15	1	. 15	1		I				
	46-80		. 15	I	. 15	1		I				
				1		1		I				
193278:				1		1		I				
Benona	0-2		. 15	I	. 15	1	5	I	1		220	
	2-6	I	. 15	1	. 15	1		I				
	6-9	1	. 15	1	. 15	1		I				
	9-17	I	. 15	1	. 15	1		I				
	17-28	I	. 15	1	. 15	1		I				
	28-46	1	. 15	1	. 15	1		I		I		
	46-80		. 15	1	. 15	1		I				
				1		1		I				
193279:		I		1		1		I				
Benona-	0-2	,	. 15	1	. 15	1	5	I	1	I	220	
	2-6	I	. 15	1	. 15	1		I				
	6-9	,	. 15	1	. 15	1		I		I		
	9-17	I	. 15	1	. 15	1		I		I		
	17-28	I	. 15	I	. 15	1		I				
	28-46	I	. 15	I	. 15	1		I		1		
	46-80	,	. 15	1	. 15	1		I		1		
		,		1		1		I		I		
193284:		I		1		1		I				
Udorthents---------	0-80	I	. 24	I	. 24	1	5	I	5	I	56	
				1		1		I		,		
Udipsamments--------	0-80	1	. 17	I	. 17	1	5	I	1	I	220	
				1		1		I				

Table 16.-Erosion Properties-Continued

Map unit symbol and soil name	Depth (inches)	I	Erosion factors					1	Wind erodibility group	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Wind erodibility index
		I	Kw	I	Kf	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	T	$\begin{array}{r} -1 \\ 1 \\ 1 \\ \hline \end{array}$			
				1							
				1							
		I		I		,		I		I	
$\begin{gathered} 193285: \\ \text { Lumley } \end{gathered}$		I		1		1		I			
	0-3	I	-	1	--	I	5	I	8		0
	3-6	I	--	I	--	I		\|		\|	
	6-8	I	--	I	---	I		I		\|	
	8-20	I	--	I	--	I		I		\|	
	20-45	I	--	1	--	1		I		I	
	45-53	I	--	1	---	1		I		I	
	53-80	I	--	1	---	1		I		\|	
				I		I					
Makinen-	0-4	I	-	1	-	1	5	I	8		0
	4-14	I	---	1	---	1		I		I	
	14-22	I	--	I	--	I		I		\|	
	22-31	I	--	1	--	1		I			
	31-80	I	. 15	I	. 15	I		I			
		I		1		1		I		\|	
193286:		I		1		1					
Histosols	0-45	I	--	I	-	I	5	I	8		0
	45-80	I	. 15	I	. 15	I		I		I	
		I		1		1					
Aquents	0-80	I	. 15	I	. 15	I	5		8		0
				1		1					
193287:   Dune land.		I		1		1		I		I	
		I		1		1		I		I	
		I		1		I					
Quartzipsamments----193288:	0-80	I	. 15	I	. 15	I	5	I	1		220
		I		1		1		I			
		I		1		1					
Udipsamments	0-80	I	. 17	1	. 17	I	5		1		220
		I		1		1					
193342 :		1		I		1		I			
Gorvan-	0-4	I	. 28	I	. 28	1	5	I	8		0
	4-11	I	. 28	I	. 28	1		I		I	
	11-27	I	. 43	I	. 43	I		\|		\|	
	27-80	I	. 15	1	. 15	1		I			
		I		I		I					
Houghton	0-12	I	---	1	--	1	5	I	8	\|	0
	12-26	I	--	I	--	1		I			
	26-80	I	--	1	--	I		I		I	
		1		I		I					
Glendora	0-6	I	. 17	I	. 17	I	5	I	8	I	0
	6-9	I	. 17	I	. 17	1		I			
	9-30	I	. 15	1	. 15	1		1		I	
	30-80	I	. 15	1	. 15	1		I		I	
		,		1		1		I		I	
193349:		I		I		I		I			
Spinks	0-5	I	. 15	I	. 15	1	5	I	1	\|	220
	5-10	I	. 15	1	. 15	1		I		I	
	10-17	I	. 15	1	. 15	1		I		I	
	17-62	I	. 15	I	. 15	I		I		I	
	62-72	I	. 15	1	. 15	1		I		I	
	72-80	I	. 10	I	. 15	1		I		I	
		1		I		1		,		I	
Coloma--------------	0-3	I	. 15	I	. 15	1	5	I	1	I	220
	3-4	I	. 15	I	. 15	I		I		I	
	4-8	I	. 15	1	. 15	1		I		I	
	8-15	I	. 15	I	. 15	I		I		I	
	15-25	I	. 15	I	. 15	1		I		I	
	25-40	I	. 15	1	. 15	1		I		I	
	40-80	I	. 15	1	. 15	1		I		I	
		1		1		1		1		I	

Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued

Map unit symbol and soil name	1	Depth   (inches)	1	Erosion factors					$\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \\ \hline \end{array}$	Wind erodibility group	1	$\begin{aligned} & \text { Wind } \\ & \text { erodi- } \\ & \text { bility } \\ & \text { index } \end{aligned}$
				Kw	I	Kf	1	T				
	I		I		I		I		I		I	
193505:Spinks------------------			1		I		1		I		1	
		0-5	I	. 15	I	. 15	I	5	I	1	I	220
Spinks	I	5-10	I	. 15	I	. 15	I		I		I	
	I	10-17	I	. 15	I	. 15	I		I		I	
	I	17-62	I	. 15	I	. 15	I		I		I	
	I	62-72	I	. 15	I	. 15	1		I		I	
	I	72-80	I	. 10	I	. 15	I		\|		I	
	I		I		1		1		1		1	
Shavenaugh-	I	0-5	I	. 15	I	. 15	I	5	I	1	I	220
	I	5-8	I	. 15	I	. 15	1		1		I	
	I	8-16	1	. 15	1	. 15	1		I		1	
	I	16-28	1	. 15	1	. 15	1		I		I	
	I	28-34	I	. 15	I	. 15	I		I		I	
	I	34-44	I	. 15	I	. 15	I		I		I	
	I	44-80	I	. 05	1	. 15	1		1		1	
	I		I		I		1		I		1	
193506:	I		I		I		I		I		I	
Spinks	I	0-5	I	. 15	I	. 15	1	5		1	I	220
	I	5-10	I	. 15	I	. 15	I				I	
	I	10-17	1	. 15	1	. 15	1		I		1	
	I	17-62	I	. 15	I	. 15	I		I		I	
	I	62-72	I	. 15	I	. 15	1				I	
	I	72-80	I	. 10	I	. 15	I		1		I	
	,		I		I		I				I	
Shavenaugh-		0-5	I	. 15	I	. 15	1	5		1	I	220
	,	5-8	I	. 15	I	. 15	I				I	
	I	8-16	I	. 15	I	. 15	1		I		I	
	I	16-28	I	. 15	1	. 15	1		1		I	
	I	28-34	I	. 15	I	. 15	1		I		I	
	I	34-44	I	. 15	I	. 15	I		1		I	
	I	44-80	I	. 05	I	. 15	1		I		I	
	I		I		I		1		1		1	
193507:	I		I		I		I				I	
Spinks	1	0-5	I	. 15	I	. 15	I	5		1	I	220
	I	5-10	I	. 15	I	. 15	I		I		I	
	I	10-17	I	. 15	I	. 15	1		I		1	
	I	17-62	I	. 15	I	. 15	1		I		1	
	I	62-72	I	. 15	I	. 15	I		I		I	
	I	72-80	I	. 10	I	. 15	I		I		I	
	I		I		I		I				I	
Shavenaugh	I	0-5	I	. 15	I	. 15	I	5	I	1	I	220
	I	5-8	I	. 15	I	. 15	I		I		I	
	I	8-16	I	. 15	I	. 15	I		I		I	
	I	16-28	I	. 15	I	. 15	1		1		I	
	I	28-34	I	. 15	I	. 15	1		I		I	
	I	34-44	I	. 15	I	. 15	1		I		I	
	I	44-80	I	. 05	I	. 15	1		I		1	
	I		1		I		1		1		1	
193508:	I		I		I		1		,		I	
Madaus	1	0-12	I	---	I	---	I	5	1	8	I	0
	I	12-34	I	. 43	I	. 43	I		I		I	
	I	34-38	I	. 43	1	. 43	I		I		I	
	I	38-62	I	. 15	I	. 15	I		I		I	
	I	62-80	I	. 32	1	. 32	1		I		I	
	I		I		1		1		I		I	
193509:	I		I		1		I		I		I	
Boyer-		0-3	I	. 17	I	. 24	I	4	I	3	I	86
	I	3-4	I	. 15	1	. 24	I		I		1	
	I	4-14	I	. 10	I	. 24	I		I		I	
	I	14-30	I	. 15	1	. 24	I		1		1	
	I	30-45	I	. 05	I	. 15	1		I		I	
	I	45-80	I	. 10	I	. 15	1		I		I	
	1		I		1		1		1		1	

Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued

Map unit symbol and soil name	Depth (inches)	I	Erosion factors				1	Wind erodibility group	1	Wind erodibility index
		1	Kw	\|	\|					
		,		Kf	I	T	1			
		1			I					
		I			I					
631171:		I			I		I		I	
	0-2	I	. 15	. 15	I	5	I	1	I	220
	2-7	1	. 15	. 15	I		I		I	
	7-13	1	. 15	. 15	I		I		I	
	13-21	I	. 15	. 15	I		I		I	
	21-34	I	. 15	. 15	I		I		I	
	34-43	I	. 17	. 17	I		I		I	
	43-48	I	. 24	. 24	I		I		1	
	48-55	I	. 32	. 32	I		I		I	
	55-80	1	. 15	. 15	I		I		\|	
		,			I					
Benzonia	0-5	1	. 15	. 15	I	5	I	1	1	220
	5-11	I	. 15	. 15	I		,		I	
	11-15	I	. 15	. 15	I		\|		I	
	15-20	1	. 15	. 15	1		\|		I	
	20-27	I	. 15	. 15	I		I		I	
	27-35	I	. 15	. 15	I		I		I	
	35-80	I	. 15	. 15	I		\|		I	
		I			I					
631172 :		I			I					
Fogg--	0-2	I	. 15	. 15	I	5	I	1	I	220
	2-7	I	. 15	. 15	I		\|		\|	
	7-13	I	. 15	. 15	I					
	13-21	1	. 15	. 15	1		I		I	
	21-34	1	. 15	. 15	I		I		I	
	34-43	I	. 17	. 17	I		1		I	
	43-48	I	. 24	. 24	I		I		I	
	48-55	I	. 32	. 32	I		I		I	
	55-80	I	. 15	. 15	I		\|		I	
		I			1					
Benzonia-	0-5	1	. 15	. 15	I	5	I	1	I	220
	5-11	I	. 15	. 15	I		I		I	
	11-15	I	. 15	. 15	I		I		I	
	15-20	I	. 15	. 15	I		I		I	
	20-27	I	. 15	. 15	I		I		I	
	27-35	1	. 15	. 15	I		I		I	
	35-80	I	. 15	. 15	I				I	
		I			1		I		,	
631173:		I			1					
Fogg---	0-2	I	. 15	. 15	I	5	I	1	I	220
	2-7	1	. 15	. 15	1		I		I	
	7-13	I	. 15	. 15	I		I		I	
	13-21	1	. 15	. 15	1		I		1	
	21-34	I	. 15	. 15	1				I	
	34-43	I	. 17	. 17	1		1		,	
	43-48	1	. 24	. 24	1		,		1	
	48-55	I	. 32	. 32	1		I		I	
	55-80	1	. 15	. 15	1		I		I	
		I			1				I	
Benzonia	0-5	1	. 15	. 15	1	5	I	1	I	220
	5-11	I	. 15	. 15	1		1		,	
	11-15	I	. 15	. 15	1		1		I	
	15-20	I	. 15	. 15	1		1		1	
	20-27	I	. 15	. 15	1		1		I	
	27-35	I	. 15	. 15	1		1		I	
	35-80	1	. 15	. 15	1		1			
		1			1		1		I	

Table 16.-Erosion Properties-Continued


Table 16.-Erosion Properties-Continued

			fac		I	Wind	I	Wind
Map unit symbol	Depth				I	erodi-	1	erodi-
and soil name	(inches)	Kw	Kf	T	I	bility	I	bility
					1	group	1	index
					I		I	
899734 :					,		I	
Benzonia	0-5	. 15	. 15	5	I	1	I	220
	5-11	. 15	. 15		I		,	
	11-15	. 15	. 15		I		I	
	15-20	. 15	. 15		I		I	
	20-27	. 15	. 15		I		I	
	27-35	. 15	. 15		I		I	
	35-80	. 15	. 15		I		I	
					1		1	

Table 17.-Total Soil Carbon
(This table displays soil organic carbon (SOC) and soil inorganic carbon (SIC) in kilograms per square meter to a depth of 2 meters or to the representative top depth of any kind of bedrock or any cemented soil horizon. SOC and SIC are reported on a volumetric whole soil basis, corrected for representative rock fragments indicated in the database. SOC is converted from horizon soil organic matter of the fraction of the soil less than 2 mm in diameter. If soil organic matter indicated in the database is NULL, SOC is assumed to be zero. SIC is converted from horizon calcium carbonate content fraction of the soil less than 2 mm in diameter. If horizon calcium carbonate indicated in the database is NULL, SIC is assumed to be zero. A weighted average of all horizons is used in the calculations. Only major components of a map unit are displayed in this table)

Map unit symbol, component name, and component percent	$\begin{array}{ll} \text { I } \\ \text { soc } \\ \text { in } \end{array}$	SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
	1	
190775:	I	
Adrian (55\%)-	132	0
	\|	
Houghton (45\%)	176	0
	I	
190777:	I	
Alcona (55\%)	6	0
	1	
Richter (30\%)	8	16
	1	
190778 :	,	
Alcona (65\%)	6	0
	1	
Richter (25\%)	8	16
	1	
190779:	I	
Alpena (90\%)	4	32
	I	
190780:	I	
Au Gres (45\%)	11	0
	,	
Kalkaska (35\%)	12	0
	I	
190781:	I	
Bach (90\%)	9	29
	I	
190782 :	1	
Deer Park (100\%)	3	0
	I	
190783:	I	
Deer Park (100\%)	13	0
	1	
190784:	I	
Deer Park (70\%)	3	0
	,	
Roscommon (25\%)	13	12
	I	
190786:	I	
Dune land (100\%)	I	
	I	
190787:	I	
East Lake (90\%)-	14	19
	,	
190788:	I	
East Lake (90\%)---	4	19
	,	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent		SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
	I	
190789:	I	
East Lake (90\%)	4	19
	I	
190790:	I	
East Lake (90\%)	\| 4	19
	I	
190791:	1	
Eastport (93\%)-	4	0
	1	
190792 :	1	
Edwards (70\%)	92	9
	1	
Marl beds (20\%)	\| 34	16
	1	
190794:	I	
Emmet (60\%)	6	26
	1	
Leelanau (30\%)	5	21
	I	
190795:	1	
Emmet (60\%)	16	26
	1	
Leelanau (30\%)	15	21
	1	
190796:	I	
Emmet (50\%)	16	26
	1	
Leelanau (30\%)	15	21
	1	
190797:	I	
Emmet (50\%)	6	26
	1	
Leelanau (30\%)	15	21
	1	
190799 :	1	
Emmet (45\%)	6	26
	1	
Leelanau (30\%)	15	21
	1	
190801:	1	
Emmet (70\%)	5	26
	,	
Mancelona (25\%)	6	17
	I	
190803:	1	
Emmet (60\%)	\| 5	26
	1	
Mancelona (30\%)	16	17
	1	
190805:	I	
Emmet (50\%)	16	26
	I	
Omena (45\%)	\| 5	42
	1	
190806:	1	
Emmet (50\%)	16	26
	1	
Omena (45\%)-	15	42
	1	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent	soc	SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
	1	
190807:	I	
Emmet (50\%)	6	26
	1	
Omena (45\%	5	42
	1	
190808:	I	
Emmet (50\%)	6	26
	1	
Omena (45\%)	5	42
	1	
190809:	,	
Emmet (50\%)	6	26
	1	
Omena (45\%)	5	42
	1	
190811:	I	
Hettinger (45\%)	13	46
	1	
Muck (30\%)	86	24
	,	
190812 :	I	
Hettinger (45\%)	13	46
	I	
Tonkey (30\%)	11	10
	1	
190814:	I	
Kalkaska (85\%)	12	0
	1	
190815:	1	
Kalkaska (85\%)	12	0
	,	
190816:	,	
Kalkaska (90\%)	12	0
	1	
190817:	I	
Kalkaska (90\%)	12	0
	I	
190818:	1	
Kalkaska (90\%)	12	0
	1	
190819 :	I	
Kalkaska (55\%)	10	0
	1	
East Lake (35\%)	4	19
	,	
190820:	,	
Kiva (65\%)	3	21
	1	
Mancelona (30\%)	16	17
	,	
190821:	I	
Kiva (50\%)	13	21
	I	
Mancelona (30\%)	16	17
	,	
190823:	I	
Kiva (50\%)	13	21
	I	
	16	17
	1	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent	soc	SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
	1	
190824.	1	
Lake beaches (100\%)	1	
	I	
190825.	1	
Lake bluffs (100\%)	1	
	I	
190826:	1	
Leelanau (60\%)	5	21
	I	
East Lake (30\%)	4	19
	1	
190827 :	1	
Leelanau (65\%)	5	21
	1	
East Lake (25\%)	4	19
	I	
Leelanau (65\%)	5	21
	1	
East Lake (25\%)	4	19
	1	
Leelanau (50\%)	5	21
	1	
East Lake (35\%)	4	19
	1	
190830 :	1	
Leelanau (50\%)	5	21
	I	
East Lake (35\%)	4	19
	1	
190831 :	I	
Lupton (60\%)	176	0
	1	
Markey (30\%)	51	6
	,	
190832 :	I	
Mancelona (90\%)	6	17
	1	
190833:	1	
Mancelona (90\%)	6	17
	I	
190834 :	1	
Mancelona (60\%)	6	17
	1	
East Lake (30\%)	4	19
	,	
190835 :	I	
Mancelona (55\%)	6	17
	I	
East Lake (35\%)	\| 4	19
	1	
190836:	I	
Mancelona (50\%)	\| 6	17
	,	
East Lake (30\%)	\| 4	19
	I	
190837 :	I	
Mancelona (45\%)	16	17
	1	
East Lake (30\%)---------------------------	14	19
	1	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent	soc	SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
	1	
190838 :	I	
Mancelona (50\%)	6	17
	1	
East Lake (30\%)	4	19
	1	
190839 :	I	
Mancelona (70\%)	6	17
	1	
Richter (25\%)	8	16
	1	
190840:	I	
Nester (90\%)	5	47
	1	
190841:	I	
Nester (90\%)	5	47
	1	
190842 :	I	
Nester (90\%)	5	47
	1	
190843:	1	
Nester (90\%)	5	47
	1	
190844 :	1	
Nester (90\%)	5	47
	1	
190846.	,	
Pits, gravel (100\%)	I	
	I	
190847:	1	
Richter (45\%)	8	16
	1	
Alcona (40\%	6	0
	1	
190848:	1	
Richter (45\%)	8	16
	1	
Alcona (40\%)	6	0
	,	
190849 :	,	
Roscommon (50\%)	13	12
	1	
Markey (30\%)	51	6
	,	
190850 :	,	
Sanilac (90\%)	6	17
	,	
190851:	,	
Tonkey (40\%)	\| 12	10
	I	
Munuscong (25\%)	8	33
	1	
Iosco (25\%)	7	29
	I	
190852 :	,	
Tonkey (35\%)	\| 12	10
	I	
Munuscong (30\%)	18	33
	,	
Iosco (20\%)	7	29
	I	
190853.	I	
Water (100\%)	1	
	1	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent	$\begin{array}{ll} \hline \text { soc } \\ \text { I } \end{array}$	SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
	1	
190854 :	1	
Wallace (50\%) -	9	0
	1	
Kalkaska (45\%)	12	0
	1	
190855:	I	
Wind eroded land (100\%)	9	0
	,	
190856:	,	
Wind eroded land (100\%)	9	0
	1	
193236.	,	
Beaches (100\%)	,	
	I	
193237 :	I	
Thompsonville (50\%)	26	0
	1	
Milnichol (40\%)	16	28
	1	
193255:	I	
Spinks (50\%)	9	0
	1	
Coloma (40\%)	8	0
	1	
193256:	I	
Spinks (50\%)	9	0
	1	
Coloma (40\%)	8	0
	,	
193257:	1	
Spinks (55\%)	9	0
	I	
Coloma (35\%)	8	0
	1	
193258 :	1	
Spinks (50\%)	9	0
	1	
Coloma (40\%)	8	0
	I	
193260 :	1	
Copemish (95\%)	19	0
	1	
193262 :	I	
Kaleva (95\%)	111	0
	,	
193263:	I	
Kaleva (95\%)	\| 11	0
	I	
193265:	I	
Grattan (95\%)	12	0
	I	
193266:	I	
Grattan (95\%)	\| 12	0
	I	
193267:	1	
Grattan (95\%)	\| 12	0
	I	
193269:	I	
Grattan (95\%)-	\| 12	0
	I	
193270:	I	
Covert (90\%)--	112	0
	1	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent	soc	SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
	1	
193271:	I	
Pipestone (90\%)	13	0
	1	
193272:	,	
Dair (90\%)	30	0
	1	
193277:	1	
Benona (90\%)	13	0
	1	
193278:	I	
Benona (90\%)	\| 13	0
	I	
193279:	I	
Benona (90\%)	\| 13	0
	,	
193284:	I	
Udorthents (55\%)	\| 49	0
	,	
Udipsamments (35	\| 13	0
	I	
193285:	,	
Lumley (55\%)	\| 336	0
	,	
Makinen (40\%)	\| 164	0
	1	
193286:	I	
Histosols (55\%)	\| 269	0
	,	
Aquents (45\%)	14	0
	I	
193287:	I	
Dune land (55\%)	I	
	I	
Quartzipsamments (40\%)	1	0
	I	
193288:	I	
Udipsamments (100\%)	13	0
	I	
193342 :	,	
Gorvan (35\%)	\| 12	17
	I	
Houghton (30\%)	\| 499	0
	I	
Glendora (20\%)	\| 19	0
	1	
193349:	I	
Spinks (50\%)	19	0
	I	
Coloma (40\%)	18	0
	I	
193351:	I	
Benona (95\%)	\| 13	0
	1	
193354:	I	
Dune land (50\%)	I	
	I	
Quartzipsamments (40\%)	\| 1	0
	I	
$193357 \text { : }$	I	
Shavenaugh (85\%)---------------------------	19	16
	1	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent	soc	SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
	1	
193359 :	I	
Shavenaugh (85\%)-	9	16
	1	
193360 :	I	
Shavenaugh (85\%)-	9	16
	I	
193362 :	I	
Benzonia (90\%)-	18	0
	,	
193363 :	I	
Benzonia (90\%)-	18	0
	I	
193364 :	I	
Benzonia (90\%)	18	0
	I	
193365 :	I	
Benzonia (90\%)	18	0
	I	
193371:	I	
Dair (50\%)	130	0
	I	
Pipestone (40\%)	\| 13	0
	I	
193372.	I	
Access Denied (100\%)	I	
	I	
193423:	I	
Benona (95\%)	113	0
	I	
193484.	I	
Pits, sand and gravel (100\%)	I	
	I	
193494 :	I	
Nordhouse (100\%)	\| 11	0
	,	
193496:	I	
Nordhouse (95\%)	\| 11	0
	,	
193497:	I	
Nordhouse (95\%)	11	0
	I	
193498:	I	
Nordhouse (40\%)	11	0
	I	
Platteriver (35\%)	17	0
	I	
Dair (25\%)	30	0
	I	
193503:	I	
Spinks (50\%)	19	0
	I	
Shavenaugh (40\%)	19	16
	I	
193504:	I	
Spinks (50\%)	19	0
	I	
Shavenaugh (40\%)	19	16
	I	
193505:	I	
Spinks (50\%)--	19	0
	I	
Shavenaugh (40\%)-----------------------------	19	16
	I	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent	soc	SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
193506:	I	
Spinks (50\%)-	9	0
	1	
Shavenaugh (40\%)	9	16
	I	
193507:	1	
Spinks (50\%)	9	0
	,	
Shavenaugh (40\%)	9	16
	1	
193508:	I	
Madaus (90\%)	78	50
	,	
193509:	,	
Boyer (50\%)	5	26
	I	
Shavenaugh (40\%)	19	16
	1	
193510:	I	
Boyer (50\%)	15	26
	1	
Shavenaugh (40\%)	9	16
	I	
193511:	I	
Boyer (50\%)	15	26
	I	
Shavenaugh (40\%)	19	16
	I	
193513:	I	
Dair (50\%)	30	0
	,	
Adrian (45\%)	224	0
	I	
193514:	I	
Platteriver (55\%)	\| 17	0
	I	
Pipestone (40\%)	\| 13	0
	I	
202010:	I	
Houghton (55\%)	499	0
	I	
Adrian (40\%)	\| 224	0
	I	
202016:	I	
Spinks (50\%)	19	0
	I	
Tekenink, sandy substratum (40\%)	I 16	12
	I	
631170:	I	
Fogg (50\%)	\| 17	0
	I	
Benzonia (40\%)	18	0
	I	
631171:	I	
Fogg (50\%)	\| 17	0
	1	
Benzonia (40\%)	18	0
	I	
631172 :	I	
Fogg (50\%)	\| 17	0
	I	
Benzonia (40\%)------------------------------	18	0
	1	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent	$\begin{array}{ll} \hline \text { I SOC } \\ \text { i } \end{array}$	SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
631173 :	I	
Fogg (50\%)	17	0
	1	
Benzonia (40\%)	18	0
	,	
631174 :	I	
Fogg (50\%)	17	0
	1	
Benzonia (40\%)	18	0
	1	
680939 :	I	
Fern (50\%)	11	20
	1	
Spinks (40\%)	9	0
	1	
680943 :	I	
Milnichol (90\%)	16	28
	1	
680945 :	1	
Fern (90\%)	11	20
	1	
680946:	1	
$\text { Fern }(90 \%)$	11	20
	1	
680971 :	1	
Nessen (50\%)	12	17
	i	
Kaleva (40\%)	\| 11	0
	1	
680972 :	I	
Nessen (50\%)	\| 12	17
	1	
Kaleva (40\%)	11	0
680973 :	,	
Nessen (50\%)	12	17
	!	
Kaleva (40\%)	\| 11	0
	I	
680974 :	1	
Nessen (50\%)	12	17
	1	
Kaleva (40\%)	11	0
	I	
893251:	1	
Boyer (50\%)	5	26
	,	
Shavenaugh (40\%)	19	16
	I	
894062 :	I	
Remus (50\%)	113	6
	I	
Spinks (40\%)	19	0
	I	
894063:	1	
Remus (50\%)	113	6
	I	
Spinks (40\%)--------------------------------	19	0
	1	

Table 17.-Total Soil Carbon-Continued

Map unit symbol, component name, and component percent		SIC
	$1 \mathrm{~kg} / \mathrm{m}^{2}$	$\underline{\mathrm{kg} / \mathrm{m}^{2}}$
	1	
894064:	1	
Fern (50\%)	11	20
	I	
Remus (40\%)	13	6
	1	
894065:	1	
Fern (50\%)	11	20
	1	
Remus (40\%)	13	6
	1	
894104:	I	
Mollineaux (50\%)	11	0
	1	
Remus (40\%)	13	6
	I	
894105:	I	
Mollineaux (50\%)	11	0
	I	
Remus (40\%)	13	6
	1	
894165:	I	
Spinks (50\%)	9	0
	I	
Tekenink, sandy substratum (40\%)	16	12
	1	
899682 :	I	
Kaleva (90\%)	11	0
	I	
899722 :	1	
Goodharbor (90\%)	9	53
	I	
899731:	I	
Covert (50\%)	12	0
	1	
Pipestone (40\%)	13	0
	I	
899733:	I	
Covert (50\%)	12	0
	I	
Dair (45\%)	30	0
	1	
899734:	I	
Benzonia (90\%)-	18	0
	1	

Table 18.-Chemical Soil Properties
(Absence of an entry indicates that data were not estimated)

| Map unit symbol and soil name | Depth | $\mid$ Cation- <br> $\mid$ exchange <br> \|  <br> \|  <br> capacity  | Effective cationexchange capacity | Soil <br> reaction | \|Calcium |carbon- | ate |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | \| meq/100 g | meq/100 g | 1 pH | 1 Pct |
|  |  | I |  | I | I |
| 190775: |  | 1 \| |  | I | I |
| Adrian | 0-8 | \| 80.0-120.0| | --- | \| 4.5-7.8 | 10 |
|  | 8-24 | \| 80.0-120.0| | --- | \| 4.5-7.8 | 0 |
|  | 24-60 | $\mid 1.0-3.0$ \| | --- | \| 5.6-8.4 | 0 |
|  |  | 1 \| |  | \| | 1 |
| Houghton----------- | 0-10 | \|140.0-180.0| | --- | \| 5.6-7.8 | 0 |
|  | 10-60 | \|140.0-180.0| | --- | \| 5.6-7.8 | 0 |
|  |  | 1 \| |  | I | 1 |
| 190777: |  | 1 \| |  | I | I |
| Alcona | 0-8 | $\mid 3.0-15.0$ \| | --- | \| 6.1-7.3 | 0 |
|  | 8-12 | $\mid$ 1.0-6.0 \| | --- | \| 6.1-7.3 | 0 |
|  | 12-18 | $\mid 1.0-8.0$ \| | --- | \| 6.1-7.8 | 0 |
|  | 18-24 | $\mid$ 2.0-8.0 \| | --- | \| 6.1-7.8 | 0 |
|  | 24-60 | \| 1.0-8.0 | | --- | \| 7.4-8.4 | 0 |
|  |  | 1 \| |  | I | 1 |
| Richter | 0-8 | \| 5.0-15.0 | | --- | \| 5.6-7.3 | 10 |
|  | 8-27 | \| 5.0-15.0 | | - | \| 5.6-7.8 | 0 |
|  | 27-60 | \| 1.0-10.0 | | - | \| 7.4-8.4 | 0-20 |
|  |  | 1 I |  | I | 1 |
| 190778: |  | 1 \| |  | I | 1 |
| Alcona | 0-8 | $\mid 3.0-15.0$ \| | --- | \| 6.1-7.3 | 0 |
|  | 8-12 | $\mid$ 1.0-6.0 \| | --- | \| 6.1-7.3 | 0 |
|  | 12-18 | $\mid 1.0-8.0$ \| | --- | \| 6.1-7.8 | 0 |
|  | 18-24 | $\mid$ 2.0-8.0 \| | --- | \| 6.1-7.8 | 0 |
|  | 24-60 | \| 1.0-8.0 | | --- | \| 7.4-8.4 | 0 |
|  |  | 1 \| |  | I | 1 |
| Richter | 0-8 | \| 5.0-15.0 | | --- | \| 5.6-7.3 | 0 |
|  | 8-27 | \| 5.0-15.0 | | --- | \| 5.6-7.8 | 10 |
|  | 27-60 | \| 1.0-10.0 | | -- | \| 7.4-8.4 | 0-20 |
|  |  | 1 I |  | I | 1 |
| 190779: |  | 1 \| |  | I | 1 |
| Alpena | 0-4 | \| 5.0-15.0 | | --- | \| 6.6-7.8 | 0 |
|  | 4-60 | \| 0.0-2.0 | | -- | \| 7.4-8.4 | 10-25 |
|  |  | 1 I |  | I | I |
| 190780: |  | 1 I |  | I | 1 |
| Au Gres | 0-12 | \| 5.0-10.0 | | --- | \| 3.6-7.3 | 10 |
|  | 12-24 | $\mid$ 2.0-5.0 \| | - | \| 4.5-7.3 | 10 |
|  | 24-60 | \| 1.0-2.0 | | --- | \| 5.1-7.3 | 0 |
|  |  | 1 \| |  | I | , |
| Kalkaska | 0-7 | \| 1.0-15.0 | | --- | \| 5.1-6.0 | 10 |
|  | 7-15 | \| 4.0-15.0 | | --- | \| 5.1-6.0 | 10 |
|  | 15-32 | $\mid$ 2.0-5.0 \| | --- | \| 5.1-6.0 | 10 |
|  | 32-60 | \| 1.0-2.0 | | --- | \| 5.1-6.5 | 0 |
|  |  | 1 I |  | I | , |
| 190781: |  | 1 \| |  | I | , |
| Bach- | 0-8 | \| 5.0-25.0 | | --- | \| 7.4-7.8 | 10 |
|  | 8-19 | \| 2.0-10.0 | | --- | \| 7.4-7.8 | 0 |
|  | 19-60 | \| 2.0-15.0 | | -- | \| 7.4-8.4 | \| 5-25 |
|  |  | 1 \| |  | I | I |
| 190782: |  | 1 l |  | I | I |
| Deer Park | 0-1 | $\mid 1.0-5.0$ \| | --- | \| 5.1-6.0 | 10 |
|  | 1-4 | $\mid 1.0-3.0$ \| | --- | \| 5.1-6.5 | 10 |
|  | 4-60 | \| 0.0-2.0 | | --- | \| 5.1-6.5 | 10 |
|  |  | 1 I |  | I | I |
| 190783: |  | 1 \| |  | 1 | I |
| Deer Park | 0-1 | \| 1.0-5.0 | | --- | \| 5.1-6.0 | 10 |
|  | 1-4 | $\mid 1.0-3.0$ \| | --- | \| 5.1-6.5 | 10 |
|  | 4-60 | \| 0.0-2.0 | | --- | \| 5.1-6.5 | 10 |
|  |  | 1 I |  | I | 1 |

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth	Cationexchange capacity $\qquad$	$\left\lvert\, \begin{gathered}\text { Effective } \\ \text { cation- } \\ \text { exchange } \\ \text { capacity }\end{gathered}\right.$	$\|$Soil   reaction   $\mid$	$\begin{aligned} & \text { \|Calcium } \\ & \text { \|Carbon- } \\ & \text { \| ate } \\ & \text { \| at } \end{aligned}$
	1 In	I meq/100 g	$1 \mathrm{meq} / 100 \mathrm{~g}$	pH	1 Pct
	I	I	I		1
190784:	I	I	I	I	I
Deer Park	\| 0-1	\| 1.0-5.0	\| ---	\| 5.1-6.0	10
	\| 1-4	I 1.0-3.0	I	\| 5.1-6.5	10
	\| 4-60	I 0.0-2.0	I	\| 5.1-6.5	10
	1	I	1	I	1
Roscommon	\| 0-6	\| 5.0-35.0	I	\| 6.1-7.8	10
	\| 6-60	I 1.0-4.0	I	\| 6.1-7.8	\| 0-10
	I	I	I	I	I
190787:	1	I	1	I	1
East Lake	0-8	\| 2.0-5.0	I	\| 5.6-7.3	10
	\| 8-26	\| 1.0-5.0	1	\| 5.6-7.3	10
	\| 26-60	I 1.0-2.0	1	\| 7.4-8.4	\| 10-25
	I	I	1	1	I
190788:	I	I	1	1	1
East Lake	\| 0-8	\| 2.0-5.0	I	\| 5.6-7.3	0
	\| 8-26	\| 1.0-5.0	1	\| 5.6-7.3	10
	\| 26-60	I 1.0-2.0	I	\| 7.4-8.4	\| 10-25
	I	I	1	1	I
190789:	1	I	I	I	1
East Lake	\| 0-8	\| 2.0-5.0	1	\| 5.6-7.3	10
	\| 8-26	I 1.0-5.0	I	\| 5.6-7.3	10
	\| 26-60	I 1.0-2.0	\| ---	\| 7.4-8.4	\| 10-25
	I	I	1	1	I
190790:	I	I	1	I	1
East Lake	\| 0-8	\| 2.0-5.0	1	\| 5.6-7.3	10
	\| 8-26	I 1.0-5.0	1	\| 5.6-7.3	10
	\| 26-60	I 1.0-2.0	1 --	\| 7.4-8.4	\| 10-25
	I	I	I	1	I
190791:	I	I	1	I	I
Eastport	\| 0-3	I 3.0-10.0	1 ---	\| 6.1-7.3	10
	\| 3-26	I 1.0-4.0	1	\| 5.1-7.8	10
	\| 26-60	I 1.0-2.0	1 --	\| 7.4-8.4	10
	I	I	1	I	
190792:	I	I	1	I	I
Edwards	\| 0-30	\|140.0-180.0	1	\| 5.1-7.8	10
	\| 30-60	\| 1.0-4.0	1 ---	\| 7.4-8.4	\| 50-90
	\|	1	1	I	i
190794:	I	I	1	I	,
Emmet	\| 0-8	\| 10.0-20.0	1 ---	\| 5.6-6.5	
	\| 8-26	I 2.0-6.0	1 --	\| 5.6-7.3	10
	\| 26-32	I 3.0-9.0	1	\| 6.6-7.8	\| 1-8
	\| 32-60	I 1.0-3.0	\| ---	\| 7.4-8.4	\| 10-30
	\|	1	1		
Leelanau-	- 0-8	I 3.0-10.0	1 --	\| 5.6-7.3	10
	\| 8-28	I 1.0-4.0	1	\| 5.6-7.3	10
	\| 28-36	I 2.0-10.0	1 ---	\| 6.1-7.3	10
	\| 36-60	I 1.0-5.0	\| ---	\| 7.4-8.4	\| 10-30
	I	I	1	I	I
190795:	I	I	1	I	I
Emmet	\| 0-8	\| 10.0-20.0	1 ---	\| 5.6-6.5	
	\| 8-26	I 2.0-6.0	1 ---	\| 5.6-7.3	10
	\| 26-32	I 3.0-9.0	1	\| 6.6-7.8	\| 1-8
	\| 32-60	I 1.0-3.0	\| ---	\| 7.4-8.4	\| 10-30
	I	I	1		I
Leelanau	- 0-8	I 3.0-10.0	1 ---	1 5.6-7.3	10
	\| 8-28	I 1.0-4.0	1	$15.6-7.3$	10
	\| 28-36	I 2.0-10.0	\| ---	\| 6.1-7.3	10
	\| 36-60	I 1.0-5.0	1 ---	1 7.4-8.4	\| 10-30
	\|	I	1	1	I

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth	\| Cation-   exchange   capacity $\qquad$	$\|$Effective   $\|$cation-   exchange   capacity	\| Soil   \| reaction   \|	$\qquad$
	\| In	meq/100 g	\| meq/100 g	pH	I Pct
	I	I	,	1	I
190796:	I	I	1	I	I
Emmet	\| 0-8	\| 10.0-20.0	1 ---	\| 5.6-6.5	10
	\| 8-26	I 2.0-6.0	I	\| 5.6-7.3	10
	\| 26-32	\| 3.0-9.0	I	\| 6.6-7.8	\| 1-8
	\| 32-60	\| 1.0-3.0	I	\| 7.4-8.4	\| 10-30
	I	1	1	I	I
Leelanau	\| 0-8	\| 3.0-10.0	I	\| 5.6-7.3	10
	\| 8-28	\| 1.0-4.0	1	\| 5.6-7.3	10
	\| 28-36	\| 2.0-10.0	I	\| 6.1-7.3	10
	\| 36-60	I 1.0-5.0	I	\| 7.4-8.4	\| 10-30
	I	I	I	I	I
190797:	I	I	1	I	I
Emmet	\| 0-8	\| 10.0-20.0	I	\| 5.6-6.5	10
	\| 8-26	I 2.0-6.0	1 --	\| 5.6-7.3	0
	\| 26-32	I 3.0-9.0	I	\| 6.6-7.8	\| 1-8
	\| 32-60	\| 1.0-3.0	I	\| 7.4-8.4	\| 10-30
	1	1	1	I	I
Leelanau	\| 0-8	\| 3.0-10.0	1 ---	\| 5.6-7.3	10
	\| 8-28	\| 1.0-4.0	1	\| 5.6-7.3	10
	\| 28-36	I 2.0-10.0	I	\| 6.1-7.3	10
	\| 36-60	I 1.0-5.0	1 ---	\| 7.4-8.4	\| 10-30
	I	I	I	I	I
190799 :	1	1	1	I	I
Emmet	\| 0-8	\| 10.0-20.0	I	\| 5.6-6.5	10
	\| 8-26	I 2.0-6.0	I	\| 5.6-7.3	0
	\| 26-32	1 3.0-9.0	I	\| 6.6-7.8	\| 1-8
	\| 32-60	\| 1.0-3.0	1 --	\| 7.4-8.4	\| 10-30
	I	I	1	I	I
Leelanau	\| 0-8	\| 3.0-10.0	1	\| 5.6-7.3	10
	\| 8-28	\| 1.0-4.0	1	\| 5.6-7.3	10
	\| 28-36	I 2.0-10.0	I	\| 6.1-7.3	10
	\| 36-60	\| 1.0-5.0	1 --	\| 7.4-8.4	\| 10-30
	I	1	I	I	I
190801:	I	I	1	I	I
Emmet	\| 0-8	\| 10.0-20.0	I	\| 5.6-6.5	0
	\| 8-26	I 2.0-6.0	I	\| 5.6-7.3	10
	\| 26-32	\| 3.0-9.0	I	\| 6.6-7.8	\| 1-8
	\| 32-60	I 1.0-3.0	1 ---	\| 7.4-8.4	\| 10-30
	I	1	1	I	I
Mancelona	- 0-8	I 2.0-10.0	1	\| 5.6-7.3	10
	\| 8-25	I 1.0-10.0	1	\| 5.6-7.8	10
	\| 25-30	\| 4.0-15.0	1 ---	\| 6.1-7.8	10
	\| 30-60	I 1.0-4.0	I	\| 7.4-8.4	\| 10-25
	I	I	I	I	I
190803:	1	1	1	I	I
Emmet	\| 0-8	\| 10.0-20.0	1 ---	\| 5.6-6.5	10
	\| 8-26	I 2.0-6.0	I	\| 5.6-7.3	10
	\| 26-32	\| 3.0-9.0	I	\| 6.6-7.8	\| 1-8
	\| 32-60	I 1.0-3.0	1 ---	\| 7.4-8.4	\| 10-30
	I	1	1	I	I
Mancelona	- 0-8	I 2.0-10.0	1	\| 5.6-7.3	10
	\| 8-25	\| 1.0-10.0	1	\| 5.6-7.8	10
	\| 25-30	\| 4.0-15.0	1 ---	\| 6.1-7.8	10
	\| 30-60	I 1.0-4.0	1 ---	\| 7.4-8.4	\| 10-25
	I	1	I	I	I
190805:	1	1	1	I	I
Emmet-	- 0-8	\| 10.0-20.0	1 ---	\| 5.6-6.5	10
	\| 8-26	I 2.0-6.0	1 ---	\| 5.6-7.3	10
	\| 26-32	I 3.0-9.0	1 ---	\| 6.6-7.8	\| 1-8
	\| 32-60	\| 1.0-3.0	1 ---	\| 7.4-8.4	\| 10-30
	I	1	1	1	I

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth	Cationexchange capacity	$\left\lvert\, \begin{gathered}\text { Effective } \\ \text { cation- } \\ \text { exchange } \\ \text { capacity }\end{gathered}\right.$	$\|$Soil   reaction   $\mid$	$\begin{aligned} & \text { \|Calcium } \\ & \text { \|Carbon- } \\ & \text { \| ate } \\ & \text { \| at } \end{aligned}$
	1 In	$1 \mathrm{meq} / 100 \mathrm{~g}$	$1 \mathrm{meq} / 100 \mathrm{~g}$	pH	1 Pct
	I	I	I	1	1
190805:	I	I	1	I	I
Omena	\| 0-8	\| 5.0-20.0	1 ---	6.1-7.8	10
	\| 8-14	\| 5.0-20.0	I	\| 6.1-7.8	\| 1-8
	\| 14-60	\| 5.0-25.0	I	\| 7.4-8.4	\| 10-30
	I	1	1	,	1
190806:	I	I	1	I	I
Emmet	\| 0-8	\| 10.0-20.0	1	\| 5.6-6.5	10
	\| 8-26	\| 2.0-6.0	I	\| 5.6-7.3	10
	\| 26-32	\| 3.0-9.0	1	\| 6.6-7.8	\| 1-8
	\| 32-60	I 1.0-3.0	I	\| 7.4-8.4	\| 10-30
	\|	1	1	I	
Omena	\| 0-8	$15.0-20.0$	1	\| 6.1-7.8	10
	\| 8-14	\| 5.0-20.0	I	\| 6.1-7.8	\| 1-8
	\| 14-60	I 5.0-25.0	1	\| 7.4-8.4	\| 10-30
	\|	I	I	I	,
190807:	I	I	1	I	1
Emmet	0-8	\| 10.0-20.0	1	\| 5.6-6.5	10
	\| 8-26	I 2.0-6.0	I	\| 5.6-7.3	10
	\| 26-32	I 3.0-9.0	1	\| 6.6-7.8	\| 1-8
	\| 32-60	\| 1.0-3.0	\| ---	\| 7.4-8.4	\| 10-30
	I	I	1	I	
Omena	\| 0-8	\| 5.0-20.0	\| ---	\| 6.1-7.8	10
	\| 8-14	$15.0-20.0$	1 ---	1 6.1-7.8	$\text { \| } 1-8$
	\| 14-60	I 5.0-25.0	I	\| 7.4-8.4	\| 10-30
	\|	I	1	I	I
190808:	I	I	1	I	1
Emmet-	\| 0-8	\| 10.0-20.0	1	\| 5.6-6.5	10
	\| 8-26	I 2.0-6.0	I	\| 5.6-7.3	10
	\| 26-32	I 3.0-9.0	\| ---	\| 6.6-7.8	\| 1-8
	\| 32-60	\| 1.0-3.0	\| ---	\| 7.4-8.4	\| 10-30
	\|	I	1	I	
Omena	\| 0-8	\| 5.0-20.0	1 ---	\| 6.1-7.8	$10$
	\| 8-14	I 5.0-20.0	1 ---	\| 6.1-7.8	$\text { \| } 1-8$
	\| 14-60	\| 5.0-25.0	\| ---	\| 7.4-8.4	\| 10-30
	I	I	1	1	,
190809:	I	I	1	I	I
Emmet-	\| 0-8	\| 10.0-20.0	1	\| 5.6-6.5	10
	\| 8-26	\| 2.0-6.0	1	\| 5.6-7.3	10
	\| 26-32	I 3.0-9.0	\| ---	1 6.6-7.8	\| 1-8
	\| 32-60	\| 1.0-3.0	\| ---	\| 7.4-8.4	\| 10-30
	I	I	1	1	
Omena	\| 0-8	1 5.0-20.0	1	\| 6.1-7.8	10
	\| 8-14	\| 5.0-20.0	1 ---	\| 6.1-7.8	\| 1-8
	\| 14-60	\| 5.0-25.0	\| ---	\| 7.4-8.4	\| 10-30
	I	1	1	1	I
190811:	1	I	1	I	I
Hettinger	\| 0-8	\| 15.0-40.0	1 ---	\| 6.1-7.3	
	\| 8-23	\| 10.0-20.0	1 ---	\| 6.1-7.3	10
	\| 23-60	\| 10.0-30.0	1 ---	1 7.9-8.4	\| 20-30
	I	I	1	1	I
190812:	\|	I	1	1	1
Hettinger	- 0-8	\| 15.0-40.0	1	\| 6.1-7.3	10
	\| 8-23	\| 10.0-20.0	\| ---	\| 6.1-7.3	10
	\| 23-60	\| 10.0-30.0	\| ---	\| 7.9-8.4	\| 20-30
	I	I	1	1	I
Tonkey	- 0-8	\| 10.0-25.0	1 ---	1 5.6-7.8	10
	\| 8-20	\| 2.0-10.0	\| ---	\| 5.6-7.8	10
	1 20-60	I 1.0-10.0	1 ---	1 7.4-8.4	\| 0-10
	1	1	1	1	I

Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | Depth | Cationexchange capacity | Effective <br> \| $\begin{array}{c}\text { cation- } \\ \text { exchange } \\ \text { \| } \\ \text { capacity }\end{array}$ | Soil <br> reaction | \|Calcium |carbon- | ate | |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I In | $1 \mathrm{meq} / 100 \mathrm{~g}$ | meq/100 g | pH | 1 Pct |
|  | I | 1 |  | I | I |
| 190814: | I | I | I | I | 1 |
| Kalkaska | \| 0-7 | \| 1.0-15.0 | 1 --- | \| 5.1-6.0 | 0 |
|  | \| 7-15 | \| 4.0-15.0 | I | \| 5.1-6.0 | 0 |
|  | \| 15-32 | \| 2.0-5.0 | I | \| 5.1-6.0 | 10 |
|  | \| 32-60 | \| 1.0-2.0 | \| --- | \| 5.1-6.5 | 0 |
|  | I | 1 | I | I | 1 |
| 190815: | I | 1 | 1 | I | 1 |
| Kalkaska | \| 0-7 | \| 1.0-15.0 | I | \| 5.1-6.0 | 0 |
|  | \| 7-15 | \| 4.0-15.0 | \| --- | \| 5.1-6.0 | 0 |
|  | \| 15-32 | I 2.0-5.0 | I | \| 5.1-6.0 | 0 |
|  | \| 32-60 | \| 1.0-2.0 | I | \| 5.1-6.5 | 0 |
|  | I | 1 | I | I | I |
| 190816: | I | 1 | 1 | I | 1 |
| Kalkaska | \| 0-7 | \| 1.0-15.0 | 1 | \| 5.1-6.0 | 0 |
|  | \| 7-15 | \| 4.0-15.0 | I | \| 5.1-6.0 | 0 |
|  | \| 15-32 | \| 2.0-5.0 | , | \| 5.1-6.0 | 0 |
|  | \| 32-60 | I 1.0-2.0 | \| --- | \| 5.1-6.5 | 0 |
|  | I | I | I | I | I |
| 190817: | I | 1 | 1 | I | 1 |
| Kalkaska | \| 0-7 | \| 1.0-15.0 | I | \| 5.1-6.0 | 0 |
|  | \| 7-15 | \| 4.0-15.0 | I | \| 5.1-6.0 | 0 |
|  | \| 15-32 | I 2.0-5.0 | \| --- | \| 5.1-6.0 | 0 |
|  | \| 32-60 | \| 1.0-2.0 | \| --- | \| 5.1-6.5 | 0 |
|  | I | I | I | I | I |
| 190818: | I | 1 | 1 | I | 1 |
| Kalkaska | \| 0-7 | \| 1.0-15.0 | I | \| 5.1-6.0 | 0 |
|  | \| 7-15 | \| 4.0-15.0 | , | \| 5.1-6.0 | 0 |
|  | \| 15-32 | I 2.0-5.0 | I | \| 5.1-6.0 | 0 |
|  | \| 32-60 | \| 1.0-2.0 | I | \| 5.1-6.5 | 0 |
|  | I | 1 | I | I | I |
| 190819: | I | 1 | I | I | I |
| Kalkaska | \| 0-7 | 1 2.0-5.0 | I | \| 5.6-7.3 | 0 |
|  | \| 7-15 | I 4.0-15.0 | I | \| 5.1-6.0 | 0 |
|  | \| 15-32 | I 2.0-5.0 | I | \| 5.1-6.0 | 0 |
|  | I 32-60 | I 1.0-2.0 | I | \| 5.1-6.5 | 0 |
|  | I | 1 | I | I | 1 |
| East Lake | \| 0-8 | 1 2.0-5.0 | I | \| 5.6-7.3 | 0 |
|  | \| 8-26 | \| 1.0-5.0 | \| --- | \| 5.6-7.3 | 10 |
|  | I 26-60 | I 1.0-2.0 | \| --- | \| 7.4-8.4 | \| 10-25 |
|  | I | 1 | I | I | , |
| 190820: | I | 1 | 1 | I | 1 |
| Kiva | \| 0-6 | I 3.0-15.0 | I | \| 6.1-7.8 | 0 |
|  | \| 6-20 | \| 2.0-10.0 | \| --- | \| 6.6-7.8 | 0 |
|  | \| 20-60 | I 1.0-2.0 | \| --- | \| 7.4-8.4 | \| 10-25 |
|  | I | I | I | I | 1 |
| Mancelona- | \| 0-8 | \| 2.0-10.0 | \| --- | \| 5.6-7.3 | 10 |
|  | \| 8-25 | \| 1.0-10.0 | I | \| 5.6-7.8 | 0 |
|  | \| 25-30 | \| 4.0-15.0 | 1 | \| 6.1-7.8 | 10 |
|  | 1 30-60 | I 1.0-4.0 | 1 --- | \| 7.4-8.4 | \| 10-25 |
|  | I | 1 | I | I | I |
| 190821: | I | 1 | 1 | I | I |
| Kiva | \| 0-6 | \| 3.0-15.0 | I | \| 6.1-7.8 | 0 |
|  | \| 6-20 | I 2.0-10.0 | 1 --- | \| 6.6-7.8 | 10 |
|  | \| 20-60 | \| 1.0-2.0 | \| --- | \| 7.4-8.4 | \| 10-25 |
|  | I | 1 | 1 | I | 1 |
| Mancelona---------- | \| 0-8 | \| 2.0-10.0 | 1 --- | \| 5.6-7.3 | 0 |
|  | \| 8-25 | \| 1.0-10.0 | \| --- | \| 5.6-7.8 | 10 |
|  | \| 25-30 | I 4.0-15.0 | \| --- | \| 6.1-7.8 | 10 |
|  | \| 30-60 | I 1.0-4.0 | \| --- | \| 7.4-8.4 | \| 10-25 |
|  | I | 1 | 1 | 1 | I |

Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | Depth | Cationexchange capacity | Effective cationexchange capacity | $\|$\| Soil  <br> \|  <br> reaction  | \| Calcium | carbon- | ate | |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 In | meq/100 g | meq/100 g | pH | Pct |
|  | I |  |  | 1 | I |
| 190823: | 1 |  | I | I | I |
| Kiva- | - 0-6 | 3. 0-15.0 | \| --- | \| 6.1-7.8 | 0 |
|  | \| 6-20 | 2.0-10.0 | - | \| 6.6-7.8 | 0 |
|  | \| 20-60 | 1.0-2.0 | \| --- | \| 7.4-8.4 | 10-25 |
|  | I |  | 1 | I | 1 |
| Mancelona | - 0-8 | 2.0-10.0 | I | \| 5.6-7.3 | 0 |
|  | \| 8-25 | 1.0-10.0 | \| --- | \| 5.6-7.8 | 0 |
|  | \| 25-30 | 4.0-15.0 | I | \| 6.1-7.8 | 0 |
|  | 1 30-60 | 1.0-4.0 | I | \| 7.4-8.4 | 10-25 |
|  | I |  | I | I | 1 |
| 190826 : | 1 |  | I | I | 1 |
| Leelanau | \| 0-8 | 3.0-10.0 | I | \| 5.6-7.3 | \| --- |
|  | \| 8-28 | 1.0-4.0 | I | \| 5.6-7.3 | --- |
|  | \| 28-36 | 2.0-10.0 | \| --- | \| 6.1-7.3 | 0 |
|  | \| 36-60 | 1.0-5.0 | I | \| 7.4-8.4 | 10-30 |
|  | I |  | , | I | 1 |
| East Lake | - 0-8 | 2.0-5.0 | I | \| 5.6-7.3 | 0 |
|  | \| 8-26 | 1.0-5.0 | \| --- | \| 5.6-7.3 | 0 |
|  | \| 26-60 | 1.0-2.0 | I | \| 7.4-8.4 | 10-25 |
|  | 1 |  | I | I | 1 |
| 190827: | 1 |  | I | I | 1 |
| Leelanau | - 0-8 | 3.0-10.0 | I | \| 5.6-7.3 | 0 |
|  | \| 8-28 | 1.0-4.0 | I | \| 5.6-7.3 | 0 |
|  | \| 28-36 | 2.0-10.0 | I | \| 6.1-7.3 | 0 |
|  | \| 36-60 | 1.0-5.0 | I | \| 7.4-8.4 | 10-30 |
|  | 1 |  | I | I | 1 |
| East Lake | \| 0-8 | 2.0-5.0 | I | \| 5.6-7.3 | 0 |
|  | \| 8-26 | 1.0-5.0 | I | \| 5.6-7.3 | 0 |
|  | \| 26-60 | 1.0-2.0 | \| --- | \| 7.4-8.4 | 10-25 |
|  | I |  | I | I | 1 |
| 190828: | I |  | I | I | I |
| Leelanau | \| 0-8 | 3.0-10.0 | 1 | \| 5.6-7.3 | 0 |
|  | \| 8-28 | 1.0-4.0 | , | \| 5.6-7.3 | 0 |
|  | \| 28-36 | 2.0-10.0 | \| --- | \| 6.1-7.3 | 0 |
|  | \| 36-60 | 1.0-5.0 | \| --- | \| 7.4-8.4 | \| 10-30 |
|  | I |  | I | I | 1 |
| East Lake | \| 0-8 | 2.0-5.0 | 1 --- | \| 5.6-7.3 | 0 |
|  | \| 8-26 | 1.0-5.0 | \| --- | \| 5.6-7.3 | 0 |
|  | \| 26-60 | 1.0-2.0 | \| --- | \| 7.4-8.4 | 10-25 |
|  | 1 |  | I | I | , |
| 190829: | I |  | I | 1 | 1 |
| Leelanau | \| 0-8 | 3.0-10.0 | \| --- | \| 5.6-7.3 | 0 |
|  | \| 8-28 | 1.0-4.0 | \| --- | \| 5.6-7.3 | 0 |
|  | \| 28-36 | 2.0-10.0 | I | \| 6.1-7.3 | 0 |
|  | \| 36-60 | 1.0-5.0 | \| --- | \| 7.4-8.4 | \| 10-30 |
|  | I |  | I | I | 1 |
| East Lake- | \| 0-8 | 2.0-5.0 | \| --- | \| 5.6-7.3 | 0 |
|  | \| 8-26 | 1.0-5.0 | I | \| 5.6-7.3 | 0 |
|  | \| 26-60 | 1.0-2.0 | \| --- | \| 7.4-8.4 | \| 10-25 |
|  | I |  | I | 1 | I |
| 190830: | 1 |  | 1 | I | 1 |
| Leelanau | \| 0-8 | 3.0-10.0 | 1 - | \| 5.6-7.3 | 0 |
|  | \| 8-28 | 1. 0-4.0 | 1 --- | \| 5.6-7.3 | 0 |
|  | \| 28-36 | 2.0-10.0 | \| --- | \| 6.1-7.3 | 0 |
|  | \| 36-60 | 1.0-5.0 | \| --- | \| 7.4-8.4 | 10-30 |
|  | I |  | I | I | , |
| East Lake | \| 0-8 | 2.0-5.0 | \| --- | \| 5.6-7.3 | 0 |
|  | \| 8-26 | 1.0-5.0 | \| --- | \| 5.6-7.3 | 0 |
|  | \| 26-60 | 1.0-2.0 | \| --- | \| 7.4-8.4 | \| 10-25 |
|  | 1 | - | I | 1 | 1 |

Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | Depth |  | Effective cationexchange capacity | Soil <br> reaction | I <br> \|Calcium |carbonate I |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | In | $1 \mathrm{meq} / 100 \mathrm{~g}$ I | meq/100 g | 1 pH | 1 Pct |
|  | , | 1 |  | I | 1 |
| 190831: | , | I |  | I | I |
| Lupton | 0-10 | \|140.0-180.0| | --- | \| 5.6-7.8 | 10 |
|  | 10-60 | \|140.0-180.0| | --- | \| 5.6-7.8 | 0 |
|  |  | I |  | I | 1 |
| Markey | - 0-20 | \|140.0-180.0| | --- | \| 6.6-7.8 | 10 |
|  | 1 20-60 | I 1.0-3.0 | --- | \| 7.4-8.4 | 0-5 |
|  |  | I |  | I | , |
| 190832 : | I | 1 I |  | I | 1 |
| Mancelona | 0-8 | \| 2.0-15.0 | | --- | \| 5.6-7.3 | 10 |
|  | - 8-25 | \| 1.0-10.0 | | --- | \| 5.6-7.8 | $10$ |
|  | 25-30 | \| 4.0-15.0 | | --- | \| 6.1-7.8 | 10 |
|  | - 30-60 | \| 1.0-4.0 | | --- | \| 7.4-8.4 | \| 10-25 |
|  | I | I |  | I | , |
| 190833 : |  | I |  | I | 1 |
| Mancelona | 0-8 | \| 2.0-15.0 | | --- | \| 5.6-7.3 | 0 |
|  | - 8-25 | \| 1.0-10.0 | | --- | \| 5.6-7.8 | $10$ |
|  | 25-30 | \| 4.0-15.0 | | --- | \| 6.1-7.8 | $10$ |
|  | - 30-60 | \| 1.0-4.0 | | - | \| 7.4-8.4 | \| 10-25 |
|  |  | 1 I |  | I | I |
| 190834: |  | 1 1 |  | I | I |
| Mancelona | 0-8 | \| 2.0-10.0 | | --- | \| 5.6-7.3 | 10 |
|  | - 8-25 | \| 1.0-10.0 | | --- | \| 5.6-7.8 | 10 |
|  | - 25-30 | \| 4.0-15.0 | | --- | \| 6.1-7.8 | $10$ |
|  | - 30-60 | \| 1.0-4.0 | | --- | \| 7.4-8.4 | \| 10-25 |
|  | I | 1 I |  | I | I |
| East Lake- | 0-8 | I 2.0-5.0 | - | \| 5.6-7.3 | 10 |
|  | - 8-26 | $1.0-5.0$ | --- | \| 5.6-7.3 | $10$ |
|  | 26-60 | \| 1.0-2.0 | | --- | \| 7.4-8.4 | \| 10-25 |
|  |  | 1 I |  | 1 | I |
| $190835 \text { : }$ | I | 1 |  |  | $1$ |
| Mancelona | 0-8 | 1 2.0-10.0 | --- | \| 5.6-7.3 | 10 |
|  | - 8-25 | \| 1.0-10.0 | | --- | \| 5.6-7.8 | 10 |
|  | 25-30 | \| 4.0-15.0 | | --- | \| 6.1-7.8 | 10 |
|  | 30-60 | I 1.0-4.0 | --- | \| 7.4-8.4 | \| 10-25 |
|  |  | 1 l |  | I | I |
| East Lake | 0-8 | \| 2.0-5.0 | | --- | \| 5.6-7.3 | 10 |
|  | - 8-26 | \| 1.0-5.0 | | --- | \| 5.6-7.3 | 10 |
|  | 26-60 | 1.0-2.0 | --- | 7.4-8.4 | \| 10-25 |
|  |  | 1 I |  | I | I |
| 190836: |  | 1 1 |  | I | , |
| Mancelona- | 0-8 | \| 2.0-10.0 | | --- | \| 5.6-7.3 |  |
|  | - 8-25 | \| 1.0-10.0 | | --- | \| 5.6-7.8 | 10 |
|  | 1 25-30 | \| 4.0-15.0 | | --- | \| 6.1-7.8 | 10 |
|  | - 30-60 | \| 1.0-4.0 | | --- | \| 7.4-8.4 | \| 10-25 |
|  | \| | I |  | I | I |
| East Lake | 0-8 | \| 2.0-5.0 | | --- | \| 5.6-7.3 | 10 |
|  | - 8-26 | \| 1.0-5.0 | | --- | \| 5.6-7.3 | $10$ |
|  | 26-60 | \| 1.0-2.0 | | --- | \| 7.4-8.4 | \| 10-25 |
|  |  | 1 I |  | I | 1 |
| 190837: | I | 1 1 |  | I | I |
| Mancelona- | 0-8 | \| 2.0-10.0 | | --- | \| 5.6-7.3 | 10 |
|  | $8-25$ | $\text { \| } 1.0-10.0 \text { \| }$ | --- | \| 5.6-7.8 | $10$ |
|  | 1 25-30 | \| 4.0-15.0 | | --- | \| 6.1-7.8 | 10 |
|  | - 30-60 | \| 1.0-4.0 | | --- | \| 7.4-8.4 | \| 10-25 |
|  | I | 1 \| |  | 1 | I |
| East Lake | 0-8 | \| 2.0-5.0 | | --- | \| 5.6-7.3 | 10 |
|  | - 8-26 | \| 1.0-5.0 | | --- | \| 5.6-7.3 | 10 |
|  | 26-60 | \| 1.0-2.0 | | --- | \| 7.4-8.4 | \| 10-25 |
|  | \| | 1 I |  | I | I |

Table 18.-Chemical Soil Properties-Continued


Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | Depth | Cationexchange capacity | \| Effective <br> \| cation- <br> I exchange <br> \| capacity | Soil <br> reaction | I <br> \|Calcium |carbonate I |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 In | $1 \mathrm{meq} / 100 \mathrm{~g}$ | $1 \mathrm{meq} / 100 \mathrm{~g}$ | 1 pH | 1 Pct |
|  | I | 1 | 1 | I | 1 - |
| 190848: | I | I | 1 | , | 1 |
| Richter----------- | \| 0-8 | \| 5.0-15.0 | 1 | \| 5.6-7.3 | 10 |
|  | \| 8-27 | \| 5.0-15.0 | 1 | \| 5.6-7.8 | 0 |
|  | \| 27-60 | \| 1.0-10.0 | 1 | \| 7.4-8.4 | 0-20 |
|  | 1 | I | 1 | I |  |
| Alcona | 0-8 | \| 3.0-15.0 | 1 --- | \| 6.1-7.3 | 0 |
|  | \| 8-12 | I 1.0-6.0 | I | \| 6.1-7.3 | 0 |
|  | \| 12-18 | I 1.0-8.0 | \| --- | \| 6.1-7.8 | 10 |
|  | \| 18-24 | $12.0-8.0$ | 1 --- | 1 6.1-7.8 | 10 |
|  | \| 24-60 | I 1.0-8.0 | 1 -- | \| 7.4-8.4 | 0 |
|  | I | I | 1 | I | , |
| 190849 : | I | I | 1 | I | I |
| Roscommon | 0-6 | \| 5.0-35.0 | 1 | \| 6.1-7.8 | 10 |
|  | \| 6-60 | I 1.0-4.0 | I | \| 6.1-7.8 | 0-10 |
|  | \| | 1 | 1 | 1 | 1 |
| Markey | - 0-20 | \|140.0-180.0 | 1 | 1 6.6-7.8 | 0 |
|  | \| 20-60 | \| 1.0-3.0 | 1 | \| 7.4-8.4 | 0-5 |
|  | I | I | I | I | I |
| 190850: | I | I | 1 | I | I |
| Sanilac | - 0-6 | \| 5.0-15.0 | 1 | \| 5.6-7.8 | 0 |
|  | \| 6-16 | I 2.0-10.0 | 1 | $17.4-8.4$ | 0 |
|  | \| 16-24 | I 3.0-15.0 | 1 --- | \| 7.4-8.4 | 10 |
|  | \| 24-60 | \| 2.0-10.0 | 1 --- | 1 7.4-8.4 | I 0-20 |
|  | I | I | 1 | 1 | , |
| 190851: | I | I | 1 | I | , |
| Tonkey | - 0-8 | \| 10.0-25.0 | 1 --- | 1 5.6-7.8 | 10 |
|  | \| 8-20 | \| 2.0-10.0 | \| --- | \| 5.6-7.8 | 10 |
|  | \| 20-60 | I 1.0-10.0 | I | \| 7.4-8.4 | \| 0-10 |
|  | \| | 1 | 1 |  |  |
| Munuscong | \| 0-10 | \| 5.0-15.0 | 1 --- | \| 6.1-7.8 | $10$ |
|  | \| 10-24 | \| 2.0-10.0 | 1 -- | \| 6.1-7.8 | $10$ |
|  | \| 24-60 | \| 10.0-30.0 | 1 | \| 7.4-8.4 | 10-30 |
|  | \| | I | 1 | I | I |
| Iosco | - 0-8 | I 4.0-10.0 | 1 | \| 5.6-6.5 | 10 |
|  | \| 8-27 | I 2.0-10.0 | 1 | \| 5.1-7.8 | 10 |
|  | \| 27-34 | \| 4.0-10.0 | 1 --- | \| 6.1-7.8 | \| 3-6 |
|  | \| 34-60 | $\text { \| } 8.0-20.0$ | \| --- | \| 6.6-8.4 | \| 15-30 |
|  | I | I | 1 | 1 | I |
| 190852 : | I | I | 1 | 1 | , |
| Tonkey | 0-8 | \| 10.0-25.0 | 1 --- | \| 5.6-7.8 | 10 |
|  | \| 8-20 | \| 2.0-10.0 | 1 --- | \| 5.6-7.8 | 10 |
|  | 1 20-60 | \| 1.0-10.0 | 1 | \| 7.4-8.4 | \| 0-10 |
|  | \| | 1 | 1 |  |  |
| Munuscong | \| 0-10 | \| 5.0-15.0 | 1 -- | \| 6.1-7.8 | 10 |
|  | \| 10-24 | I 2.0-10.0 | 1 - | \| 6.1-7.8 | 10 |
|  | 1 24-60 | \| 10.0-30.0 | \| --- | \| 7.4-8.4 | \| 10-30 |
|  | I | 1 | 1 |  | I |
| Iosco | - 0-8 | I 4.0-10.0 | 1 -- | \| 5.6-6.5 | 10 |
|  | \| 8-27 | I 2.0-10.0 | 1 -- | \| 5.1-7.8 | 10 |
|  | \| 27-34 | \| 4.0-10.0 | \| --- | \| 6.1-7.8 | \| 3-6 |
|  | \| 34-60 | I 8.0-20.0 | \| --- | \| 6.6-8.4 | \| 15-30 |
|  | \| | 1 | 1 | 1 | I |
| 190854: | \| | I | 1 | I | I |
| Wallace | - 0-8 | I 2.0-5.0 | \| 0.4-3.0 | \| 4.5-5.5 | 10 |
|  | \| 8-24 | \| 1.0-4.0 | \| 0.4-2.8 | \| 4.5-5.0 | 10 |
|  | \| 24-60 | I 1.0-2.0 | 1 -- | \| 5.1-6.5 | 10 |
|  | I | 1 | 1 |  | I |
| Kalkaska | - 0-7 | \| 1.0-15.0 | 1 --- | \| 5.1-6.0 | 10 |
|  | \| 7-15 | \| 4.0-15.0 | \| --- | \| 5.1-6.0 | 10 |
|  | \| 15-32 | I 2.0-5.0 | 1 --- | \| 5.1-6.0 | 10 |
|  | \| 32-60 | I 1.0-2.0 | 1 --- | \| 5.1-6.5 | 10 |
|  |  | I | 1 | 1 | I |

Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | 1 Depth | Cationexchange capacity | Effective cationexchange capacity | Soil <br> reaction | \|Calcium |carbon- | ate | |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 In | meq/100 g | meq/100 g | pH | Pct |
|  | I |  |  | 1 - | I |
| 193237: | 1 |  | , | I | 1 |
| Thompsonville----- | \| 0-5 | 3.0-6.0 | 1.0-4.0 | \| 3.5-6.0 | 0 |
|  | \| 5-15 | 1.0-3.0 | \| 0.8-2.0 | \| 3.5-6.0 | 0 |
|  | \| 15-29 | 2.0-4.0 | 1 1.0-3.0 | \| 3.5-6.0 | 0 |
|  | \| 29-37 | 2.0-4.0 | 1 1.0-3.0 | \| 3.5-6.0 | 0 |
|  | \| 37-55 | 2.0-4.0 | 1 1.0-3.0 | \| 3.5-6.0 | 0 |
|  | \| 55-72 | 5.0-20.0 | \| 3.0-15.0 | \| 5.1-7.8 | 0-20 |
|  | \| 72-80 | 5.0-20.0 | \| 3.0-15.0 | \| 5.1-7.8 | 0-20 |
|  | 1 |  | , | , | 1 |
| Milnichol---------- | \| 0-2 | 2.0-6.0 | 1 2.0-4.0 | \| 3.5-6.0 | 0 |
|  | \| 2-12 | 1.0-3.0 | \| 0.8-2.0 | \| 3.5-6.0 | 0 |
|  | \| 12-15 | 2.0-6.0 | \| 1.0-4.0 | \| 4.5-6.0 | 0 |
|  | \| 15-25 | 2.0-4.0 | \| 1.0-3.0 | \| 4.5-6.0 | 0 |
|  | \| 25-33 | 1.0-3.0 | \| 0.8-3.0 | \| 4.5-6.0 | 0 |
|  | \| 33-47 | 1.0-3.0 | 1 | \| 5.6-7.3 | 0 |
|  | \| 47-50 | 5.0-15.0 | I | \| 6.6-8.4 | 0-30 |
|  | \| 50-68 | 5.0-20.0 | \| --- | \| 6.6-8.4 | 0-30 |
|  | \| 68-80 | 5.0-15.0 | \| --- | \| 6.6-8.4 | 0-30 |
|  | I |  | I | I | 1 |
| 193255: | I |  | I | I | 1 |
| Spinks- | \| 0-5 | 3.0-6.0 | \| 1.0-4.0 | \| 5.1-7.3 | 0 |
|  | \| 5-10 | 1.0-3.0 | \| 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 10-17 | 1.0-3.0 | \| 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 17-62 | 1.0-3.0 | $10.8-2.0$ | \| 5.1-7.3 | 0 |
|  | \| 62-72 | 1.0-3.0 | 1 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 72-80 | 1.0-3.0 | \| 0.8-2.0 | \| 5.1-8.4 | 0-20 |
|  | I |  | I | I | 1 |
| Coloma | \| 0-3 | 3.0-6.0 | 1 2.0-4.0 | \| 4.5-6.5 | 0 |
|  | \| 3-4 | 1.0-3.0 | \| 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 4-8 | 1.0-3.0 | \| 0.8-2.0 | \| 4.5-6.5 | 10 |
|  | \| 8-15 | 1.0-3.0 | 1 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 15-25 | 1.0-3.0 | $10.8-2.0$ | \| 4.5-6.5 | 0 |
|  | \| 25-40 | 1.0-3.0 | \| 0.8-2.0 | \| 4.5-6.5 | 10 |
|  | \| 40-80 | 1.0-3.0 | \| 0.8-2.0 | \| 4.5-7.3 | 0 |
|  | I | I | I | I | 1 |
| 193256: | I | 1 | I | I | 1 |
| Spinks | \| 0-5 | 3.0-6.0 | \| 1.0-4.0 | \| 5.1-7.3 | 0 |
|  | \| 5-10 | 1.0-3.0 | 1 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 10-17 | 1.0-3.0 | $10.8-2.0$ | \| 5.1-7.3 | 0 |
|  | \| 17-62 | 1.0-3.0 | 1 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 62-72 | 1.0-3.0 | 1 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 72-80 | 1.0-3.0 | \| 0.8-2.0 | \| 5.1-8.4 | 0-20 |
|  | I |  | 1 | I | 1 |
| Coloma | \| 0-3 | I 3.0-6.0 | 1 2.0-4.0 | \| 4.5-6.5 | 0 |
|  | \| 3-4 | 1 1.0-3.0 | 1 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 4-8 | \| 1.0-3.0 | $10.8-2.0$ | \| 4.5-6.5 | 0 |
|  | \| 8-15 | \| 1.0-3.0 | \| 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 15-25 | I 1.0-3.0 | I 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 25-40 | \| 1.0-3.0 | $10.8-2.0$ | \| 4.5-6.5 | 0 |
|  | \| 40-80 | I 1.0-3.0 | \| 0.8-2.0 | \| 4.5-7.3 | 0 |
|  | 1 | 1 | 1 | 1 | , |
| 193257: | 1 | I | 1 | I | I |
| Spinks | \| 0-5 | I 3.0-6.0 | \| 1.0-4.0 | \| 5.1-7.3 | 0 |
|  | \| 5-10 | I 1.0-3.0 | 1 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 10-17 | \| 1.0-3.0 | \| 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 17-62 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 62-72 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 72-80 | \| 1.0-3.0 | \| 0.8-2.0 | \| 5.1-8.4 | 0-20 |
|  | I | 1 | 1 | 1 | 1 |

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth	Cationexchange capacity	Effective cationexchange capacity	Soil   reaction	$\begin{aligned} & \text { I Calcium } \\ & \text { \| Calciun- } \\ & \text { \| carbon- } \\ & \text { \| ate } \\ & \text { \| } \\ & \hline \end{aligned}$
	In	meq/100 g	meq/100 g	pH	1 Pct
				1 -	1 -
193257:	I			I	I
Coloma	0-3	3.0-6.0	2.0-4.0	\| 4.5-6.5	0
	3-4	1.0-3.0	0.8-2.0	\| 4.5-6.5	0
	4-8	1.0-3.0	0.8-2.0	\| 4.5-6.5	0
	8-15	1.0-3.0	0.8-2.0	\| 4.5-6.5	0
	15-25	1.0-3.0	0.8-2.0	\| 4.5-6.5	0
	25-40	1.0-3.0	0.8-2.0	\| 4.5-6.5	0
	40-80	1.0-3.0	0.8-2.0	\| 4.5-7.3	0
			I	1	1
193258:	I		,	I	1
Spinks	0-5	3.0-6.0	1.0-4.0	\| 5.1-7.3	0
	5-10	1.0-3.0	\| 0.8-2.0	\| 5.1-7.3	0
	10-17	1.0-3.0	0.8-2.0	\| 5.1-7.3	0
	17-62	1.0-3.0	0.8-2.0	\| 5.1-7.3	0
	62-72	1.0-3.0	0.8-2.0	\| 5.1-7.3	0
	72-80	1.0-3.0	0.8-2.0	\| 5.1-8.4	0-20
	I			I	1
Coloma	0-3	3. 0-6.0	2.0-4.0	\| 4.5-6.5	0
	3-4	1.0-3.0	1 0.8-2.0	\| 4.5-6.5	0
	4-8	1.0-3.0	1 0.8-2.0	\| 4.5-6.5	0
	- 8-15	1.0-3.0	0.8-2.0	\| 4.5-6.5	0
	15-25	1.0-3.0	1 0.8-2.0	\| 4.5-6.5	0
	25-40	1.0-3.0	1 0.8-2.0	\| 4.5-6.5	0
	40-80	1.0-3.0	0.8-2.0	\| 4.5-7.3	0
	\|		I	I	,
193260:	,		I	I	1
Copemish	0-2	---	1 2.0-5.0	\| 3.5-5.0	10
	2-7	---	\| 0.8-2.0	\| 3.5-5.0	0
	7-11	---	1 0.8-2.0	\| 3.5-5.0	0
	11-28	-	1 0.8-3.0	\| 3.5-5.0	0
	28-36	---	1 0.8-3.0	\| 3.5-5.0	0
	36-80	---	$10.8-2.0$	\| 3.5-5.0	0
	\|		I	1	1
193262 :	,		I	I	I
Kaleva	0-3	3.0-6.0	1 2.0-4.0	\| 4.5-6.0	0
	3-9	1.0-3.0	\| 0.8-2.0	\| 4.5-6.0	0
	9-11	2.0-6.0	I 1.0-4.0	\| 4.5-6.0	0
	11-16	2.0-4.0	\| 1.0-3.0	\| 5.1-6.5	0
	16-21	2.0-4.0	I 1.0-3.0	\| 5.1-6.5	0
	21-70	1.0-3.0	\| 0.8-2.0	\| 5.1-6.5	0
	70-80	1.0-3.0	0.8-2.0	\| 5.1-6.5	0
	1		I	I	I
193263 :	I		I	I	I
Kaleva	0-3	3.0-6.0	1 2.0-4.0	\| 4.5-6.0	0
	3-9	1.0-3.0	1 0.8-2.0	\| 4.5-6.0	0
	- 9-11	2.0-6.0	I 1.0-4.0	\| 4.5-6.0	0
	11-16	2.0-4.0	\| 1.0-3.0	\| 5.1-6.5	0
	16-21	2.0-4.0	\| 1.0-3.0	\| 5.1-6.5	0
	21-70	1.0-3.0	1 0.8-2.0	\| 5.1-6.5	0
	70-80	1.0-3.0	$10.8-2.0$	\| 5.1-6.5	0
	1		I	I	,
193265 :			1	I	1
Grattan	0-4	3.0-6.0	1 2.0-4.0	\| 4.5-6.5	10
	- 4-13	1.0-3.0	1 0.8-2.0	\| 4.5-6.5	10
	13-18	2.0-4.0	\| 1.0-3.0	\| 4.5-6.5	0
	18-25	2.0-4.0	I 1.0-3.0	\| 4.5-6.5	0
	25-53	1.0-3.0	1 0.8-2.0	\| 4.5-6.5	0
	53-80	1.0-3.0	\| 0.8-2.0	\| 5.1-7.3	0
			1	I	1

Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | Depth |  | Effective cationexchange capacity | $\mid$ <br> I <br> Soil <br> reaction | \|Calcium |carbon- | ate | |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 In | \| meq/100 g l | meq/100 g | pH | Pct |
|  | I | I |  | 1 - | 1 |
| 193266: | 1 | 1 I |  | I | 1 |
| Grattan | - 0-4 | $\mid 3.0-6.0$ \| | 2.0-4.0 | \| 4.5-6.5 | 0 |
|  | \| 4-13 | 1.0-3.0 \| | 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 13-18 | $\mid$ 2.0-4.0 \| | 1.0-3.0 | \| 4.5-6.5 | 0 |
|  | \| 18-25 | \| 2.0-4.0 | | 1.0-3.0 | \| 4.5-6.5 | 0 |
|  | \| 25-53 | 1.0-3.0 \| | 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 53-80 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| | 1 l |  | I | 1 |
| 193267: | \| | 1 \| |  | 1 |  |
| Grattan | - 0-4 | $\mid 3.0-6.0$ \| | 2.0-4.0 | \| 4.5-6.5 | 0 |
|  | \| 4-13 | $\mid$ 1.0-3.0 \| | 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 13-18 | $\mid$ 2.0-4.0 \| | 1.0-3.0 | \| 4.5-6.5 | 0 |
|  | \| 18-25 | $\mid$ 2.0-4.0 \| | 1.0-3.0 | \| 4.5-6.5 | 0 |
|  | \| 25-53 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 53-80 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| | 1 l |  | I | 1 |
| 193269: | I | 1 I |  | I | 1 |
| Grattan | - 0-4 | $\mid 3.0-6.0$ \| | 2.0-4.0 | \| 4.5-6.5 | 0 |
|  | \| 4-13 | $\mid$ 1.0-3.0 \| | 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 13-18 | $\mid$ 2.0-4.0 \| | 1.0-3.0 | \| 4.5-6.5 | 0 |
|  | \| 18-25 | $\mid$ 2.0-4.0 \| | 1.0-3.0 | \| 4.5-6.5 | 0 |
|  | \| 25-53 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-6.5 | 0 |
|  | \| 53-80 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | I | 1 I |  | I | 1 |
| 193270: | I | 1 I |  | I | 1 |
| Covert | 0-1 | $\mid 3.0-6.0$ \| | 1.0-4.0 | \| 4.5-7.3 | 0 |
|  | \| 1-8 | \| 1.0-3.0 | | 0.8-2.0 | \| 4.5-7.3 | 0 |
|  | \| 8-18 | $\mid$ 2.0-4.0 \| | 1.0-3.0 | \| 4.5-6.0 | 0 |
|  | \| 18-25 | $\mid$ 2.0-4.0 \| | 1.0-3.0 | \| 4.5-7.3 | 0 |
|  | \|25-29 | $\mid$ 2.0-3.0 \| | 0.8-3.0 | \| 4.5-7.3 | $0$ |
|  | \| 29-38 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-8.4 | 0-25 |
|  | \| 38-47 | $\mid$ 1.0-3.0 \| | 0.8-2.0 | \| 5.1-8.4 | 0-25 |
|  | \| 47-80 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-8.4 | 0-25 |
|  | \| | 1 \| |  | I | \| |
| 193271: | I | 1 1 |  | I | 1 |
| Pipestone | - $0-2$ | $\mid$ 2.0-6.0 \| | 1.0-4.0 | \| 3.5-7.3 | 0 |
|  | \| 2-9 | $\mid$ 1.0-3.0 \| | 0.8-2.0 | $13.5-7.3$ | 0 |
|  | \| 9-12 | $\mid$ 2.0-6.0 \| | 1.0-4.0 | \| 3.5-6.0 | 0 |
|  | \| 12-24 | $\mid$ 2.0-4.0 \| | 1.0-3.0 | \| 4.5-6.0 | 0 |
|  | \| 24-32 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-7.3 | 0 |
|  | \| 32-80 | \| 1.0-3.0 | | 0.8-2.0 | \| 4.5-7.3 | 0 |
|  | I | 1 I |  | I | , |
| 193272 : | \| | 1 1 |  | I | , |
| Dair-- | - $0-4$ | \|125.0-140.0| | --- | \| 5.6-7.3 | 0 |
|  | \| 4-7 | \| 20.0-45.0 | | --- | \| 6.1-7.3 | 10 |
|  | \| 7-11 | $\mid 1.0-3.0$ \| | --- | 1 6.6-7.8 | 0 |
|  | \| 11-21 | $\mid 1.0-3.0$ \| | --- | \| 6.6-7.8 | 10 |
|  | \| 21-50 | $\mid 1.0-3.0$ \| | - | 1 6.6-7.8 | 0 |
|  | \| 50-80 | \| 1.0-3.0 | | --- | 1 6.6-7.8 | 10 |
|  | I | 1 I |  | I | I |
| 193277: | I | 1 1 |  | I | I |
| Benona------------- | - 0-2 | $\mid 3.0-6.0$ \| | 2.0-4.0 | 1 3.5-6.0 | 10 |
|  | \| 2-6 | $\mid$ 1.0-3.0 \| | 0.8-2.0 | 1 4.5-6.0 | 10 |
|  | \| 6-9 | $\mid$ 2.0-6.0 \| | 1.0-4.0 | 1 4.5-6.0 | 10 |
|  | \| 9-17 | $\mid$ 2.0-5.0 \| | 1.0-3.0 | 1 4.5-5.5 | 0 |
|  | \| 17-28 | $\mid$ 1.0-3.0 \| | 0.8-2.0 | \| 4.5-7.3 | 10 |
|  | \| 28-46 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-7.3 | 10 |
|  | \| 46-80 | \| 1.0-3.0 | | 0.8-2.0 | \| 4.5-7.3 | 10 |
|  | I | 1 l |  | I | 1 |

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth		Effective cationexchange capacity	$\begin{aligned} & \text { Soil } \\ & \text { reaction } \end{aligned}$			
	In	\| meq/100 g		\| meq/100 g l	pH	Pct	
		\|	1		\|		
193278:		1 l	1		1		
Benona-------------	0-2	$\mid 3.0-6.0$ \|	$\mid$ 2.0-4.0 \|	3.5-6.0	0		
	2-6	$\mid 1.0-3.0$ \|	\| 0.8-2.0		4.5-6.0	0	
	6-9	$\mid$ 2.0-6.0 \|	\| 1.0-4.0	4.5-6.0	0		
	9-17	$\mid$ 2.0-5.0 \|	\| 1.0-3.0	4.5-5.5	0		
	17-28	$\mid 1.0-3.0$ \|	\| 0.8-2.0		4.5-7.3	0	
	28-46	$\mid 1.0-3.0$ \|	$\mid 0.8-2.0$ \|	4.5-7.3	0		
	46-80	$\mid 1.0-3.0$ \|	$10.8-2.0$	4.5-7.3	0		
		1 I	1 I		1		
193279:		1 1	1 \|		1		
Benona-------------	0-2	$\mid 3.0-6.0$ \|	$\mid$ 2.0-4.0 \|	3.5-6.0	0		
	2-6	$\mid 1.0-3.0$ \|	$\mid 0.8-2.0$ \|	4.5-6.0	0		
	6-9	$\mid$ 2.0-6.0 \|	\| 1.0-4.0		4.5-6.0	0	
	9-17	$\mid$ 2.0-5.0 \|	$\mid 1.0-3.0$ \|	4.5-5.5	0		
	17-28	$\mid 1.0-3.0$ \|	$\mid 0.8-2.0$ \|	4.5-7.3	0		
	28-46	$\mid 1.0-3.0$ \|	\| 0.8-2.0		4.5-7.3	0	
	46-80	$\mid 1.0-3.0$ \|	\| 0.8-2.0		4.5-7.3	0	
		1 \|	1 I		,		
193284 :		1 l	1		I		
Udorthents---------	0-80	\| 5.0-15.0		1	5.6-7.3	0	
		1 l	1		1		
	0-80	\| 0.0-2.0		\| 0.0-1.0		5.1-6.5	0
		1 I	1 I		1		
193285:		1 \|	1 \|		I		
Lumley	0-3	\| ---		\|140.0-180.0		3.5-4.4	0
	3-6	\| ---		\|140.0-180.0		3.5-4.4	10
	6-8	\|125.0-200.0		1 --- \|	5.1-7.3	0	
	- 8-20	\|125.0-200.0		1 --- \|	5.1-7.3	0	
	20-45	\|125.0-200.0		1 --- \|	5.1-7.3	0	
	45-53	\| ---		\|140.0-180.0		3.5-4.4	10
	53-80	\| ---		\|140.0-180.0		3.5-4.4	0
	-	1 l	1 \|		,		
Makinen-	0-4	\|125.0-200.0		1 --- \|	5.1-7.3	10	
	4-14	\|125.0-200.0		1 ---	5.1-7.3	0	
	14-22	\|125.0-200.0		1 --- \|	5.1-7.3	0	
	22-31	\| ---		\|140.0-180.0		3.5-4.4	10
	- 31-80	$\mid 1.0-3.0$ \|	\| ---		6.1-8.4	0-25	
	I	1 I	1		I		
193286:	,	1 1	1 I		,		
Histosols	0-45	\|125.0-200.0		1 --- \|	5.1-7.3	0	
	45-80	$\mid 1.0-3.0$ \|	\| ---		4.5-7.8	0	
	-	1 l	1		,		
Aquents	0-80	$\mid 1.0-3.0$ \|	\| ---		4.5-7.8	0	
		1 I	1 I		I		
193287:	I	1 l	1 I		,		
Quartzipsamments---193288:	0-80	$\mid 0.0-1.0$ \|	\| ---		5.1-6.5	0	
	I	1 I	1 I		1		
		1 I	1 I		I		
Udipsamments-------193342:	0-80	$\mid 0.0-2.0$ \|	\| 0.0-1.0		5.1-6.5	0	
	I	1 I	1 I		I		
	,	1 \|	1		I		
Gorvan	0-4	\| 2.5-15.0		\| ---		6.1-7.8	\| 0-15
	- 4-11	\| 2.5-15.0		\| ---		6.1-7.8	\| 0-15
	11-27	\| 2.5-15.0		\| ---		6.6-7.8	0-15
	27-80	$\mid 1.0-3.0$ \|	\| ---		6.6-8.4	0-15	
	,	1 l	1 I		I		
Houghton	0-12	\|125.0-200.0		1 --- \|	4.5-7.3	10	
	12-26	\|125.0-200.0		1 --- \|	4.5-7.3	10	
	26-80	\|125.0-200.0		1 --- \|	4.5-7.3	10	
	\|	1 l	1 I		I		

Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | Depth | Cation- exchange capacity l | Effective cationexchange capacity | Soil <br> reaction | ```\|Calcium |carbon- ate``` |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 In | $1 \mathrm{meq} / 100 \mathrm{~g}$ | meq/100 g | 1 pH | 1 Pct |
|  | I | 1 |  | 1 - | 1 - |
| 193342: | I | \| |  | I | 1 |
| Glendora | \| 0-6 | \| 25.0-100.0| | - | \| 5.6-7.3 | 0 |
|  | \| 6-9 | $\mid 1.0-3.0$ \| | --- | \| 5.6-7.3 | 0 |
|  | \| 9-30 | $\mid 1.0-3.0$ \| | --- | \| 5.6-7.3 | 0 |
|  | \| 30-80 | $\mid 1.0-3.0$ \| | --- | \| 5.6-7.3 | 0 |
|  | I | 1 |  | I | 1 |
| 193349: | I | I |  | I | 1 |
| Spinks | \| 0-5 | \| 3.0-6.0 | | 1.0-4.0 | \| 5.1-7.3 | 0 |
|  | \| 5-10 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 10-17 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 17-62 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 62-72 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-7.3 | 0 |
|  | \| 72-80 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 5.1-8.4 | \| 0-20 |
|  | , | 1 1 |  |  |  |
| Coloma | 0-3 | $\mid 3.0-6.0$ \| | 2.0-4.0 | \| 4.5-6.5 | 10 |
|  | \| 3-4 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-6.5 | 10 |
|  | \| 4-8 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-6.5 | 10 |
|  | \| 8-15 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-6.5 | 10 |
|  | \| 15-25 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-6.5 | 10 |
|  | \| 25-40 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-6.5 | 10 |
|  | \| 40-80 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-7.3 | 10 |
|  | I | 1 I |  | 1 | , |
| 193351: | \| | 1 l |  | I | , |
| Benona | - 0-2 | $\mid 3.0-6.0$ \| | 2.0-4.0 | 1 3.5-6.0 | 10 |
|  | \| 2-6 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-6.0 | 10 |
|  | \| 6-9 | $\mid$ 2.0-6.0 \| | 1.0-4.0 | 1 4.5-6.0 | 10 |
|  | \| 9-17 | $\mid$ 2.0-5.0 \| | 1.0-3.0 | \| 4.5-5.5 | 10 |
|  | \| 17-28 | \| 1.0-3.0 | | 0.8-2.0 | \| 4.5-7.3 | 0 |
|  | \| 28-46 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-7.3 | 10 |
|  | \| 46-80 | $\mid 1.0-3.0$ \| | 0.8-2.0 | \| 4.5-7.3 | 10 |
|  | \| | 1 I |  | I | I |
| 193354: | \| | 1 1 |  | I | , |
| Quartzipsamments- | \| 0-80 | \| 0.0-1.0 | | --- | \| 5.1-6.5 | 0 |
|  | 1 | 1 |  | 1 | , |
| 193357: | \| | 1 1 |  |  |  |
| Shavenaugh | 0-5 | $\mid 3.0-6.0$ \| | --- | \| 5.6-7.3 | 10 |
|  | \| 5-8 | \| 1.0-3.0 | | 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 8-16 | $\mid 1.0-3.0$ \| | --- | \| 6.6-7.8 | 10 |
|  | \| 16-28 | $\mid 1.0-3.0$ \| | -- | \| 6.6-7.8 | 10 |
|  | \| 28-34 | $\mid 1.0-3.0$ \| | --- | \| 6.6-7.8 | 10 |
|  | \| 34-44 | $\mid 1.0-3.0$ \| | --- | \| 6.6-7.8 | 10 |
|  | \| 44-80 | \| 1.0-3.0 | | -- | \| 7.4-8.4 | \| 10-25 |
|  | I | 1 \| |  | 1 | 1 |
| $193359 \text { : }$ | \| | 1 1 |  | I | I |
| Shavenaugh | - 0-5 | $\mid 3.0-6.0$ \| | --- | \| 5.6-7.3 | 10 |
|  | \| 5-8 | \| 1.0-3.0 | | 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 8-16 | $\mid 1.0-3.0$ \| | --- | \| 6.6-7.8 | 10 |
|  | \| 16-28 | \| 1.0-3.0 | | --- | \| 6.6-7.8 | 10 |
|  | \| 28-34 | \| 1.0-3.0 | | --- | \| 6.6-7.8 | 10 |
|  | \| 34-44 | \| 1.0-3.0 | | --- | \| 6.6-7.8 | 10 |
|  | \| 44-80 | \| 1.0-3.0 | | --- | \| 7.4-8.4 | \| 10-25 |
|  | \| | 1 \| |  | 1 | \| |
| 193360: | I | 1 I |  | I | I |
| Shavenaugh--------- | - 0-5 | \| 3.0-6.0 | | --- | \| 5.6-7.3 | 10 |
|  | \| 5-8 | \| 1.0-3.0 | | 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 8-16 | $\mid$ 1.0-3.0 \| | , | \| 6.6-7.8 | 10 |
|  | \| 16-28 | $\mid$ 1.0-3.0 \| | --- | \| 6.6-7.8 | 10 |
|  | \| 28-34 | \| 1.0-3.0 | | --- | \| 6.6-7.8 | 10 |
|  | \| 34-44 | \| 1.0-3.0 | | -- | \| 6.6-7.8 | 10 |
|  | \| 44-80 | \| 1.0-3.0 | | --- | \| 7.4-8.4 | \| 10-25 |
|  | , | 1 \| |  | 1 | , |

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth		Effective cationexchange capacity	Soil   reaction		
	1 In	$1 \mathrm{meq} / 100 \mathrm{~g}$ l	meq/100 g	pH	Pct	
	I	1 \|		1 -	1 -	
193362 :	1	1		1	1	
Benzon	\| 0-5	$\mid$--- \|	2.0-4.0	\| 4.5-5.5	0	
	\| 5-11	$\mid$--- \|	0.8-2.0	\| 4.5-5.5	0	
	\| 11-15	\| ---		2.0-4.0	\| 5.1-5.5	0
	\| 15-20	\| ---		2.0-4.0	\| 5.1-5.5	0
	\| 20-27	$\mid 2.0-4.0$ \|	1.0-3.0	\| 5.1-6.0	0	
	\| 27-35	$\mid$ 2.0-4.0 \|	1.0-3.0	\| 5.1-6.0	0	
	\| 35-80	$\mid 1.0-3.0$ \|	---	\| 5.6-6.0	0	
	1	1 \|		,		
193363 :	1	1 I		I	I	
Benzonia	\| 0-5	\| ---		2.0-4.0	\| 4.5-5.5	0
	\| 5-11	\| ---		0.8-2.0	\| 4.5-5.5	0
	\| 11-15	$\mid$--- \|	2.0-4.0	\| 5.1-5.5	0	
	\| 15-20	1 --- \|	2.0-4.0	\| 5.1-5.5	0	
	\| 20-27	$\mid$ 2.0-4.0 \|	1.0-3.0	\| 5.1-6.0	0	
	\| 27-35	$\mid$ 2.0-4.0 \|	1.0-3.0	\| 5.1-6.0	0	
	\| 35-80	\| 1.0-3.0			\| 5.6-6.0	0
	I	1 I		I	1	
193364 :	1	1 I		1	1	
Benzonia	\| 0-5	\| ---		2.0-4.0	\| 4.5-5.5	0
	\| 5-11	\| ---		0.8-2.0	\| 4.5-5.5	0
	\| 11-15	$\mid$--- \|	2.0-4.0	\| 5.1-5.5	0	
	\| 15-20	1 --- \|	2.0-4.0	\| 5.1-5.5	0	
	\| 20-27	$\mid$ 2.0-4.0 \|	1.0-3.0	\| 5.1-6.0	0	
	\| 27-35	$\mid$ 2.0-4.0 \|	1.0-3.0	\| 5.1-6.0	0	
	\| 35-80	\| 1.0-3.0		--	\| 5.6-6.0	0
	I	1 l		I	I	
193365 :	1	1 I		I	1	
Benzonia	\| 0-5	\| ---		2.0-4.0	\| 4.5-5.5	0
	\| 5-11	\| ---		0.8-2.0	\| 4.5-5.5	0
	\| 11-15	\| ---		2.0-4.0	\| 5.1-5.5	0
	\| 15-20	1 --- \|	2.0-4.0	\| 5.1-5.5	0	
	\| 20-27	$\mid$ 2.0-4.0 \|	1.0-3.0	\| 5.1-6.0	10	
	\| 27-35	$\mid$ 2.0-4.0 \|	1.0-3.0	\| 5.1-6.0	10	
	\| 35-80	\| 1.0-3.0		---	\| 5.6-6.0	0
	I	1 I		I	I	
193371:	I	1 \|		I		
Dair	\| 0-4	\|125.0-140.0		---	\| 5.6-7.3	0
	\| 4-7	\| 20.0-45.0		---	\| 6.1-7.3	0
	\| 7-11	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	0	
	\| 11-21	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	0	
	\| 21-50	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	0	
	\| 50-80	\| 1.0-3.0		---	\| 6.6-7.8	0
	I	1 1		1	1	
Pipestone-	\| 0-2	$\mid$ 2.0-6.0 \|	1.0-4.0	\| 3.5-7.3	0	
Pipestone	\| 2-9	\| 1.0-3.0		0.8-2.0	1 3.5-7.3	0
	\| 9-12	$\mid$ 2.0-6.0 \|	1.0-4.0	\| 3.5-6.0	0	
	\| 12-24	$\mid$ 2.0-4.0 \|	1.0-3.0	\| 4.5-6.0	0	
	\| 24-32	$\mid 1.0-3.0$ \|	0.8-2.0	\| 4.5-7.3	0	
	\| 32-80	\| 1.0-3.0		0.8-2.0	\| 4.5-7.3	0
	1	1 I		1	1	
193423 :	I	1 1		I	,	
Benona	\| 0-2	\| 3.0-6.0		2. 0-4.0	1 3.5-6.0	0
	\| 2-6	$\mid 1.0-3.0$ \|	0.8-2.0	\| 4.5-6.0	0	
	\| 6-9	$\mid$ 2.0-6.0 \|	1.0-4.0	\| 4.5-6.0	0	
	\| 9-17	$\mid$ 2.0-5.0 \|	1.0-3.0	\| 4.5-5.5	0	
	\| 17-28	$\mid 1.0-3.0$ \|	0.8-2.0	\| 4.5-7.3	0	
	\| 28-46	$\mid 1.0-3.0$ \|	0.8-2.0	\| 4.5-7.3	0	
	\| 46-80	\| 1.0-3.0		0.8-2.0	\| 4.5-7.3	0
	1	1.0 -		,	1	

Table 18.-Chemical Soil Properties-Continued


Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | Depth | Cationexchange capacity | Effective cationexchange capacity | Soil <br> reaction | I <br> \|Calcium |carbonate <br> I |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 In | $1 \mathrm{meq} / 100 \mathrm{~g}$ | $1 \mathrm{meq} / 100 \mathrm{~g}$ | pH | 1 Pct |
|  | I | I | , | I | I |
| 193504: | 1 | I | I | I | I |
| Spinks------------- | - 0-5 | I 3.0-6.0 | I 1.0-4.0 | \| 5.1-7.3 | 10 |
|  | \| 5-10 | \| 1.0-3.0 | \| 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 10-17 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 17-62 | \| 1.0-3.0 | 1 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 62-72 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | $72-80$ | \| 1.0-3.0 | \| 0.8-2.0 | \| 5.1-8.4 | \| 0-20 |
|  | I | , | I | 1 | I |
| Shavenaugh--------- | 0-5 | \| 3.0-6.0 | 1 --- | \| 5.6-7.3 | 10 |
|  | \| 5-8 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 8-16 | \| 1.0-3.0 | 1 --- | \| 6.6-7.8 | 10 |
|  | \| 16-28 | \| 1.0-3.0 | I | \| 6.6-7.8 | 10 |
|  | \| 28-34 | I 1.0-3.0 | 1 --- | \| 6.6-7.8 | $10$ |
|  | \| 34-44 | I 1.0-3.0 | 1 --- | 1 6.6-7.8 | $10$ |
|  | \| 44-80 | \| 1.0-3.0 | I | \| 7.4-8.4 | \| 10-25 |
|  | I | I | I | I | I |
| 193505 : | 1 | 1 | I | I | I |
| Spinks | - 0-5 | I 3.0-6.0 | I 1.0-4.0 | \| 5.1-7.3 | 10 |
|  | \| 5-10 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 10-17 | \| 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 17-62 | \| 1.0-3.0 | \| 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 62-72 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 72-80 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-8.4 | I 0-20 |
|  | \| | I | I |  |  |
| Shavenaugh | - 0-5 | \| 3.0-6.0 | I | \| 5.6-7.3 | 10 |
|  | \| 5-8 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 8-16 | \| 1.0-3.0 | 1 --- | \| 6.6-7.8 | 10 |
|  | \| 16-28 | \| 1.0-3.0 | 1 --- | 1 6.6-7.8 | 10 |
|  | \| 28-34 | I 1.0-3.0 | I | \| 6.6-7.8 | 10 |
|  | \| 34-44 | \| 1.0-3.0 | 1 --- | 1 6.6-7.8 | 10 |
|  | \|44-80 | \| 1.0-3.0 | 1 --- | \| 7.4-8.4 | \| 10-25 |
|  | \| | I | I | I | I |
| 193506: | \| | 1 | I | I | I |
| Spinks | 0-5 | \| 3.0-6.0 | I 1.0-4.0 | \| 5.1-7.3 | 10 |
|  | \| 5-10 | \| 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 10-17 | \| 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 17-62 | \| 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 62-72 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 72-80 | \| 1.0-3.0 | I 0.8-2.0 | \| 5.1-8.4 | \| 0-20 |
|  | \| | I | I | I | I |
| Shavenaugh | 0-5 | I 3.0-6.0 | 1 --- | \| 5.6-7.3 | 10 |
|  | \| 5-8 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 8-16 | \| 1.0-3.0 | I | \| 6.6-7.8 | 10 |
|  | \| 16-28 | \| 1.0-3.0 | 1 --- | \| 6.6-7.8 | 10 |
|  | \| 28-34 | I 1.0-3.0 | 1 --- | 1 6.6-7.8 | 10 |
|  | \| 34-44 | \| 1.0-3.0 | I | \| 6.6-7.8 | 10 |
|  | \| 44-80 | \| 1.0-3.0 | I | \| 7.4-8.4 | \| 10-25 |
|  | \| | 1 | I | 1 | I |
| 193507: | 1 | 1 | I | I | I |
| Spinks | 0-5 | \| 3.0-6.0 | I 1.0-4.0 | \| 5.1-7.3 | 10 |
|  | \| 5-10 | \| 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 10-17 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 17-62 | \| 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 62-72 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
|  | \| 72-80 | I 1.0-3.0 | \| 0.8-2.0 | \| 5.1-8.4 | \| 0-20 |
|  | I | 1 | 1 | I | I |

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth	\| Cation-   \|    exchange    \|    capacity	Effective cationexchange capacity	Soil   reaction	$\begin{aligned} & \text { \|Calcium } \\ & \text { \|Carbon- } \\ & \text { \| ate } \\ & \text { \| at } \end{aligned}$	
	1 In	\| meq/100 g l	meq/100 g	$1 \quad \mathrm{pH}$	1 Pct	
	I	,		I	I	
193507:	1	1 l		I	I	
Shavenaugh---------	- 0-5	$\mid 3.0-6.0$ \|	---	\| 5.6-7.3	10	
	\| 5-8	$\mid 1.0-3.0$ \|	0.8-2.0	\| 5.1-7.3	10	
	\| 8-16	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	\| 16-28	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	\| 28-34	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	\| 34-44	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	\| 44-80	\| 1.0-3.0		---	\| 7.4-8.4	\| 10-25
	1	1 l		I	I	
193508:	I	1 1		I	I	
Madaus-------------	\| 0-12	\|125.0-200.0		-	\| 6.1-8.4	10
	\| 12-34	\| 2.0-10.0		---	\| 7.4-8.4	\| 50-90
	\| 34-38	\| 2.0-10.0		---	\| 7.4-8.4	\| 50-90
	\| 38-62	$\mid 1.0-3.0$ \|	---	\| 7.4-8.4	\| 10-25	
	\| 62-80	$\mid 1.0-3.0$ \|	---	\| 7.4-8.4	\| 10-30	
	\|	1 l		I	I	
193509:	I	1 I		I	I	
Boyer	- 0-3	$\mid 3.0-8.0$ \|	---	\| 5.6-8.4	10	
	\| 3-4	$\mid 1.0-6.0$ \|	---	\| 5.6-8.4	10	
	\| 4-14	\| 4.0-20.0		---	\| 5.6-8.4	10
	\| 14-30	\| 4.0-20.0		---	\| 5.6-8.4	10
	\| 30-45	$\mid 1.0-3.0$ \|	---	\| 7.9-8.4	\| 10-25	
	\| 45-80	$\mid 1.0-3.0$ \|	---	\| 7.9-8.4	\| 10-25	
	\|	1 l		I	I	
Shavenaugh---------	- 0-5	$\mid 3.0-6.0$ \|	-	\| 5.6-7.3	10	
	\| 5-8	$\mid 1.0-3.0$ \|	0.8-2.0	\| 5.1-7.3	10	
	\| 8-16	$\mid 1.0-3.0$ \|	--	\| 6.6-7.8	10	
	\| 16-28	$\mid 1.0-3.0$ \|	---	1 6.6-7.8	10	
	\| 28-34	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	$10$	
	\| 34-44	$\mid$ 1.0-3.0 \|	---	\| 6.6-7.8	10	
	\| 44-80	\| 1.0-3.0		---	\| 7.4-8.4	\| 10-25
	\|	1 I		1		
193510:	I	1 I		I	I	
Boyer	- 0-3	$\mid 3.0-8.0$ \|	---	\| 5.6-8.4	10	
	\| 3-4	$\mid 1.0-6.0$ \|	---	\| 5.6-8.4	10	
	\| 4-14	\| 4.0-20.0		---	\| 5.6-8.4	$10$
	\| 14-30	\| 4.0-20.0		---	\| 5.6-8.4	10
	\| 30-45	$\mid 1.0-3.0$ \|	---	\| 7.9-8.4	\| 10-25	
	\| 45-80	\| 1.0-3.0		-	\| 7.9-8.4	\| 10-25
	\|	1 l		I	I	
Shavenaugh	- 0-5	\| 3.0-6.0		---	\| 5.6-7.3	10
	\| 5-8	$\mid 1.0-3.0$ \|	0.8-2.0	\| 5.1-7.3	10	
	\| 8-16	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	$10$	
	\| 16-28	\| 1.0-3.0		---	\| 6.6-7.8	10
	\| 28-34	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	\| 34-44	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	\| 44-80	\| 1.0-3.0		---	\| 7.4-8.4	\| 10-25
	I	1 I		I	I	
193511:	1	1 I		I	I	
Boyer	- 0-3	$\mid 3.0-8.0$ \|	---	\| 5.6-8.4		
	\| 3-4	$\mid 1.0-6.0$ \|	--	\| 5.6-8.4	10	
	\| 4-14	\| 4.0-20.0		---	\| 5.6-8.4	10
	\| 14-30	\| 4.0-20.0		---	\| 5.6-8.4	10
	\| 30-45	$\mid 1.0-3.0$ \|	---	\| 7.9-8.4	\| 10-25	
	\| 45-80	\| 1.0-3.0		---	\| 7.9-8.4	\| 10-25
	\|	1 l		1	I	

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth	\| Cation-   \|    exchange    \|    capacity	Effective cationexchange capacity	$\|$\| Soil   \| reaction	$\begin{aligned} & \text { \| Calcium } \\ & \text { \| Carbon- } \\ & \text { \| ate } \\ & \text { \| } \\ & \hline \end{aligned}$	
	In	\| meq/100 g l	meq/100 g	1 pH	1 Pct	
	I	I		1	,	
193511:	,	I		1	I	
Shavenaugh---------	0-5	$\mid 3.0-6.0$ \|	---	\| 5.6-7.3	10	
	5-8	I 1.0-3.0	0.8-2.0	\| 5.1-7.3	10	
	\| 8-16	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	16-28	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	\| 28-34	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	\| 34-44	I 1.0-3.0	---	\| 6.6-7.8	10	
	- 44-80	I 1.0-3.0	---	\| 7.4-8.4	\| 10-25	
	,	1		,	I	
193513 :	I	I		I	I	
Dair	0-4	\|125.0-140.0		---	\| 5.6-7.3	10
	4-7	\| 20.0-45.0		---	\| 6.1-7.3	10
	- 7-11	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	1 11-21	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	- 21-50	$\mid 1.0-3.0$ \|	---	\| 6.6-7.8	10	
	- 50-80	\| 1.0-3.0		---	\| 6.6-7.8	10
	I	1 1		I	I	
Adrian	0-7	\|125.0-200.0		---	\| 5.1-7.3	10
	- 7-20	\|125.0-200.0		---	\| 5.1-7.3	10
	- 20-35	\|125.0-200.0		---	\| 5.1-7.3	10
	\| 35-80	\| 1.0-3.0		-	\| 6.1-8.4	\| 0-25
	I	I		I	I	
193514:	I	1 1		I	1	
Platteriver--------	0-1	$\mid$ 2.0-6.0 \|	1.0-4.0	\| 3.5-6.5	10	
	1-3	\| 2.0-6.0		1.0-4.0	\| 3.5-6.5	10
	\| 3-14	$\mid 1.0-3.0$ \|	0.8-2.0	\| 3.5-6.5	10	
	1 14-20	$\mid 1.0-3.0$ \|	0.8-2.0	\| 3.5-6.5	10	
	- 20-29	$\mid 1.0-3.0$ \|	0.8-2.0	\| 3.5-6.5	10	
	- 29-80	\| 1.0-3.0		0.8-2.0	\| 3.5-6.5	10
	I	I		I	I	
Pipestone	0-2	$\mid$ 2.0-6.0 \|	1.0-4.0	\| 3.5-7.3	10	
	- $2-9$	\| 1.0-3.0		0.8-2.0	\| 3.5-7.3	10
	\| 9-12	I 2.0-6.0	1.0-4.0	$13.5-6.0$	10	
	1 12-24	$\mid 2.0-4.0$ \|	1.0-3.0	\| 4.5-6.0	10	
	- 24-32	$\mid 1.0-3.0$ \|	0.8-2.0	\| 4.5-7.3	10	
	- 32-80	\| 1.0-3.0		0.8-2.0	\| 4.5-7.3	10
	I	1 I		I	I	
202010 :	I	11		I	I	
Houghton-----------	0-12	\|125.0-200.0		---	\| 5.1-7.3	10
	12-26	\|125.0-200.0		---	\| 5.1-7.3	10
	- 26-80	\|125.0-200.0		---	\| 5.1-7.3	10
	I	1 I		I	I	
Adrian	0-7	\|125.0-200.0		---	\| 5.1-7.3	10
	1 7-20	\|125.0-200.0		---	\| 5.1-7.3	10
	1 20-35	\|125.0-200.0		---	\| 5.1-7.3	10
	\| 35-80	\| 1.0-3.0		---	\| 6.1-8.4	\| 0-25
	I	1 I		I	I	
202016:	I	1 1		I	I	
Spinks	0-5	$\mid 3.0-6.0$ \|	1.0-4.0	\| 5.1-7.3	10	
	- 5-10	$\mid 1.0-3.0$ \|	0.8-2.0	\| 5.1-7.3	10	
	10-17	$\|1.0-3.0\|$	0.8-2.0	\| 5.1-7.3	10	
	17-62	$\mid 1.0-3.0$ \|	0.8-2.0	\| 5.1-7.3	10	
	- 62-72	$\mid 1.0-3.0$ \|	0.8-2.0	\| 5.1-7.3	10	
	- 72-80	\| 1.0-3.0		0.8-2.0	\| 5.1-8.4	\| 0-20
	I	1 l		1	I	

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth	Cationexchange capacity	Effective cationexchange capacity	Soil reaction	$\qquad$
```202016: Tekenink, sandy substratum-```	In	$1 \mathrm{meq} / 100 \mathrm{~g}$	$1 \mathrm{meq} / 100 \mathrm{~g}$	1 pH	1 Pct
		I		1	1
	,	I	I	I	I
		I	I	I	1
	0-8	\| 5.0-15.0	\| 3.0-10.0	\| 5.1-7.3	0
	8-16	\| 5.0-10.0	$10.8-3.0$	\| 5.1-7.3	0
	16-21	\| 5.0-10.0	$10.8-3.0$	\| 5.1-7.3	10
	21-49	\| 3.0-10.0	$10.8-3.0$	\| 5.1-7.3	0
	49-62	\| 5.0-15.0	\| 3.0-10.0	\| 5.1-7.8	\| 0-25
	62-72	\| 1.0-3.0	1 ---	\| 7.4-8.4	10-25
	72-80	\| 1.0-3.0	\| ---	\| 7.4-8.4	10-25
		I	I	I	\|
$\begin{gathered} \text { 631170: } \\ \text { Fogg-- } \end{gathered}$,	I	I	I	1
	0-2	$13.0-6.0$	1 2.0-4.0	\| 4.5-6.0	10
	2-7	\| 1.0-3.0	1 0.8-2.0	\| 4.5-6.0	0
	7-13	1 2.0-6.0	1 2.0-4.0	1 4.5-6.0	0
	13-21	I 2.0-4.0	\| 1.0-3.0	\| 4.5-6.0	10
	21-34	\| 2.0-4.0	\| 1.0-3.0	\| 4.5-6.0	10
	34-43	I 3.0-10.0	1 ---	\| 5.6-7.3	0
	43-48	\| 3.0-10.0	\| ---	\| 5.6-7.3	0
	48-55	I 5.0-15.0	\| ---	$15.6-7.3$	10
	55-80	\| 1.0-3.0	\| ---	\| 5.6-7.3	10
	-	I	I	I	1
Benzonia	0-5	\| ---	\| 2.0-4.0	\| 4.5-5.5	10
	5-11	1	\| 0.8-2.0	\| 4.5-5.5	10
	11-15	I	1 2.0-4.0	\| 5.1-5.5	10
	15-20	1 ---	\| 2.0-4.0	\| 5.1-5.5	10
	20-27	$12.0-4.0$	I 1.0-3.0	\| 5.1-6.0	10
	27-35	\| 2.0-4.0	\| 1.0-3.0	\| 5.1-6.0	10
	35-80	I 1.0-3.0	1 ---	\| 5.6-6.0	10
	-	I	I	I	,
631171:	-	1	1	1	1
	0-2	I 3.0-6.0	1 2.0-4.0	\| 4.5-6.0	10
	2-7	I 1.0-3.0	I 0.8-2.0	1 4.5-6.0	10
	7-13	I 2.0-6.0	1 2.0-4.0	\| 4.5-6.0	10
	13-21	1 2.0-4.0	\| 1.0-3.0	\| 4.5-6.0	10
	21-34	1 2.0-4.0	I 1.0-3.0	\| 4.5-6.0	10
	34-43	I 3.0-10.0	1 ---	\| 5.6-7.3	10
	43-48	\| 3.0-10.0	1 ---	\| 5.6-7.3	10
	48-55	I 5.0-15.0	\| ---	\| 5.6-7.3	10
	55-80	\| 1.0-3.0	\| ---	\| 5.6-7.3	10
	-	1	I	I	1
Benzonia	0-5	1	1 2.0-4.0	\| 4.5-5.5	10
	5-11	I	$10.8-2.0$	\| 4.5-5.5	10
	11-15	\| ---	\| 2.0-4.0	\| 5.1-5.5	10
	15-20	1 ---	1 2.0-4.0	\| 5.1-5.5	10
	20-27	$12.0-4.0$	I 1.0-3.0	\| 5.1-6.0	10
	27-35	1 2.0-4.0	1 1.0-3.0	\| 5.1-6.0	10
	35-80	I 1.0-3.0	1	\| 5.6-6.0	10
	-	1	I	I	I
631172 :	-	1	I	I	I
Fogg-	0-2	I 3.0-6.0	\| 2.0-4.0	\| 4.5-6.0	10
	2-7	I 1.0-3.0	1 0.8-2.0	1 4.5-6.0	10
	7-13	I 2.0-6.0	1 2.0-4.0	\| 4.5-6.0	10
	13-21	1 2.0-4.0	I 1.0-3.0	1 4.5-6.0	10
	21-34	\| 2.0-4.0	I 1.0-3.0	\| 4.5-6.0	10
	34-43	I 3.0-10.0	1 --	\| 5.6-7.3	10
	43-48	I 3.0-10.0	1 ---	\| 5.6-7.3	10
	48-55	\| 5.0-15.0	\| ---	\| 5.6-7.3	10
	55-80	I 1.0-3.0	1 ---	\| 5.6-7.3	10
	-	1	1	I	1

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth	Cationexchange capacity	$\left\lvert\, \begin{gathered}\text { Effective } \\ \text { \| cation- } \\ \text { exchange } \\ \text { \| capacity }\end{gathered}\right.$	Soil reaction	$\begin{aligned} & \text { \|Calcium } \\ & \text { \| carbon- } \\ & \text { \| ate } \\ & \text { \| } \\ & \hline \end{aligned}$
	1 In	$1 \mathrm{meq} / 100 \mathrm{~g}$	$1 \mathrm{meq} / 100 \mathrm{~g}$	1 pH	Pct
	I		I	I	1 -
631172 :	I	I	I	I	1
Benzonia-----------	\| 0-5	\| ---	1 2.0-4.0	\| 4.5-5.5	10
	\| 5-11	\| ---	\| 0.8-2.0	\| 4.5-5.5	0
	\| 11-15	\| ---	1 2.0-4.0	\| 5.1-5.5	0
	\| 15-20	I	I 2.0-4.0	\| 5.1-5.5	10
	\| 20-27	$12.0-4.0$	I 1.0-3.0	\| 5.1-6.0	0
	\| 27-35	1 2.0-4.0	I 1.0-3.0	1 5.1-6.0	0
	\| 35-80	\| 1.0-3.0	1 ---	\| 5.6-6.0	0
	1	I	1	1	1
631173 :	1	I	1	1	1
Fogg-	\| 0-2	I 3.0-6.0	1 2.0-4.0	1 4.5-6.0	0
	\| 2-7	1 1.0-3.0	1 0.8-2.0	1 4.5-6.0	0
	\| 7-13	I 2.0-6.0	1 2.0-4.0	\| 4.5-6.0	0
	\| 13-21	$12.0-4.0$	\| 1.0-3.0	\| 4.5-6.0	0
	\| 21-34	1 2.0-4.0	I 1.0-3.0	\| 4.5-6.0	0
	\| 34-43	\| 3.0-10.0	1 ---	\| 5.6-7.3	0
	\| 43-48	I 3.0-10.0	1 ---	\| 5.6-7.3	0
	\| 48-55	\| 5.0-15.0	1	\| 5.6-7.3	0
	\| 55-80	I 1.0-3.0	1	\| 5.6-7.3	0
	I	1	1		
Benzonia	\| 0-5	1	1 2.0-4.0	1 4.5-5.5	0
	\| 5-11	I	I 0.8-2.0	\| 4.5-5.5	0
	\| 11-15	1 ---	I 2.0-4.0	\| 5.1-5.5	0
	\| 15-20	1 ---	I 2.0-4.0	\| 5.1-5.5	10
	\| 20-27	1 2.0-4.0	I 1.0-3.0	\| 5.1-6.0	0
	\| 27-35	1 2.0-4.0	I 1.0-3.0	\| 5.1-6.0	10
	\| 35-80	\| 1.0-3.0	1 ---	\| 5.6-6.0	0
	1	I	1	I	
631174 :	1	1	1	I	
Fogg-	\| 0-2	\| 3.0-6.0	$12.0-4.0$	\| 4.5-6.0	0
	\| 2-7	I 1.0-3.0	I 0.8-2.0	1 4.5-6.0	10
	\| 7-13	1 2.0-6.0	I 2.0-4.0	1 4.5-6.0	10
	\| 13-21	1 2.0-4.0	I 1.0-3.0	1 4.5-6.0	10
	\| 21-34	\| 2.0-4.0	I 1.0-3.0	\| 4.5-6.0	0
	\| 34-43	1 3.0-10.0	\| ---	\| 5.6-7.3	0
	\| 43-48	I 3.0-10.0	1	\| 5.6-7.3	10
	\| 48-55	\| 5.0-15.0	1 ---	\| 5.6-7.3	0
	\| 55-80	\| 1.0-3.0	1	\| 5.6-7.3	0
	\|	I	1	I	
Benzonia-----------	\| 0-5	\| ---	1 2.0-4.0	\| 4.5-5.5	10
	\| 5-11	1 ---	1 0.8-2.0	\| 4.5-5.5	10
	\| 11-15	1 ---	1 2.0-4.0	\| 5.1-5.5	0
	\| 15-20	1	1 2.0-4.0	\| 5.1-5.5	0
	\| 20-27	$12.0-4.0$	\| 1.0-3.0	\| 5.1-6.0	10
	\| 27-35	1 2.0-4.0	I 1.0-3.0	\| 5.1-6.0	10
	\| 35-80	\| 1.0-3.0	1 ---	\| 5.6-6.0	10
	1	I	1	1	,
	I	1	1	1	,
Fern--	- 0-9	1 3.0-6.0	1 ---	\| 5.6-7.3	10
	\| 9-10	I 1.0-3.0	1	\| 5.6-7.3	10
	\| 10-24	1 2.0-4.0	1 ---	\| 5.6-7.3	10
	\| 24-29	I 3.0-20.0	1 ---	\| 5.6-7.3	10
	\| 29-42	I 4.0-20.0	1 ---	\| 6.1-7.8	\| 0-20
	\| 42-50	I 3.0-10.0	1 ---	\| 6.1-8.4	0-30
	\| 50-80	\| 3.0-10.0	1 ---	\| 6.1-8.4	\| 0-30
	1	I	1	1	1

Table 18.-Chemical Soil Properties-Continued

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	Depth	Cationexchange capacity	I \| Effective \| cation- \| exchange \| capacity	Soil reaction	
	1 In	$1 \mathrm{meq} / 100 \mathrm{~g}$	$1 \mathrm{meq} / 100 \mathrm{~g}$	1 pH	1 Pct
	I	I	1	1 -	1
680972 :	I	I	I	I	1
Nessen-	- 0-4	$13.0-6.0$	1 2.0-4.0	\| 5.1-6.0	0
	\| 4-11	I 1.0-3.0	\| 0.8-2.0	\| 5.1-6.0	0
	\| 11-15	\| 2.0-6.0	\| 1.0-4.0	\| 5.1-6.0	0
	\| 15-24	I 2.0-4.0	\| 1.0-3.0	\| 5.1-6.0	0
	\| 24-39	\| 2.0-4.0	\| 1.0-3.0	\| 5.1-6.0	0
	\| 39-44	I 1.0-3.0	\| 0.8-2.0	\| 5.1-6.0	0
	\| 44-80	I 1.0-3.0	1 ---	\| 7.4-8.4	10-25
	,	I	1	1	
Kaleva	0-3	I 3.0-6.0	1 2.0-4.0	\| 4.5-6.0	0
	\| 3-9	I 1.0-3.0	\| 0.8-2.0	\| 4.5-6.0	0
	\| 9-11	I 2.0-6.0	I 1.0-4.0	\| 4.5-6.0	0
	\| 11-16	I 2.0-4.0	\| 1.0-3.0	\| 5.1-6.5	0
	\| 16-21	I 2.0-4.0	\| 1.0-3.0	\| 5.1-6.5	0
	\| 21-70	\| 1.0-3.0	\| 0.8-2.0	\| 5.1-6.5	10
	\| 70-80	I 1.0-3.0	I 0.8-2.0	\| 5.1-6.5	10
	I	I	1	I	,
680973 :	I	1	1	1	I
Nessen-	- 0-4	I 3.0-6.0	1 2.0-4.0	\| 5.1-6.0	10
	\| 4-11	I 1.0-3.0	\| 0.8-2.0	\| 5.1-6.0	10
	\| 11-15	I 2.0-6.0	I 1.0-4.0	\| 5.1-6.0	10
	\| 15-24	I 2.0-4.0	I 1.0-3.0	\| 5.1-6.0	10
	\| 24-39	I 2.0-4.0	I 1.0-3.0	\| 5.1-6.0	0
	\| 39-44	I 1.0-3.0	\| 0.8-2.0	\| 5.1-6.0	10
	\| 44-80	I 1.0-3.0	1 ---	\| 7.4-8.4	\| 10-25
	I	1	1		
Kaleva-	1 0-3	1 3.0-6.0	1 2.0-4.0	1 4.5-6.0	10
	- 3-9	1 1.0-3.0	I 0.8-2.0	1 4.5-6.0	10
	\| 9-11	I 2.0-6.0	I 1.0-4.0	\| 4.5-6.0	10
	\| 11-16	1 2.0-4.0	1 1.0-3.0	\| 5.1-6.5	10
	\| 16-21	I 2.0-4.0	1 1.0-3.0	\| 5.1-6.5	10
	\| 21-70	1 1.0-3.0	1 0.8-2.0	\| 5.1-6.5	10
	\| 70-80	I 1.0-3.0	I 0.8-2.0	\| 5.1-6.5	10
	I	1	1	1	I
680974:	I	I	1	I	I
Nessen-	- 0-4	I 3.0-6.0	1 2.0-4.0	\| 5.1-6.0	10
	\| 4-11	I 1.0-3.0	\| 0.8-2.0	\| 5.1-6.0	10
	\| 11-15	I 2.0-6.0	I 1.0-4.0	\| 5.1-6.0	10
	\| 15-24	I 2.0-4.0	\| 1.0-3.0	\| 5.1-6.0	10
	\| 24-39	I 2.0-4.0	\| 1.0-3.0	\| 5.1-6.0	10
	\| 39-44	I 1.0-3.0	\| 0.8-2.0	\| 5.1-6.0	10
	\| 44-80	I 1.0-3.0	1	\| 7.4-8.4	\| 10-25
	\|	1 1 0	1	1	I
Kaleva	1 0-3	$13.0-6.0$	1 2.0-4.0	1 4.5-6.0	10
	\| 3-9	\| 1.0-3.0	\| 0.8-2.0	\| 4.5-6.0	10
	\| 9-11	I 2.0-6.0	\| 1.0-4.0	\| 4.5-6.0	10
	\| 11-16	I 2.0-4.0	\| 1.0-3.0	\| 5.1-6.5	10
	\| 16-21	I 2.0-4.0	\| 1.0-3.0	\| 5.1-6.5	10
	\| 21-70	I 1.0-3.0	1 0.8-2.0	\| 5.1-6.5	10
	\| 70-80	I 1.0-3.0	I 0.8-2.0	\| 5.1-6.5	10
	I	1	1	I	I
893251:	I	I	1	I	I
Boyer-	0-3	$13.0-8.0$	1 ---	\| 5.6-8.4	10
	\| 3-4	\| 1.0-6.0	1 ---	\| 5.6-8.4	10
	\| 4-14	I 4.0-20.0	1 --	\| 5.6-8.4	10
	\| 14-30	I 4.0-20.0	1	\| 5.6-8.4	10
	\| 30-45	I 1.0-3.0	1 ---	\| 7.9-8.4	\| 10-25
	\| 45-80	l 1.0-3.0	1 ---	\| 7.9-8.4	\| 10-25
	I	1	1	I	I

Table 18.-Chemical Soil Properties-Continued

Map unit symbol and soil name	D Depth	Cationexchange capacity	$\left\lvert\, \begin{gathered}\text { Effective } \\ \left\lvert\, \begin{array}{c}\text { cation- } \\ \text { exchange } \\ \text { \| } \\ \text { capacity }\end{array}\right.\end{gathered}\right.$	Soil reaction	
	1 In	meq/100 g	meq/100 g	1 pH	1 Pct
	I		,	I	1
893251:	I	I	I	I	1
Shavenaugh---------	\| 0-5	1 3.0-6.0	1 -	\| 5.6-7.3	10
	\| 5-8	\| 1.0-3.0	\| 0.8-2.0	\| 5.1-7.3	0
	\| 8-16	1 1.0-3.0	1 -	\| 6.6-7.8	10
	\| 16-28	\| 1.0-3.0	1	\| 6.6-7.8	10
	\| 28-34	1.0-3.0	I	\| 6.6-7.8	10
	\| 34-44	1 1.0-3.0	1 ---	\| 6.6-7.8	10
	\| 44-80	1.0-3.0	I	\| 7.4-8.4	\| 10-25
	I		I	I	I
894062 :	I		1		1
Remus	0-9	5.0-15.0	\| 3.0-10.0	\| 5.1-7.3	10
	\| 9-15	5.0-15.0	I 3.0-10.0	\| 5.1-7.3	10
	\| 15-24	1.0-15.0	I 3.0-10.0	\| 5.1-7.3	10
	\| 24-35	1.0-15.0	\| 3.0-10.0	\| 5.1-7.3	10
	\| 35-66	5.0-20.0	\| 3.0-15.0	\| 5.1-7.3	10
	\| 66-80	5.0-15.0	\| ---	\| 7.4-8.4	\| 10-30
	I)	I	I	
Spinks	0-5	3.0-6.0	\| 1.0-4.0	\| 5.1-7.3	10
	\| 5-10	1.0-3.0	I 0.8-2.0	\| 5.1-7.3	10
	\| 10-17	1 1.0-3.0	I 0.8-2.0	\| 5.1-7.3	10
	\| 17-62	1.0-3.0	I 0.8-2.0	\| 5.1-7.3	10
	\| 62-72	1 1.0-3.0	I 0.8-2.0	\| 5.1-7.3	10
	\| 72-80	1.0-3.0	I 0.8-2.0	\| 5.1-8.4	\| 0-20
	I		I	I	
894063:	\|		1	I	,
Remus	\| 0-9	1 5.0-15.0	I 3.0-10.0	\| 5.1-7.3	10
	\| 9-15	5.0-15.0	\| 3.0-10.0	\| 5.1-7.3	10
	\| 15-24	\| 1.0-15.0	I 3.0-10.0	\| 5.1-7.3	10
	\| 24-35	1 1.0-15.0	\| 3.0-10.0	\| 5.1-7.3	10
	\| 35-66	5.0-20.0	\| 3.0-15.0	\| 5.1-7.3	10
	1 66-80	5.0-15.0	-	\| 7.4-8.4	\| 10-30
	\|		1	1	,
Spinks-------------	\| 0-5	3.0-6.0	\| 1.0-4.0	\| 5.1-7.3	10
	\| 5-10	1 1.0-3.0	\| 0.8-2.0	\| 5.1-7.3	10
	\| 10-17	1.0-3.0	\| 0.8-2.0	\| 5.1-7.3	10
	\| 17-62	1 1.0-3.0	I 0.8-2.0	\| 5.1-7.3	10
	\| 62-72	1.0-3.0	$10.8-2.0$	\| 5.1-7.3	10
	\| 72-80	1 1.0-3.0	I 0.8-2.0	\| 5.1-8.4	\| 0-20
	I	I	I	1	I
894064:	\|	1 -	1	I	,
Fern-	- 0-9	1 3.0-6.0	1 ---	\| 5.6-7.3	10
	\| 9-10	1.0-3.0	1 --	\| 5.6-7.3	10
	\| 10-24	1 2.0-4.0	1	\| 5.6-7.3	10
	\| 24-29	1 3.0-20.0	1 ---	\| 5.6-7.3	10
	\| 29-42	1 4.0-20.0	1	\| 6.1-7.8	\| 0-20
	\| 42-50	1 3.0-10.0	1	\| 6.1-8.4	I 0-30
	\| 50-80	1 3.0-10.0	1	\| 6.1-8.4	\| 0-30
	\|		1		I
Remus	- 0-9	5.0-15.0	I 3.0-10.0	\| 5.1-7.3	10
	\| 9-15	5.0-15.0	I 3.0-10.0	\| 5.1-7.3	10
	\| 15-24	1.0-15.0	\| 3.0-10.0	\| 5.1-7.3	10
	\| 24-35	1.0-15.0	1 3.0-10.0	\| 5.1-7.3	10
	\| 35-66	1 5.0-20.0	\| 3.0-15.0	\| 5.1-7.3	10
	\| 66-80	\| 5.0-15.0	1 ---	\| 7.4-8.4	\| 10-30
	I	I	1	I	I

Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | Depth | Cationexchange capacity | $\left\lvert\, \begin{gathered}\text { Effective } \\ \text { \| cation- } \\ \text { exchange } \\ \text { \| capacity }\end{gathered}\right.$ | Soil
 reaction | I
 \|Calcium |carbonate I |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | In | $1 \mathrm{meq} / 100 \mathrm{~g}$ | $1 \mathrm{meq} / 100 \mathrm{~g}$ | pH | Pct |
| | | I | , | 1 | 1 - |
| 894065 : | , | 1 | 1 | 1 | 1 |
| Fern | 0-9 | \| 3.0-6.0 | 1 | \| 5.6-7.3 | 0 |
| | 9-10 | \| 1.0-3.0 | 1 -- | \| 5.6-7.3 | 0 |
| | 10-24 | 1 2.0-4.0 | 1 --- | \| 5.6-7.3 | 0 |
| | 24-29 | \| 3.0-20.0 | 1 | \| 5.6-7.3 | 0 |
| | 29-42 | I 4.0-20.0 | 1 | \| 6.1-7.8 | 0-20 |
| | 42-50 | \| 3.0-10.0 | 1 --- | \| 6.1-8.4 | \| 0-30 |
| | 50-80 | \| 3.0-10.0 | 1 | \| 6.1-8.4 | \| 0-30 |
| | \| | 1 | 1 | | 1 |
| Remus | 0-9 | \| 5.0-15.0 | I 3.0-10.0 | \| 5.1-7.3 | 0 |
| | 9-15 | \| 5.0-15.0 | I 3.0-10.0 | \| 5.1-7.3 | 0 |
| | 15-24 | \| 1.0-15.0 | I 3.0-10.0 | \| 5.1-7.3 | 0 |
| | 24-35 | \| 1.0-15.0 | I 3.0-10.0 | \| 5.1-7.3 | 10 |
| | - 35-66 | \| 5.0-20.0 | \| 3.0-15.0 | \| 5.1-7.3 | 10 |
| | 66-80 | \| 5.0-15.0 | \| --- | \| 7.4-8.4 | 10-30 |
| | | 1 | I | I | , |
| 894104: | | 1 | 1 | I | I |
| Mollineaux | 0-6 | $13.0-6.0$ | I | \| 5.6-7.3 | 10 |
| | 6-9 | I 1.0-3.0 | I | \| 5.6-7.3 | 0 |
| | 9-15 | I 2.0-4.0 | 1 --- | \| 5.6-6.0 | 10 |
| | 15-27 | 1 2.0-4.0 | 1 --- | \| 5.6-6.5 | 10 |
| | 27-38 | I 1.0-3.0 | 1 | \| 5.6-7.3 | 10 |
| | 38-64 | I 5.0-20.0 | 1 --- | \| 5.6-7.3 | 10 |
| | 64-80 | I 1.0-3.0 | 1 --- | \| 5.6-7.3 | 10 |
| | - | 1 | I | I | I |
| 894104 : | | 1 | 1 | 1 | I |
| Remus - | 0-9 | \| 5.0-15.0 | \| 3.0-10.0 | \| 5.1-7.3 | 10 |
| | 9-15 | \| 5.0-15.0 | 1 3.0-10.0 | \| 5.1-7.3 | 10 |
| | 15-24 | \| 1.0-15.0 | I 3.0-10.0 | \| 5.1-7.3 | 10 |
| | 24-35 | \| 1.0-15.0 | \| 3.0-10.0 | \| 5.1-7.3 | 10 |
| | 35-66 | \| 5.0-20.0 | \| 3.0-15.0 | \| 5.1-7.3 | 10 |
| | 66-80 | \| 5.0-15.0 | \| --- | \| 7.4-8.4 | \| 10-30 |
| | - | 1) | 1 | 1 | \| |
| 894105 : | , | 1 | 1 | I | I |
| Mollineaux | 0-6 | I 3.0-6.0 | I | \| 5.6-7.3 | 10 |
| | 6-9 | I 1.0-3.0 | I | \| 5.6-7.3 | 10 |
| | 9-15 | $12.0-4.0$ | 1 --- | \| 5.6-6.0 | 10 |
| | 15-27 | I 2.0-4.0 | 1 --- | \| 5.6-6.5 | 10 |
| | 27-38 | \| 1.0-3.0 | 1 --- | \| 5.6-7.3 | 10 |
| | 38-64 | \| 5.0-20.0 | \| --- | \| 5.6-7.3 | 10 |
| | 64-80 | \| 1.0-3.0 | I | \| 5.6-7.3 | 10 |
| | - | 1 | 1 | I | I |
| Remus | 0-9 | \| 5.0-15.0 | \| 3.0-10.0 | \| 5.1-7.3 | 10 |
| | 9-15 | \| 5.0-15.0 | \| 3.0-10.0 | \| 5.1-7.3 | 10 |
| | 15-24 | \| 1.0-15.0 | I 3.0-10.0 | \| 5.1-7.3 | 10 |
| | 24-35 | \| 1.0-15.0 | \| 3.0-10.0 | \| 5.1-7.3 | 10 |
| | 35-66 | \| 5.0-20.0 | \| 3.0-15.0 | \| 5.1-7.3 | 10 |
| | 66-80 | \| 5.0-15.0 | 1 | \| 7.4-8.4 | \| 10-30 |
| | | 1 | 1 | 1 | \| |
| 894165: | , | 1 | 1 | 1 | I |
| Spinks------------- | 0-5 | $13.0-6.0$ | \| 1.0-4.0 | \| 5.1-7.3 | 10 |
| | 5-10 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-7.3 | 10 |
| | 10-17 | I 1.0-3.0 | $10.8-2.0$ | \| 5.1-7.3 | 10 |
| | 17-62 | I 1.0-3.0 | 1 0.8-2.0 | \| 5.1-7.3 | 10 |
| | 62-72 | I 1.0-3.0 | 1 0.8-2.0 | \| 5.1-7.3 | 10 |
| | 72-80 | I 1.0-3.0 | I 0.8-2.0 | \| 5.1-8.4 | I 0-20 |
| | | 1 | 1 | I | , |

Table 18.-Chemical Soil Properties-Continued

| Map unit symbol and soil name | Depth | | Effective cationexchange capacity | Soil
 reaction | \|
 \|Calcium |carbonate I |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ```894165: Tekenink, sandy substratum----``` | \| In | meq/100 g | meq/100 g | 1 pH | 1 Pct |
| | I | , | | I | 1 |
| | , | I | | I | I |
| | I | I | | | I |
| | - 0-8 | \| 5.0-15.0 | 3.0-10.0 | \| 5.1-7.3 | 0 |
| | \| 8-16 | \| 5.0-10.0 | 0.8-3.0 | \| 5.1-7.3 | 0 |
| | \| 16-21 | $\mid 5.0-10.0$ \| | 0.8-3.0 | \| 5.1-7.3 | 10 |
| | \| 21-49 | I 3.0-10.0 | 0.8-3.0 | \| 5.1-7.3 | 10 |
| | \| 49-62 | \| 5.0-15.0 | | 3.0-10.0 | \| 5.1-7.8 | \| 0-25 |
| | \| 62-72 | $\mid 1.0-3.0$ \| | - --- | \| 7.4-8.4 | \| 10-25 |
| | \| 72-80 | I 1.0-3.0 | -- | \| 7.4-8.4 | \| 10-25 |
| | I | I | | I | |
| 899682: | I | I | | I | 1 |
| Kaleva | 0-3 | I 3.0-6.0 | 2.0-4.0 | 1 4.5-6.0 | 10 |
| | \| 3-9 | l 1.0-3.0 | 0.8-2.0 | 1 4.5-6.0 | 10 |
| | \| 9-11 | I 2.0-6.0 | 1.0-4.0 | \| 4.5-6.0 | 10 |
| | \| 11-16 | I 2.0-4.0 | 1.0-3.0 | \| 5.1-6.5 | 10 |
| | \| 16-21 | I 2.0-4.0 | 1.0-3.0 | \| 5.1-6.5 | 10 |
| | \| 21-70 | I 1.0-3.0 | 0.8-2.0 | \| 5.1-6.5 | 10 |
| | \| 70-80 | I 1.0-3.0 | 0.8-2.0 | \| 5.1-6.5 | 10 |
| | I | I | | I | I |
| 899722 : | I | I | | I | I |
| Goodharbor | - 0-1 | I 3.0-6.0 | 2.0-4.0 | \| 5.1-7.3 | 10 |
| | \| 1-3 | I 1.0-3.0 | 0.8-2.0 | \| 5.1-7.3 | 10 |
| | \| 3-23 | I 1.0-3.0 | --- | 1 7.4-8.4 | \| 10-25 |
| | \| 23-40 | I 1.0-3.0 | --- | $17.4-8.4$ | \| 10-25 |
| | \| 40-80 | I 1.0-3.0 | --- | \| 7.4-8.4 | \| 10-25 |
| | I | I | | I | I |
| $899731 \text { : }$Covert | I | I | | I | I |
| | - 0-1 | I 3.0-6.0 | 1.0-4.0 | \| 4.5-7.3 | 10 |
| | \| 1-8 | I 1.0-3.0 | 1 0.8-2.0 | \| 4.5-7.3 | 10 |
| | \| 8-18 | I 2.0-4.0 | 1 1.0-3.0 | \| 4.5-6.0 | 10 |
| | \| 18-25 | I 2.0-4.0 | 1.0-3.0 | \| 4.5-7.3 | 10 |
| | \| 25-29 | I 2.0-3.0 | - 0.8-3.0 | \| 4.5-7.3 | 10 |
| | 1 29-38 | I 1.0-3.0 | 1 0.8-2.0 | \| 5.1-8.4 | \| 0-25 |
| | \| 38-47 | I 1.0-3.0 | - 0.8-2.0 | \| 5.1-8.4 | \| 0-25 |
| | \| 47-80 | I 1.0-3.0 | - 0.8-2.0 | \| 5.1-8.4 | \| 0-25 |
| | I | I | | 1 | I |
| Pipestone | 0-2 | \| 2.0-6.0 | 1.0-4.0 | \| 3.5-7.3 | 10 |
| | \| 2-9 | I 1.0-3.0 | 1 0.8-2.0 | \| 3.5-7.3 | 10 |
| | \| 9-12 | \mid 2.0-6.0 \| | 1.0-4.0 | \| 3.5-6.0 | 10 |
| | \| 12-24 | I 2.0-4.0 | 1 1.0-3.0 | \| 4.5-6.0 | 10 |
| | \| 24-32 | I 1.0-3.0 | 1 0.8-2.0 | \| 4.5-7.3 | 10 |
| | \| 32-80 | I 1.0-3.0 | 1 0.8-2.0 | \| 4.5-7.3 | 10 |
| | I | 1 I | I | 1 | I |
| 899733: | \| | I | I | I | I |
| | 0-1 | 1 3.0-6.0 | 1 1.0-4.0 | \| 4.5-7.3 | 10 |
| | \| 1-8 | $\mid 1.0-3.0$ \| | - 0.8-2.0 | \| 4.5-7.3 | 10 |
| | \| 8-18 | I 2.0-4.0 | 1.0-3.0 | \| 4.5-6.0 | 10 |
| | \| 18-25 | \mid 2.0-4.0 \| | 1.0-3.0 | \| 4.5-7.3 | 10 |
| | \| 25-29 | 1 2.0-3.0 | 1 0.8-3.0 | \| 4.5-7.3 | 10 |
| | \| 29-38 | $\mid 1.0-3.0$ \| | - 0.8-2.0 | \| 5.1-8.4 | \| 0-25 |
| | \| 38-47 | $\mid 1.0-3.0$ \| | - 0.8-2.0 | \| 5.1-8.4 | I 0-25 |
| | \| 47-80 | I 1.0-3.0 | 1 0.8-2.0 | \| 5.1-8.4 | \| 0-25 |
| | \| | 1 \| | 1 | I | I |
| Dair--------------- | 0-4 | \|125.0-140.0| | 1 -- | \| 5.6-7.3 | 10 |
| | \| 4-7 | $\|20.0-45.0\|$ | \| --- | \| 6.1-7.3 | 10 |
| | \| 7-11 | $\mid 1.0-3.0$ \| | - --- | \| 6.6-7.8 | 10 |
| | \| 11-21 | $\mid 1.0-3.0$ \| | I | \| 6.6-7.8 | 10 |
| | \| 21-50 | $\mid 1.0-3.0$ \| | \| --- | \| 6.6-7.8 | 10 |
| | - 50-80 | $\mid 1.0-3.0$ \| | \| --- | \| 6.6-7.8 | 10 |
| | I | 1 I | I | 1 | 1 |

Table 18.-Chemical Soil Properties-Continued

(See text for definitions of terms used in this table. Estimates of the frequency of ponding and flooding apply to the whole year rather than to individual months. Absence of an entry indicates that the feature is not a concern or that data were not estimated)

Map unit symbol and soil name	$\begin{aligned} & \hline \text { \| } \\ & \text { \|Hydro-\| } \\ & \text { \|logic } \\ & \text { \|group } \end{aligned}$	I Months	Water table		\| Ponding			Flooding				
			Upper \| Lower		\|Surface	Duration			Frequency	Duration	I	Frequency
			limit	limit	\| water		I	I		\|		
					\| depth		1	1		1		
	I	I	Ft	Ft	1 Ft I	I	I		I			
	I	1			1 - 1	I	I		1			
190775:	I	1			1 I	I	I		I			
Adrian	$\|\mathrm{A} / \mathrm{D}\|$	I			11	I	I		1			
	I	\| January	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None	
	I	\| February	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None	
	1	\| March	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	,	None	
	I	\|April	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent I	---	1	None	
	1 I	\| May	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None	
	I	\| November	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None	
	I	\| December	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent I	---	,	None	
	I	I			1 I	I	I		1			
Houghton-	1 A/D	I			11	I	I		1			
	I	\| January	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None	
	I	\| February	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None	
	1 \|	\| March	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None	
	I	\|April	0.0	>6.0	10.0-1.0\|	Very long\|	Frequent \|	---	I	None		
	1	\| May	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	,	None	
	I	\| September	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None	
	I	\|October	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None	
	I	\| November	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None	
	I	\| December	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	,	None	
	I	I			1 I	\|	I		,			
190777:	I	I			1 I	I	I		,			
Alcona	\| B	I			1 I	I	I		I			
	I	\| January	4.3	4.5	\| ---		I	None I	---	1	None	
	I	\| February	4.3	4.5	\| ---		--- \|	None I	---	1	None	
	I	\| March	4.3	4.5	\| ---		--- \|	None I	---	1	None	
	I	\|April	4.3	4.5	\| ---		--- \|	None I	---	1	None	
	I	\| May	4.3	4.5	\| ---		--- \|	None I	---	1	None	
	I	\| September	4.3	4.5	\| ---		--- \|	None I	---	1	None	
	I	IOctober	4.3	4.5	\| ---		--- \|	None I	---	1	None	
	I	\| November	4.3	4.5	1 --- \|	--- \|	None I	--	1	None		
	I	\| December	4.3	4.5	\| ---		--- \|	None I	---	1	None	
	I	I			1 I	I	I		,			
Richter-	I B	I			1 I	I	I		1			
	I	\| January	1.0	>6.0	1 --- \|	--- \|	None I	---	1	None		
	I	\| February	1.0	>6.0	\| ---		--- \|	None I	--	1	None	
	I	\| March	1.0	>6.0	1 --- \|	-- \|	None I	---	1	None		
	I	\|April	1.0	>6.0	\| --- 1	--- \|	None I	--	1	None		
	1	\| May	1.0	>6.0	1 --- 1	--- \|	None I	---	1	None		
	1	\| November	1.0	>6.0	1 --- 1	--- \|	None I	---	1	None		
	I	\| December	1.0	>6.0	\| ---		--- \|	None I	---	1	None	
	1	1			1 I	1	1		1			

Table 19.-Water Features-Continued

	1 I	I	I	Water	table	1	Ponding	I	Floo	ng			
Map unit symbol	\|Hydro-		I Months		Upper	Lower	\|Surface		Duration \|	Frequency	Duration	I	Frequency
and soil name	\|logic		1		limit	limit	\| water		I	I		1	
	\|group		1	I			\| depth		1	1		1	
	I	I	I	Ft	Ft	1 Ft l	I	I		1			
	1 I	1	I			1	I	I		1			
190778:	1 I	I				1 I	I	I		1			
Alcona	1 B \|		I			1	I	I		1			
	1 \|	\| January	I	4.3	4.5	\| ---		--- \|	None \|	---	I	None	
	I	\| February	I	4.3	4.5	1 --- \|	--- \|	None I	---	1	None		
	I	\| March	I	4.3	4.5	\| ---		- \|	None \|	---	1	None	
	I	\|April	I	4.3	4.5	\| ---		--- \|	None \|	---	1	None	
	I	\| May	I	4.3	4.5	\| ---		--- \|	None \|	---	1	None	
	I	\| September	I	4.3	4.5	\| ---		--- \|	None \|	---	1	None	
	I	l October	I	4.3	4.5	1 --- \|	-- \|	None I	---	1	None		
	I	\| November	I	4.3	4.5	1 --- 1	- I	None I	---	1	None		
	I	\| December	I	4.3	4.5	\| ---		--- \|	None I	--	1	None	
	I	I	I			11	I	I		1			
Richter-	\| B						1 I	I	I		1		
	I	\| January	I	1.0	>6.0	1 --- \|	--- \|	None \|	---	1	None		
	I	\| February	I	1.0	>6.0	1 --- \|	--- \|	None \|	---	1	None		
	I	\| March	1	1.0	>6.0	1 --- \|	--- \|	None \|	---	1	None		
	I	\|April	I	1.0	>6.0	$1-1$	--- \|	None I	-	1	None		
	I	\| May	1	1.0	>6.0	1 --- 1	I	None I	---	1	None		
	I	\| November	1	1.0	>6.0	1 --- 1	- I	None I	---	1	None		
	I	\| December	1	1.0	>6.0	1 --- \|	-- \|	None I	---	1	None		
	I	I	I			1 I	I	I		1			
190779:	I	I	I			1	I	I		1			
Alpena	1 A		I				j	I		1			
	I	\|Jan-Dec	I	---	---	1 --- 1	---	None I	---	1	None		
	1 I	I				1	I	I		1			
190780:	$1 \quad 1$	1	I			11	I	I		1			
Au Gres-	1 B \|	1				11	I	I		1			
	1 \|	\| January	I	1.0	>6.0	$\|\quad---\|$	--- \|	None I	---	1	None		
	1 \|	\| February	I	1.0	>6.0	$\|---\quad\|$	--- \|	None I	---	1	None		
	I	\| March	I	1.0	>6.0	i --- i	--- \|	None I	---	1	None		
	I	\| April	1	1.0	>6.0	1 --- 1	--- \|	None I	---	1	None		
	1 \|	\| May	I	1.0	>6.0	$1--1$	-- I	None I	---	1	None		
	I	\| November	1	1.0	>6.0	$1-1$	--- \|	None I	---	1	None		
	I	\| December	I	1.0	>6.0	1 --- 1	--- \|	None I	---	1	None		
	I	1	I			I I	I	I		1			
Kalkaska-	1 A I	\|				11	I	I		1			
	1 \|	\|Jan-Dec	I	---	---	1 --- \|	--- \|	None \|	---	1	None		
	$1 \quad 1$	1			-	11	I	I		1			
$190781 \text { : }$	1 \|	1	,		,	11	I	I		1			
Bach--	\| B/D		1	I			101	I	I		1		
	1 \|	\| January	I	0.0	>6.0	\|0.0-1.0		Long \|	Frequent 1	---	1	None	
	1	\| February	1	0.0	>6.0	\|0.0-1.0		Long \|	Frequent \|	---	1	None	
	1 \|	\| March	1	0.0	>6.0	\|0.0-1.0		Long \|	Frequent \|	---	1	None	
	1 \|	\|April	I	0.0	>6.0	\|0.0-1.0		Long \|	Frequent \|	---	1	None	
	I	\| May	1	0.0	>6.0	10.0-1.01	Long \|	Frequent	---	1	None		
	I	\| November	1	0.0	>6.0	10.0-1.01	Long \|	Frequent	---	1	None		
	I	\| December	I	0.0	>6.0	\|0.0-1.0		Long \|	Frequent	---	1	None	
	1 I	1	1			1 I	I	I		1			

190779
Alpena

190780:
Au Gres

Bach-

Table 19.-Water Features-Continued

Map unit symbol and soil name	1 I	I Months	Water table		1 Ponding			Flooding					
	$\begin{aligned} & \text { \|Hydro- \| } \\ & \text { \|logic \| } \\ & \text { \|group \| } \end{aligned}$		Upper \| Lowerlimit \| limit		\|Surface	\| water	\| depth		Duration	Frequency \|	Duration	I	Frequency
					I								
					1								
	1 I	1	1 Ft	Ft		1 Ft \|		I		I			
	1 I	1	1			1 - 1		I		I			
190782 :	1 I	I	1		1 I		I		I				
Deer Park	\mid A \|		I		1 I		I		I				
	1 \|	\| Jan-Dec	\| ---	---	1 --- \|	---	None \|	---	I	None			
	1 I		1		1 I		I		I				
190783:	1 I	I	1		1 I		I		I				
Deer Park	1 A \|		1		11		I		I				
	1 I	\| Jan-Dec	\| ---	---	$\mid---1$	---	None I	---	I	None			
	1 I	1	1				I		I				
190784:	1 I		I		1 I		I		I				
Deer Park-	\| A			1		1 I		I		I			
	1 \|	Jan-Dec	\| ---	---	\| ---		---	None	---	I	None		
	1 \|		1		1 I		I		I				
Roscommon-	\| A/D			I		11		I		I			
	1 \|	\| January	10.0	>6.0	\|0.0-1.0		Long	Frequent \|	---	I	None		
	1 \|	\| February	10.0	>6.0	\|0.0-1.0		Long	Frequent \|	---	I	None		
	1 \|	\| March	10.0	>6.0	\|0.0-1.0		Long	Frequent \|	---	I	None		
	1 \|	\|April	10.0	>6.0	\|0.0-1.0		Long	Frequent \|	---	I	None		
	1 \|	\| May	10.0	>6.0	\|0.0-1.0		Long	Frequent \|	---	I	None		
	1 I	\| June	10.0	>6.0	\|0.0-1.0		Long	Frequent \|	---	I	None		
	$1 \quad 1$	\| September	10.0	>6.0	10.0-1.01	Long	Frequent 1	---	I	None			
	1 I	October	10.0	>6.0	\|0.0-1.0		Long	Frequent I	---	I	None		
	1 \|	\| November	1 0.0	>6.0	10.0-1.0\|	Long	Frequent	---	I	None			
	1 I	\| December	10.0	>6.0	\|0.0-1.0		Long	Frequent	---	I	None		
	1 I	1	I		1 \|		I		I				
190786.	1 I	I	1		1 I		I		I				
Dune land	1 I	I	1		1 I		I		I				
	$1 \quad 1$	1	1		11		I		I				
190787:	1 I	I	1		1 I		I		I				
East Lake-	1 A		1		11		I		1				
	1 I	\| Jan-Dec	\| ---	---	1 --- 1	---	None I	---	I	None			
	1 I	\|	1		1 I		I		I				
190788:	1 I	I	1		1 I		I		I				
East Lake-	1 A \|		I		1		I		I				
	1 I	\| Jan-Dec	\| ---	---	1 --- \|	---	None I	---	I	None			
	1 I		1		1 I		I		I				
190789:	1 I	I	I		1 I		I		I				
East Lake-	1 A \|		1		1 I		I		I				
	1 I	\| Jan-Dec	\| ---	---	1 --- \|	---	None \|	---	I	None			
	1 I		I		1 I		I		I				
190790:	1 I	I	1		1 I		I		I				
East Lake--	1 A \|		I		1 l		I		I				
	1 \|	\| Jan-Dec	\| ---	---	1 --- \|	---	None \|	---	I	None			
	1 I		I		1 I		I		I				
190791:	1 I	I	1		1 I		I		I				
Eastport--	1 A		1		11		I		I				
	1 I	\| Jan-Dec	\| ---	---	1 --- \|	---	None I	---	I	None			
	1 I		1		1 I		1		1				

Table 19.-Water Features-Continued

Soil Survey of Sleeping Bear Dunes National Lakeshore, Michigan

Table 19.-Water Features-Continued

Map unit symbol and soil name	1 I	Months	Water table		\| Ponding				Flooding							
	\|Hydro-		logic Igroup		Upper limit	Lower limit	\|Surface		water	depth		Duration	Frequency	Duration	1	Frequency
	1 l	1	Ft	Ft	1 Ft l	I	I		I							
	1 I	1			-1	I	1		1							
190829:	1 I	1			1	I	1		1							
Leelanau	1 A \|	I			1 I	I	I		,							
	1 \|	\| Jan-Dec	-	--	1 --- \|	--- \|	None \|	-	I	None						
	1 I	I			1	I	I		I							
East Lake-	1 A I				1 I	I	I		I							
	1 I	\|Jan-Dec	---	---	1 --- \|	--- \|	None I	--	I	None						
	1 \|				1 I	I	I		I							
190830:	1 \|	I			1 I	I	I		I							
Leelanau-	1 A I	I			1	I			1							
	1 \|	\|Jan-Dec	---	---	1 --- \|	--- \|	None \|	---	I	None						
	1 I	1			1 I	I	I		I							
East Lake-	1 A \|				1 I	,	1		I							
	1 \|	\|Jan-Dec	---	---	1 --- \|	$---\quad \mid$	None I	---	1	None						
	1 I				1 I	i	1		I							
190831:	1 \|	I			1 I	I	1		1							
Lupton	\| A/D					11	\|	I		I						
	1 \|	\| January	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None					
	1	\| February	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent I	---	1	None					
	1 \|	\| March	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent 1	---	1	None					
	1 \|	\|April	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent I	-	1	None					
	1 \|	\| May	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None					
	1 I	\| September	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent I	--	1	None					
	1 \|	\|October	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	--	I	None					
	1 \|	\| November	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None					
	1 I	\| December	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	1	None					
	1 I	\|			1 I	\|	I		1							
Markey-	\| A/D		\|			11	।	I		1						
	1 \|	\| January	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent I	---	1	None					
	1 \|	\| February	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent I	---	1	None					
	1 I	\| March	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent 1	---	1	None					
	I	\|April	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None					
	1 \|	\| May	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent I	---	1	None					
	I	\| June	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None					
	1	\| November	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	_-	1	None					
	I	\| December	0.0	>6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None					
	I	\|			1 I	\|	\|		I							
190832 :	I	1			1	I	I		1							
Mancelona--	- A				1	I	I		I							
	I	\|Jan-Dec	---	---	\| ---		--- \|	None I	---	I	None					
	I	\|			1 I	I	1		I							
190833 :	I	I			1	I	I		1							
Mancelona---	- A \|				1 I	I	1		1							
	1 \|	\|Jan-Dec	---	---	1 --- \|	--- \|	None I	---	1	None						
	1 l	\|			1 I	I	1		,							

Table 19.-Water Features-Continued

		1 I			Water	table	I	Ponding	1	Floo					
	Map unit symbol and soil name	$\begin{aligned} & \text { \|Hydro-\| } \\ & \text { \|logic \| } \\ & \text { \|group \| } \end{aligned}$	Months	1	Upper limit	Lower limit	\|Surface		water	depth	Duration	Frequency	Duration	1	Frequency
		1 I			Ft	Ft	1 Ft I		I		I				
		1 I		I			- 1		1		1				
	190834 :	1 I					1 I		1		1				
	Mancelona-	1 A \|					1 I		I		I				
		1 \|	Jan-Dec	I	---	---	--- \|	---	None \|	---	I	None			
		1 \|					I		1		1				
	East Lake--	1 A \|		I			1		1		I				
		I	Jan-Dec		---	---	--- \|	---	None \|	---	1	None			
		1 I					I		I		I				
	190835:	1 I	I				$1 \quad 1$		1		1				
	Mancelona--	1 A \|					,		I		I				
		1 \|	\|Jan-Dec	I	---	---	--- \|	---	None \|	---	I	None			
		1 I					I		I		I				
	East Lake-	1 A \|		I			I		1		I				
		1 \|	\|Jan-Dec	I	---		--- \|	---	None \|	---	1	None			
		1 \|					1 \|		1		I				
	190836:	1 I	I	I			$1 \quad 1$		I		,				
	Mancelona--	1 A \|					,		1		,				
		1 \|	\|Jan-Dec	I	---	---	--- 1	---	None I	---	1	None			
		1					I		I		I				
N00	East Lake-	1 A \|	\|	I			I		1		I				
\bigcirc		1 \|	\|Jan-Dec		---	---	1 --- \|	--	None \|	--	I	None			
		I					1		I		I				
	190837 :	I	I				1 I		I		1				
	Mancelona---	1 A \|					1		I		,				
		1	\|Jan-Dec	I	---	---	--- 1	---	None \|	---	1	None			
		I					1 \|		I		I				
	East Lake-	1 A		I			1 I		I		1				
		1	\|Jan-Dec		---	---	1 --- \|	---	None \|	---	1	None			
		I					1 I		I		,				
	190838:	1 I	I				1 I		I		1				
	Mancelona-	1 A I					1 I		I		1				
		1	\|Jan-Dec		---	---	--- 1	---	None \|	---	I	None			
		I					1 I		I		,				
	East Lake-	I A					$1 \quad 1$		1		1				
		1	\|Jan-Dec		---	---	1 --- \|	---	None I	---	1	None			
		I	\|				1 \|		I		1				
	190839 :	1 1	1				1 I		I		I				
	Mancelona---	1 A \|					1 l		I		I				
		1	\|Jan-Dec		---	---	--- 1	---	None \|	---	I	None			
		i	1				1 I		I		I				
	Richter-	1 B \|	\|	I			1 I		I		I				
		I	\| January		1.0	>6.0	--- \|	-	None I	--	1	None			
		I	\| February	,	1.0	>6.0	--- \|	---	None I	---	I	None			
		I	\| March		1.0	>6.0	--- \|	---	None I	---	1	None			
		I	\|April	,	1.0	>6.0	--- \|	---	None I	---	I	None			
		I	\| May	I	1.0	>6.0	--- \|	---	None I	---	I	None			
		I	\| November		1.0	>6.0	--- \|	---	None I	---	I	None			
		I	\| December		1.0	>6.0	--- \|	---	None \|	---	1	None			
		1					1		,		1				

Table 19.-Water Features-Continued

Table 19.-Water Features-Continued

Map unit symbol and soil name	\|\|Hydro-\|logic\|group	Months	Water table		1	Ponding		Flooding		
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\|Surface	\| water\| depth	Duration	Frequency	Duration	Frequency
190848: Alcona	I	I	Ft	1 Ft	1 Ft l	I	I		I	
	1	I	,	1	I	I	I		1	
	I	\|		I	1 I	I	I		I	
	I B	I	,	I	1 I	I	I		I	
	I	\|Jan-Dec	---	\| ---	\| ---		--- \|	None \|	---	I None
	I	I	,	1	1 I	I	I		I	
$\begin{aligned} & 190849: \\ & \text { Roscomm } \end{aligned}$	I	I	,	I	1 I	I	I		I	
	1 A/D		I	1	1 I	I	I		I	
	I	\| January	0.0	\| >6.0	\|0.0-1.0		Long \|	Frequent	-	I None
	I	\| February	0.0	\| >6.0	\|0.0-1.0		Long \|	Frequent \|	---	I None
	I	\| March	0.0	I >6.0	\|0.0-1.0		Long \|	Frequent \|	---	I None
	I	\|April	0.0	I >6.0	\|0.0-1.0		Long \|	Frequent	---	I None
	I	\| May	0.0	$1>6.0$	\|0.0-1.0		Long \|	Frequent	---	I None
	I	\| June	0.0	I >6.0	\|0.0-1.0		Long \|	Frequent	---	I None
	I	\| September	0.0	I >6.0	\|0.0-1.0		Long \|	Frequent	---	I None
	I	\|October	0.0	\| >6.0	\|0.0-1.0		Long \|	Frequent \|	--	I None
	I	\| November	0.0	\| >6.0	\|0.0-1.0		Long \|	Frequent \|	---	I None
	1	\| December	0.0	\| >6.0	\|0.0-1.0		Long \|	Frequent \|	---	\| None
	I	I	-	1		I	\|		I	
Markey-	1 A/D		-	I		I	I		I	
	I	\| January	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent	---	I None
	I	\| February	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent	---	I None
	I	\| March	0.0	I >6.0	\|0.0-1.0		Very long\|	Frequent	---	I None
	I	\|April	0.0	I >6.0	\|0.0-1.0		Very long\|	Frequent	-	I None
	I	\| May	0.0	I >6.0	\|0.0-1.0		Very long\|	Frequent	---	I None
	I	\| June	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	\| None
	I	\| November	0.0	I >6.0	\|0.0-1.0		Very long\|	Frequent	---	I None
	I	\| December	0.0	I >6.0	\|0.0-1.0		Very long\|	Frequent	---	I None
	1	I	-	1	1 \|	1	I		I	
$\begin{aligned} & \text { 190850: } \\ & \text { Sanilac } \end{aligned}$	I	I	,	1	1 I	I	I		I	
	1 C	I		I	1 I	I	I		I	
	I	\| January	1.2	\| ---	\| ---		-- \|	None l	Brief	\|Occasional
	I	\| February	1.2	\| >6.0	\| ---		--- \|	None \|	Brief	\|Occasional
	1	\| March	1.2	\| >6.0	\| ---		--- \|	None \|	Brief	\|Occasional
	I	\|April	1.2	$1>6.0$	1 --- \|	- I	None I	Brief	\|Occasional	
	I	\| December	1.2	$1>6.0$	\| ---		--- \|	None I	Brief	\|Occasional
	I	I	-	I	1 I	I	I		I	
190851: Tonkey	I	I	,	I	1 I	I	I		I	
	$13 / D$		-	I	1 I	I	I		I	
	I	\| January	0.0	\| >6.0	\|0.0-1.0		Long \|	Frequent	---	I None
	I	\| February	0.0	I >6.0	\|0.0-1.0		Long \|	Frequent	---	I None
	I	\| March	0.0	$1>6.0$	\|0.0-1.0		Long \|	Frequent 1	---	I None
	I	\|April	0.0	$1>6.0$	\|0.0-1.0		Long \|	Frequent	---	I None
	I	\| May	0.0	I >6.0	\|0.0-1.0		Long \|	Frequent	---	I None
	I	\| November	0.0	I >6.0	\|0.0-1.0		Long \|	Frequent	-	I None
	1	\| December	0.0	$1>6.0$	\|0.0-1.0		Long I	Frequent	---	I None
	1	1	-	1	1 I	1	I		I	

Soil Survey of Sleeping Bear Dunes National Lakeshore, Michigan

Table 19.-Water Features-Continued

Table 19.-Water Features-Continued

Map unit symbol and soil name	\mid \mid Hydro- \| \|logic \|group	Months	Water table		\| Ponding				Flooding			
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\|Surface	Duration		Frequency		Duration	\| Frequency	
					\| water	I		,				
					\| depth	1		I		1		
$\begin{array}{r} 190852 \text { : } \\ \text { Iosco- } \end{array}$	I	1	Ft	Ft	1 Ft	I		I		I		
	1	1			1	I		I		1		
	I	I			I	I		I		1		
	\| B	\|			1	I		I		I		
	I	\| January	1.0	>6.0	\| ---	--- \|	None	I	---	1	None	
	I	\| February	1.0	>6.0	\| ---	I	None	I	---	I	None	
	I	\| March	1.0	>6.0	\| ---	--- \|	None	I	--	I	None	
	I	\|April	1.0	>6.0	\| ---	- \|	None	I	---	I	None	
	I	\| May	1.0	>6.0	\| ---	--- \|	None	I	-	I	None	
	I	\| June	1.0	>6.0	\| ---	-- \|	None	I	-	1	None	
	I	\| November	1.0	>6.0	\| ---	- \|	None	I	---	I	None	
	I	\| December	1.0	>6.0	\| ---	--- \|	None	I	---	I	None	
	I	I			1	I		I		1		
	1	1			1	I		I		1		
Water	I	I			I	I		I		I		
	I	I			I	I		I		I		
190854:	I	1			1	I		I		1		
Wallace	1 B	I			1	I		I		1		
	I	\|Jan-Dec	---	-	\| ---	--- \|	None	I	---	1	None	
Kalkaska	1	I			I	I		I		I		
	1 A	I			1	I		I		1		
	I	\|Jan-Dec	---	---	\| ---	--- \|	None	I	---	I	None	
190855:Wind eroded land	I	I			I	I		I		I		
	I	I			I	I		I		1		
	\| A	I			1	I		I		1		
	I	\|Jan-Dec	---	---	\| ---	--- \|	None	I	---	1	None	
	I	1			I	I		I		I		
$190856 \text { : }$	I	1			I	I		I		I		
Wind eroded land-	1 A	I			I	I		I		1		
	I	\|Jan-Dec	---	---	\| ---	--- \|	None	I	---	I	None	
	I	I			I	I		I		I		
$193236 .$	1	1			1	I		I		1		
Beaches	1	1			1	I		I		I		
	1	1			1	I		I		1		
193237:	I	1			I	I		,		I		
Thompsonville	\| A	I			1	I		I		1		
	I	\| January	3.0	>6.0	\| ---	--- \|	None	,	---	I	None	
	1	\| February	2.5	>6.0	1 ---	--- \|	None	I	---	1	None	
	I	\| March	2.0	>6.0	\| ---	--- \|	None	I	---	1	None	
	1	\|April	1.5	>6.0	\| ---	--- \|	None	I	---	1	None	
	1	\| May	3.0	>6.0	\| ---	--- \|	None	I	---	1	None	
	1	\| June	4.0	>6.0	\| ---	--- \|	None	I	---	1	None	
	1	\| July	4.5	>6.0	1 ---	--- \|	None	I	---	1	None	
	1	\|August	5.0	>6.0	1 ---	--- \|	None	,	---	I	None	
	1	\| September	4.0	>6.0	1 ---	--- \|	None	I	---	1	None	
	1	\|October	2.5	>6.0	\| ---	--- \|	None	1	---	I	None	
	I	\| November	2.5	>6.0	\| ---	--- \|	None	I	---	1	None	
	1	\| December	3.0	>6.0	1 ---	--- \|	None	1	---	1	None	

Table 19.-Water Features-Continued

		1 \|			Water	table	1	Ponding	,	Floo	ng								
	Map unit symbol and soil name	\|Hydro-	 \|logic	 \|group		I Months		$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\|Surface		water	depth		Duration \|	Frequency !	Duration	1	Frequency
		1 I			Ft	Ft	1 Ft I	I	1		1								
		1 l	1				1 - 1	,	1		1								
	193237:	1 \|	1				I	I	1		1								
	Milnichol--	1 B \|					I	I	1		1								
		1 \|	\| January	,	1.5	>6.0	--- \|	-	None \|	---	I	None							
		1 I	\| February		1.5	>6.0	--- \|	--- \|	None I	---	1	None							
		1 \|	\| March		1.0	>6.0	\| ---		-- \|	None \|	---	I	None						
		1 \|	\|April		1.0	>6.0	1 --- \|	--- \|	None \|	---	1	None							
		\|	\| May		0.5	>6.0	\| ---		--- \|	None I	---	I	None						
		1 \|	\| June		1.0	>6.0	\| ---		--- \|	None \|	---	1	None						
		1 \|	\|July		2.0	>6.0	\| ---		--- \|	None \|	--	1	None						
		1 \|	\| August		3.0	>6.0	1 --- \|	-	None \|	-	1	None							
		1 I	\| September		2.5	>6.0	\| ---		-- \|	None \|	---	1	None						
		1 I	\|October		2.0	>6.0	\| ---		-- \|	None \|	--	1	None						
		1 I	\| November		1.0	>6.0	--- \|	---	None \|	-	1	None							
		1 I	\| December		1.0	>6.0	\| ---		---	None \|	---	1	None						
		1 I	\|				I	I	1		I								
	193255:	1 I	1				I	,	1		I								
	Spinks	1 A I	I				1	I	1		1								
		1 I	\|Jan-Dec		---	---	--- \|	---	None I	---	I	None							
		1 l	I				I		1		I								
	Coloma-	1 A l					I	,	1		I								
		11	\|Jan-Dec	,	---	---	--- 1	--- \|	None I	---	1	None							
$\underset{\sim}{\omega}$		1 I					1	I	1		1								
	$193256 \text { : }$	1 I	I				I	,	1		,								
	Spinks	1 A I	I				I	I	1		1								
		1 I	\|Jan-Dec		---	---	--- \|	--- \|	None I	---	1	None							
		1 I					I	I	1		1								
	Coloma-	1 A I	\|				I		1		,								
		1 I	\|Jan-Dec		---	---	1 --- \|	---	None I	---	I	None							
		1 I	\|				1 I	I	1		1								
	$193257 \text { : }$	1 l					1 I	1	1		1								
	Spinks	1 A I					I	I	I		1								
		1 I	\|Jan-Dec		---	---	--- \|	--- \|	None I	---	1	None							
		1 I	।				I	I	1		,								
	Coloma-	1 A I					I		I		1								
		1 I	\|Jan-Dec	I	---	---	--- 1	--- \|	None I	---	,	None							
		1 I					1	I	1		,								
	193258:	1 I	1	,			I	I	I		1								
	Spinks-	1 A I					I	I	1		1								
		1 \|	\|Jan-Dec	\|	---	---	--- \|	--- \|	None \|	---	I	None							
		1 I	I				I	I	I		,								
	Coloma-	1 A l					1 I	I	1		1								
		1 I	\|Jan-Dec	I	---	---	1 --- \|	--- \|	None I	---	,	None							
		1 I	I				1 I	I	1		,								
	193260 :	1 I	I	I			1 I	I	1		1								
	Copemish----	1 A l					I	I	I		I								
		1 I	\| Jan-Dec		---	---	--- \|	--- \|	None I	---	I	None							
		1 l	\|	,			1 I	I	I		,								

Table 19.-Water Features-Continued

Table 19.-Water Features-Continued

Table 19.-Water Features-Continued

Table 19.-Water Features-Continued

Map unit symbol and soil name	1 I	Months	Water table		\| Ponding				Flooding					
	\|Hydro	logic Igroup		Upper Lower limit limit		\|Surface	\| water	\| depth		Duration \|	Frequency	Duration	\| Frequency	
					1									
	I	I	Ft	1 Ft		1 Ft l	I	I		I				
	,	1		I	1 - 1	I	I		1					
$\begin{aligned} & \text { 193286: } \\ & \text { Histoso } \end{aligned}$	I	I		1	,	I	I		I					
	1 D	I		I	1 I	I	I		I					
	1	\| January	0.0	1 >6.0	\|0.0-1.0		Very long\|	Frequent I	---	I	None			
	,	\| February	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	I	\| March	0.0	1 >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	1 \|	\|April	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	1 \|	\| May	0.0	1 >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	I	\| June	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	1 \|	\| July	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	I	\| August	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	1 I	\| September	0.0	I >6.0	\|0.0-1.0		Very long\|	Frequent I	---	I	None			
	I	\|October	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	I	\| November	0.0	1 >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	1 I	\| December	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	I	I		I	1 I	1	I		I					
Aquents	1 D	I		1	11	I	I		I					
	I	\| January	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent I	---	I	None			
	1	\| February	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent I	---	I	None			
	I	\| March	0.0	1 >6.0	\|0.0-1.0		Very long\|	Frequent I	---	I	None			
	I	\|April	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent I	---	I	None			
	I	\| May	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	I	\| June	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent \|	--	I	None			
	1	\| July	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent \|	--	I	None			
	I	\| August	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent I	---	I	None			
	I	\| September	0.0	$1>6.0$	10.0-1.01	Very long\|	Frequent 1	---	1	None				
	I	\|October	0.0	\| >6.0	\|0.0-1.0		Very long\|	Frequent \|	---	I	None			
	I	\| November	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent I	---	I	None			
	I	\| December	0.0	$1>6.0$	\|0.0-1.0		Very long\|	Frequent I	-	I	None			
	I	I		I	1 I	1	I		I					
193287:	I	I		I	1 I	I	I		I					
Dune land.	I	I		I	1 I	I	I		I					
	I	I		I	1 I	I	I		I					
Quartzipsamments-------------	- A	I		I	1 I	I	I		I					
	I	\|Jan-Dec	-	1	1 --- \|	--- \|	None I	---	I	None				
	1	1		I	1 I	I	I		I					
193288:	I	1		I	$1 \quad 1$	I	I		I					
Udipsamments-	- A	I		I	1 I	I	I		I					
	i	\|Jan-Dec	---	\| ---	1 --- \|	--- \|	None I	---	I	None				
	1	I		,	1	1	1		1					

Table 19.-Water Features-Continued

Table 19.-Water Features-Continued

Table 19.-Water Features-Continued

Map unit symbol and soil name	I \|Hydro- \|logic \|group	Months	\|	Water table		Ponding \|				Flooding			
				Upper Lower limit \mid limit		\|Surface	\| water\| depth\|	Duration	Frequency		Duration	Frequency	
$193371 \text { : }$$\qquad$	I	I	1	Ft	Ft	1 Ft \|		I	1		I		
	1	I	I			1 - 1		I	I		I		
	1	1	I			1 I		I	I		I		
	- A/D		I			1 I		I	I		I		
	I	\| January	I	0.0	>6.0	\| ---		---	None	I	---	I	None
	I	\| February	I	0.0	>6.0	\| ---		---	None	I	---	I	None
	I	\| March	I	0.0	>6.0	\|0.0-1.0		Long	Frequent	I	-	I	None
	I	\|April	I	0.0	>6.0	\|0.0-1.0		Long	Frequent	,	---	I	None
	1	\| May	I	0.0	>6.0	\|0.0-1.0		Long	Frequent	,	---	I	None
	1	\| June	I	0.0	>6.0	\| ---		---	None	,	-	1	None
	I	\| July	1	0.5	>6.0	\| ---		---	None	I	---	I	None
	1	\| August	I	1.0	>6.0	\| ---		---	None	I	-	I	None
	1	\| September	I	0.0	>6.0	1 --- \|	---	None	I	---	I	None	
	1	\|October	I	0.0	>6.0	\|0.0-1.0		Long	Frequent	I	---	,	None
	I	\| November	1	0.0	>6.0	\|0.0-1.0		Long	Frequent	I	---	I	None
	I	\| December	I	0.0	>6.0	\| ---		---	None	I	---	I	None
	I	I	I			1 I		I	I		I		
Pipestone	- B		I			1 I		I	I		,		
	1	\| January	1	1.5	>6.0	\| ---		---	None	I	---	,	None
	1	\| February	I	1.5	>6.0	\| ---		---	None	I	---	I	None
	1	\| March	I	1.0	>6.0	\| ---		---	None	,	---	I	None
	1	\|April	1	0.5	>6.0	1 --- \|	---	None	I	---	I	None	
	I	\| May	1	0.5	>6.0	\| ---		--- \|	None	,	---	I	None
	I	\| June	I	1.0	>6.0	\| ---		---	None	,	---	I	None
	1	\| July	I	2.0	>6.0	1 --- \|	---	None	,	---	I	None	
	I	\| August	I	3.0	>6.0	\| ---		---	None	I	---	I	None
	I	\| September	1	3.0	>6.0	\| ---		---	None	,	---	I	None
	I	\|October	1	2.5	>6.0	\| --- i	---	None	,	---	I	None	
	1	\| November	I	1.0	>6.0	\| ---		---	None	,	---	I	None
	1	\| December	I	1.0	>6.0	\| ---		---	None	,	---	I	None
	I	I	I			1 I		I	,		,		
$\begin{aligned} & 193372 \text {. } \\ & \text { Access Denied } \end{aligned}$	I	\|	I			1 I		I	,		I		
	I	I	I			1 I		I	,		I		
	I	\|	1			1 I		I	,		I		
$\begin{aligned} & \text { 193423: } \\ & \text { Benona- } \end{aligned}$	1 \|	I	,			1 I		I	,		I		
	- A \|		,			1					I		
	1	\|Jan-Dec	1	---	---	1 --- \|	---	None	I	---	I	None	
	1	\|	I			1 I			I		I		
$193484 .$	I	\|	I			1 I		I	,		I		
Pits, sand and gravel	1	\|	I			1 I		I	I		I		
	1 I	I				1 I		I	,		I		
193494 :	1 l	\|	I			1 I		I	1		I		
Nordhouse	- A \|		I			1					I		
	1 \|	\|Jan-Dec	I	---	---	1 --- \|	---	None	,	---	I	None	
	I	\|				1 \|			,		I		
193496:	1 I	I	,			1 I		I	1		I		
Nordhouse-	- A \|		I			1 I		I	,		I		
	1 \|	\|Jan-Dec		---	---	\| ---		---	None	I	---	I	None
	1 l	\|	,			1 I		边	1		,		

Table 19.-Water Features-Continued

Map unit symbol and soil name		Months	Water table		\| Ponding				Flooding							
	\|Hydro-	 \|logic Igroup		Upper limit	Lower limit	\| Surface		water		depth		Duration \|	Frequency	Duration	1	Frequency
	1	1	Ft	Ft	1 Ft I	I	I		1							
	1 I	1			1 - 1	I	I		I							
193497 :	1 I	1			1 l	I	I		I							
Nordhouse-	1 A \|				1 I	I	I		I							
	1 I	\|Jan-Dec	---	---	\| ---		--- \|	None I	--	,	None					
	1 I	I			1 I	I	I		1							
193498:	1 I	I			1 I	I	I		,							
Nordhouse	\| A		\|			1 I	I	I		I						
	1 \|	\|Jan-Dec	---	---	\| ---		--- \|	None \|	---	I	None					
	1 I	\|			I	I	I		I							
Platteriver-	1 A \|				1 I	I	1		1							
	1 I	\| January	3.0	>6.0	$\|\quad---\|$	--- \|	None I	---	1	None						
	1 \|	\| February	2.5	>6.0		--- \|	None	---	1	None						
	1 \|	\| March	2.0	>6.0	\| ---		--- \|	None \|	-	1	None					
	1 I	\|April	1.5	>6.0	\| ---		--- \|	None I	---	1	None					
	1 I	\| May	2.5	>6.0	\| ---		--- \|	None I	---	1	None					
	$1 \quad 1$	\| June	3.5	>6.0	\| --- 1	--- \|	None I	---	1	None						
	$1 \quad 1$	\| July	4.5	>6.0	\| --- 1	--- \|	None I	---	1	None						
	$1 \quad 1$	\| August	5.0	>6.0	\| --- 1	--- \|	None I	---	1	None						
	1 I	\| September	4.5	>6.0	\| ---		- I	None \|	---	1	None					
	1 I	\| October	3.0	>6.0		--- \|	None	---	I	None						
	1 \|	\| November	2.5	>6.0	$\|\quad---\|$	--- \|	None \|	---	I	None						
	1 I	\| December	3.0	>6.0	\| ---		--- \|	None I	--	I	None					
	1 \|	1			I I	I	I		1							
Dair	$\|~ A / D ~\| ~$				1	I	I		I							
	1 \|	\| January	0.0	>6.0	\| --- 1	--- \|	None I	---	1	None						
	1 I	\| February	0.0	>6.0	1 ---1	--- \|	None I	---	1	None						
	1 \|	\| March	0.0	>6.0	\|0.0-1.0		Long \|	Frequent I	---	1	None					
	1 I	\|April	0.0	>6.0	10.0-1.01	Long \|	Frequent I	---	1	None						
	1 I	\|May	0.0	>6.0	\|0.0-1.0		Long I	Frequent I	---	I	None					
	1 I	\| June	0.0	>6.0	\| ---		--- \|	None I	---	1	None					
	$1 \quad 1$	\| July	0.5	>6.0	1 --- 1	--- \|	None I	--	1	None						
	$1 \quad 1$	\| August	1.0	>6.0	\| --- 1	--- \|	None I	---	1	None						
	1 I	\| September	0.0	>6.0	1 ---1	--- \|	None I	--	I	None						
	1 I	\|October	0.0	>6.0	\|0.0-1.0		Long \|	Frequent I	---	1	None					
	1	\| November	0.0	>6.0	\|0.0-1.0		Long I	Frequent I	---	1	None					
	1 I	\| December	0.0	>6.0	\| ---		--- \|	None I	---	I	None					
	1 I				I I	I	I		I							
	1 I	1			1 I	I	I		I							
Spinks-	1 A \|				1 1	I	I		I							
	11	\|Jan-Dec	---	---	1 --- \|	--- \|	None I	---	1	None						
	1 I	I			11	I	1		1							
Shavenaugh-	1 A \|	I			1 1	I	I		1							
	1 I	\|Jan-Dec	---	---	1 --- \|	--- \|	None I	---	1	None						
	1 I	I			1 l	I	1		1							

Table 19.-Water Features-Continued

Table 19.-Water Features-Continued

	Map unit symbol and soil name	1 I		I	Water table		\|	Ponding \|			1	Flooding			
		$\begin{aligned} & \text { \|Hydro-\| } \\ & \|l o g i c ~\| \\ & \text { \|group \| } \end{aligned}$	Months	1	$\begin{array}{ll} \hline \text { Upper } \\ \text { limit } & \\ & \\ \hline \end{array}$	Lower limit		Surface water depth	Duration \|	Frequency	1	Duration	I	Frequency	
		1 I	I		Ft I	Ft		Ft	I		I		I		
		1 I	1	I	I				I		1		1		
	680972 :	1 \|			I				I		1		1		
	Nessen	\| A			I	I				I		1		I	
		1 \|	\|Jan-Dec	I	--- \|	---		---	--- \|	None	1	---	,	None	
		1 \|		I	I				I		I		I		
	Kaleva-	1 A I							I		1		I		
		1 \|	\|Jan-Dec	I	--- 1	---		---	--- \|	None	I	---	I	None	
		1 \|			I				I		I		1		
	680973 :	1 I		I	I				I		1		1		
	Nessen-	- A \|		I	I				I		1		1		
		1 \|	\|Jan-Dec		--- \|	---		---	--- \|	None	I	---	I	None	
		1 \|		I	I		I		I		I		I		
	Kaleva-	1 A \|			1				I		1		I		
		1 \|	\|Jan-Dec	I	$---1$	---		---	--- \|	None	1	---	I	None	
		1 \|			i				I		I		I		
	$680974 \text { : }$	1 1	\|	I	I		I		I		I		I		
	Nessen	1 A I	\|	I	I				I		1		I		
		1	\|Jan-Dec		--- 1	---		---	--- \|	None	I	---	1	None	
		1 I	\|	I	I				I		I		1		
∞	Kaleva-	1 A I			I				I		1		1		
		I	\|Jan-Dec	I	--- 1	---		---	--- \|	None	1	---	1	None	
		1 I			i				I		I		1		
	893251 :	1 I			I		I		I		I		1		
	Boyer-	- B I		I	I				I		1		1		
		I	\|Jan-Dec	,	--- 1	---		---	--- \|	None	I	---	1	None	
		1 I			I				I		I		I		
	Shavenaugh--	1 A I			i				I		I		1		
		I	\|Jan-Dec	I	--- 1	-_-		---	--- \|	None	I	---	1	None	
		1 I			i				i		1		I		
	$894062 \text { : }$	1 I	I	1	\|				I		1		I		
	Remus-	1 B \|		I	I				I		I		1		
		1 \|	\| Jan-Dec	I	--- 1	---		---	--- \|	None	I	---	1	None	
		1 \|		I	I				I		I		1		
	Spinks-	1 A I		I	I				I		I		1		
		1 I	\|Jan-Dec	I	--- 1	---		---	--- \|	None	I	---	1	None	
		1 I		I	I				I		I		1		
	$894063 \text { : }$	1 I	I	I	I		I		I		I		I		
	Remus	- B \|		I	I				I		I		I		
		1 \|	\|Jan-Dec	I	--- 1	---		---	--- \|	None	,	---	I	None	
		1 \|		I	I				I		I		I		
	Spinks-------	1 A I		I	I				i		I		1		
		1 I	\|Jan-Dec	1	--- 1	---		---	--- \|	None	I	---	1	None	
		1 l			I		I		I		1		1		

Table 19.-Water Features-Continued

Table 19.-Water Features-Continued

| Map unit symbol and soil name | 1 | I | Water table | | \| Ponding | | | | 1 | Flooding | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \| Hydro-
 \|logic
 Igroup | I Months | Upper \| Lower | | \|Surface| | Duration \| | Frequencyl | | Duration | \| Frequency | |
| | | | limit | limit | \| water | | \| | | 1 | | , | |
| | | | | | \| depth | | I | | I | | I | |
| | I | 1 | Ft | Ft | I Ft \| | I | | I | | I | |
| | 1 | 1 | | | 1 - 1 | I | | I | | 1 | |
| 894165: | 1 | I | | | 1 I | I | | I | | I | |
| Spinks | 1 A | I | | | 1 I | I | | I | | I | |
| | 1 | \| Jan-Dec | --- | --- | \| --- | | --- \| | None | 1 | --- | I | None |
| | 1 | I | | | 1 I | I | | 1 | | , | |
| Tekenink, sandy substratum- | 1 B | I | | | 1 I | 1 | | I | | I | |
| | I | \|Jan-Dec | --- | --- | \| --- | | --- | None | I | --- | I | None |
| | 1 | I | | | 1 I | I | | I | | I | |
| 899682 : | 1 | 1 | | | 1 I | I | | 1 | | 1 | |
| Kaleva | \| A | I | | | 1 I | I | | I | | 1 | |
| | I | \|Jan-Dec | --- | -- | \| --- | | --- | None | 1 | -- | I | None |
| | 1 | I | | | 1 I | , | | 1 | | 1 | |
| 899722: | 1 | I | | | 1 I | 1 | | 1 | | 1 | |
| Goodharbor- | 1 A | I | | | 1 I | I | | I | | I | |
| | I | \|Jan-Dec | --- | --- | \| --- | | --- \| | None | I | --- | I | None |
| | I | I | | | 1 I | I | | , | | I | |
| 899731: | I | 1 | | | 1 I | I | | 1 | | 1 | |
| Covert- | 1 A | I | | | 1 I | 1 | | 1 | | 1 | |
| | 1 | \| January | 3.0 | >6.0 | \| --- | | --- \| | None | I | --- | I | None |
| | 1 | \| February | 2.5 | >6.0 | \| --- | | - \| | None | , | --- | 1 | None |
| | I | \| March | 2.5 | >6.0 | \| --- | | -- \| | None | I | - | I | None |
| | I | \|April | 2.5 | >6.0 | \| --- | | --- \| | None | , | - | I | None |
| | 1 | \| May | 2.0 | >6.0 | \| --- | | -- I | None | 1 | --- | 1 | None |
| | 1 | \| June | 4.0 | >6.0 | \| --- | | --- \| | None | I | --- | 1 | None |
| | I | \| July | 4.5 | >6.0 | \| --- | | I | None | , | --- | 1 | None |
| | I | \| August | 5.0 | >6.0 | \| --- | | --- \| | None | , | --- | 1 | None |
| | 1 | \| September | 4.0 | >6.0 | \| --- | | --- \| | None | 1 | --- | 1 | None |
| | I | \|October | 3.0 | >6.0 | \| --- | | - I | None | 1 | --- | I | None |
| | I | \| November | 2.5 | >6.0 | \| --- | | --- \| | None | I | --- | I | None |
| | I | \| December | 3.0 | >6.0 | \| --- | | --- \| | None | I | -- | I | None |
| | 1 | 1 | | | 1 I | , | | , | | I | |
| Pipestone- | 1 B | 1 | | | 1 I | I | | 1 | | I | |
| | I | \| January | 1.5 | >6.0 | \| --- | | --- \| | None | I | -- | 1 | None |
| | 1 | \| February | 1.5 | >6.0 | \| --- | | --- \| | None | , | -- | I | None |
| | 1 | \| March | 1.0 | >6.0 | \| --- | | -- \| | None | 1 | -- | I | None |
| | 1 | \|April | 0.5 | >6.0 | \| --- | | --- \| | None | I | -- | I | None |
| | 1 | \| May | 0.5 | >6.0 | \| --- | | --- \| | None | , | --- | I | None |
| | 1 | \| June | 1.0 | >6.0 | \| --- | | --- \| | None | 1 | --- | I | None |
| | 1 | \| July | 2.0 | >6.0 | \| --- | | --- \| | None | 1 | -- | I | None |
| | I | \| August | 3.0 | >6.0 | \| --- | | -- \| | None | , | --- | I | None |
| | 1 | \| September | 3.0 | >6.0 | \| --- | | --- \| | None | , | --- | I | None |
| | 1 | lOctober | 2.5 | >6.0 | \| --- | | --- \| | None | 1 | --- | I | None |
| | I | \| November | 1.0 | >6.0 | \| --- | | --- \| | None | , | --- | I | None |
| | 1 | \| December | 1.0 | >6.0 | \| --- | | --- \| | None | I | --- | I | None |
| | 1 | I | | | 1 I | I | | 1 | | I | |

Table 19.-Water Features-Continued

(See text for definitions of terms used in this table. Absence of an entry indicates that data were not estimated)

Table 20.-Soil Features-Continued

Table 20.-Soil Features-Continued

Map unit symbol and soil name	Restrictive layer				\| Potentialfor\|frost action \mid	Risk of corrosion			
		\| Depth	\|		Hardness		Uncoated steel	Concrete	
	Kind	1 to top	\|Thickness						
I		1 In	1 In	I \|	1 \|		I		
1		I	1 - 1	1 I	I		I		
190853.1		1	1	1 \|	1 I		I		
Water \|		I	I	1 \|	1 I		I		
I		I	I	1 \|	1 I		,		
190854: \|		1	1	\mid \|	1 \|		\|		
Wallace--------------------------------\|	Ortstein	18	\| ---	\|Strongly cemented		\| Low		Low	High
I		I	1	। \|	1 I		\|		
Kalkaska-------------------------------1	---	\| ---	\| ---	--- \|	\| Low		Low	High	
I		1	I	1	1 I		I		
190855: ।		1	I	1 \|	I		I		
Wind eroded land---------------------\|	---	\| ---	\| ---	---	Low \|	Low	\| Moderate		
I		1	I	1 \|	I		,		
190856: \|		1	I	1 \|	I		1		
Wind eroded land----------------------\|	--	\| ---	\| ---	--	Low \|	Low	Moderate		
I		I	I	1 \|	I		I		
193236 . \|		1	I	1	1 I		I		
Beaches \|		1	I	1 \|	1 I		I		
I		1	1	I	1		I		
193237: ।		I	1	I	1		1		
Thompsonville--------------------------1	--	\| ---	\| ---	---	Low \|	Low	I Moderate		
, \|		1	1		1 \|		,		
Milnichol-----------------------------\|	-	\| ---	\| ---	--- \|	\| Moderate		Low	I Moderate	
I		I	1	1 \|	I		I		
193255: \|		1	1		1 I		,		
Spinks---------------------------------1	---	\| ---	\| ---	--- \|	I Low \|	Low	1 Low		
I		1	1	1 I	I				
Coloma---------------------------------1	---	\| ---	1 ---	--- \|	I Low \|	Low	I Moderate		
\|		1	1	1 \|	I				
193256: \|		1	1	1	1 I		,		
Spinks--------------------------------1	---	\| ---	\| ---	---	Low I	Low	1 Low		
1		1	1	1 I	I		I		
Coloma---------------------------------1	---	\| ---	1 ---	--- \|	\| Low		Low	I Moderate	
I		1	1	,	1 I				
193257:		1	1	1 I	1		I		
Spinks-------------------------------------\|	---	1 ---	1 ---	--- \|	I Low \|	Low	1 Low		
, \|		1	1		1 I		I		
Coloma---------------------------------1	---	\| ---	\| ---	--- \|	I Low \|	Low	I Moderate		
I		1	1	I	1 I		I		
$193258 \text { : }$		1	I		1 I		I		
\qquad	-	\| ---	\| ---	--- \|	\| Low		Low	I Low	
I		i	1	1 I	I		1		
Coloma---------------------------------1	---	\| ---	\| ---	---	Low I	Low	I Moderate		
I		I	1	I	1		I		
$193260 \text { : }$		1	1	1 I	1 I		,		
Copemish-------------------------------1	Ortstein	\| 8-14	\| 8-28	Moderately \|	I Low \|	Low	High		
- ।		1	1	cemented \|	1 I		I		
I		I	1	1 \|	1		I		
$193262 \text { : }$		1	I	1 \|	1 I		I		
Kaleva------------------------------------\|	---	\| ---	\| ---	--- \|	\| Low		Low	\| High	
I		1	1	1	1 I		1		

Soil Survey of Sleeping Bear Dunes National Lakeshore, Michigan

Table 20.-Soil Features-Continued

Soil Survey of Sleeping Bear Dunes National Lakeshore, Michigan

Table 20.-Soil Features-Continued

Table 20.-Soil Features-Continued

Table 21.-Taxonomic Classification of the Soils

Soil name	Family or higher taxonomic class	
Abscota--------------------\|Mixed, mesic Oxyaquic Udipsamments		
Adrian	\|Sandy or sandy-skeletal, mixed, euic, mesic Terric Haplosaprists	
Alcona---------------\|Coarse-loamy, mixed, active, frigid Alfic Haplorthods		
Alpena taxadjunct	\|Sandy-skeletal, mixed, frigid Entic Hapludolls	
Aquents-------------------\|Aquents		
Au Gres------------------\|Sandy, mixed, frigid Typic Endoaquods		
Bach taxadjunct-----------\|Fine-loamy, mixed, semiactive, calcareous, frigid Mollic Haplaquepts		
Benon	\|Sandy, mixed, mesic Lamellic Haplorthod	
Benzonia---------------\|Sandy, isotic, mesic Lamellic Haplorthods		
Boyer----------------\|Coarse-loamy, mixed, semiactive, mesic Typic Hapludalfs		
Coloma	\|Mixed, mesic Lamellic Udipsamments	
Copemish-------------\|Sandy, mixed, mesic, ortstein Entic Haplorthods		
Covert------------------\|Sandy, mixed, mesic Oxyaquic Haplorthods		
Dair--------------------\|Mixed, mesic Typic Psammaquents		
Deer Park taxadjunct------\|Mixed, frigid Spodic Udipsamments		
East Lake---------------\|Sandy, mixed, frigid Entic Haplorthods		
Eastport-------------------\|Mixed, frigid Spodic Udipsamments		
Emmet------------------\|Coarse-loamy, mixed, active, frigid Typic Eutroboralfs		
Epoufette-------------\|Coarse-loamy, mixed, superactive, frigid Mollic Ochraqualfs		
Fern-----------------\|Loamy, mixed, active, mesic Arenic Oxyaquic Glossudalfs		
Filer----------------\|Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs		
Fogg------------------\|Sandy, mixed, mesic Alfic Haplorthods		
Glendora----------------\|Mixed, mesic Mollic Psammaquents		
Goodharbor--------------\|Mesic, uncoated Typic Quartzipsamments		
```Gorvan----------------\|	Fine-loamy over sandy or sandy-skeletal, mixed, semiactive, mesic```	
Grattan-----------------\|Sandy, mixed, mesic Entic Haplorthods		
Hettinger-------------\|Fine-loamy, mixed, active, nonacid, frigid Mollic Haplaquepts		
Histosols----------------\|Histosols		
Houghton----------------\|Euic, mesic Typic Haplosaprists		
Iosco----------------\|Sandy over loamy, mixed, active, frigid Argic Endoaquods		
Kaleva-----------------\|Sandy, mixed, mesic Typic Haplorthods		
Kalkaska----------------\|Sandy, mixed, frigid Typic Haplorthods		
Kiva--------------------\|Sandy, mixed, frigid Entic Haplorthods		
Leelanau----------------\|Sandy, mixed, frigid Alfic Haplorthods		
Lumley-----------------\|Dysic, mesic Typic Haplosaprists		
Lupton-----------------\|Euic, frigid Typic Haplosaprists		
Makinen----------------\|Sandy or sandy-skeletal, mixed, dysic, mesic Terric Haplosaprists		
Mancelona---------------\|Sandy, mixed, frigid Alfic Haplorthods		
Markey-----------------\|Sandy or sandy-skeletal, mixed, euic, frigid Terric Haplosaprists		
Marlette---------------\|Fine-loamy, mixed, semiactive, mesic Oxyaquic Glossudalfs		
Milnichol---------------\|Sandy, mixed, mesic Typic Epiaquods		
Mollineaux--------------\|Sandy over loamy, mixed, active, mesic Lamellic Haplorthods		
Munuscong-----------------\|Coarse-loamy over clayey, mixed, active, nonacid, frigid Mollic Haplaquepts Nessen--------------------	Sandy, mixed, mesic Typic Haplorthods	
Nester taxadjunct---------\|Fine, mixed, semiactive, frigid Typic Eutroboralfs   Nordhouse-----------------\|Mesic, uncoated Spodic Quartzipsamments		
Omena------------------\|Coarse-loamy, mixed, active, frigid Typic Eutroboralfs		
Onekama---------------\|Fine, mixed, active, mesic Haplic Glossudalfs		
Perrinton--------------\|Fine, mixed, active, mesic Oxyaquic Glossudalfs		
Pipestone---------------\|Sandy, mixed, mesic Typic Endoaquods		
Platteriver--------------\|Mixed, mesic Oxyaquic Udipsamments		
Quartzipsamments----------\|Quartzipsamments		
Remus-----------------\|Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs		
Richter----------------\|Coarse-loamy, mixed, semiactive, frigid Alfic Haplaquods		
Roscommon---------------\|Mixed, frigid Mollic Psammaquents		
Sanilac--------------\|Fine-loamy, mixed, semiactive, calcareous, frigid Aeric Endoaquepts		
Saugatuck-------------\|Sandy, mixed, mesic, shallow, ortstein Typic Duraquods		
Shavenau	\|Mixed, mesic Psammentic Hapludalfs	

Table 21.-Taxonomic Classification of the Soils-Continued


Table 22.-Soil Classification Key
(An asterisk indicates a taxadjunct to the series)

```
ORDER
 Suborder
 Great Group
 Subgroup
 Series or Higher Category
ALFISOLS
 Aqualfs
 Ochraqualfs
 Mollic Ochraqualfs
 Epoufette---------------------Coarse-loamy, mixed, superactive, frigid Mollic Ochraqualfs
 Boralfs
 Eutroboralfs
 Typic Eutroboralfs
 Emmet------------------------Coarse-loamy, mixed, active, frigid Typic Eutroboralfs
 Omena----------------------Coarse-loamy, mixed, active, frigid Typic Eutroboralfs
 *Nester-----------------------Fine, mixed, semiactive, frigid Typic Eutroboralfs
 Udalfs
 Glossudalfs
 Typic Glossudalfs
 Tekenink---------------------Coarse-loamy, mixed, semiactive, mesic Typic Glossudalfs
 Haplic Glossudalfs
 Onekama--------------------Fine, mixed, active, mesic Haplic Glossudalfs
 Filer-----------------------Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs
 Remus-----------------------Fine-loamy, mixed, semiactive, mesic Haplic Glossudalfs
 Oxyaquic Glossudalfs
 Perrinton---------------------Fine, mixed, active, mesic Oxyaquic Glossudalfs
 Marlette--------------------Fine-loamy, mixed, semiactive, mesic Oxyaquic Glossudalfs
 Arenic Oxyaquic Glossudalfs
 Fern-----------------------Loamy, mixed, active, mesic Arenic Oxyaquic Glossudalfs
 Hapludalfs
 Typic Hapludalfs
 Boyer------------------------Coarse-loamy, mixed, semiactive, mesic Typic Hapludalfs
 Psammentic Hapludalfs
 Shavenaugh--------------------Mixed, mesic Psammentic Hapludalfs
 Lamellic Hapludalfs
 Spinks------------------------Sandy, mixed, mesic Lamellic Hapludalfs
ENTISOLS
 Aquents
 Aquents-------------------------Aquents
 Psammaquents
 Typic Psammaquents
 Dair--------------------------Mixed, mesic Typic Psammaquents
 Mollic Psammaquents
 Roscommon---------------------Mixed, frigid Mollic Psammaquents
 Glendora----------------------Mixed, mesic Mollic Psammaquents
 Orthents
 Udorthents
 Udorthents---------------------Udorthents
```

Table 22.-Soil Classification Key-Continued


Table 22.-Soil Classification Key-Continued


## NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at ServiceDesk-FTC @ftc.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.

