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Proactive Decision Support Tools for National Park and Non-Traditional Agencies in 

Solving Traffic-Related Problems 

 

Antonio Fuentes 

 

ABSTRACT 

 

Transportation Engineers have recently begun to incorporate statistical and machine 

learning approaches to solving difficult problems, mainly due to the vast quantities of 

data collected that is stochastic (sensors, video, and human collected). In transportation 

engineering, a transportation system is often denoted by jurisdiction boundaries and 

evaluated as such. However, it is ultimately defined by the consideration of the analyst in 

trying to answer the question of interest. 

 In this dissertation, a transportation system located in Jackson, Wyoming under 

the jurisdiction of the Grand Teton National Park and recognized as the Moose-Wilson 

Corridor is evaluated to identify transportation-related factors that influence its 

operational performance. The evaluation considers its unique prevalent conditions and 

takes into account future management strategies. The dissertation accomplishes this by 

detailing four distinct aspects in individual chapters; each chapter is a standalone 

manuscript with detailed introduction, purpose, literature review, findings, and 

conclusion. Chapter 1 provides a general introduction and provides a summary of 

Chapters 2 – 6. Chapter 2 focuses on evaluating the operational performance of the 

Moose-Wilson Corridor’s entrance station, where queueing performance and arrival and 



 

 

 

probability mass functions of the vehicle arrival rates are determined. Chapter 3 focuses 

on the evaluation of a parking system within the Moose-Wilson Corridor in a popular 

attraction known as the Laurance S. Rockefeller Preserve, in which the system’s 

operational performance is evaluated, and a probability mass function under different 

arrival and service rates are provided. Chapter 4 provides a data science approach to 

predicting the probability of vehicles stopping along the Moose-Wilson Corridor. The 

approach is a machine learning classification methodology known as “decision tree.” In 

this study, probabilities of stopping at attractions are predicted based on GPS tracking 

data that include entrance location, time of day and stopping at attractions.  Chapter 5 

considers many of the previous findings, discusses and presents a developed tool which 

utilizes a Bayesian methodology to determine the posterior distributions of observed 

arrival rates and service rates which serve as bounds and inputs to an Agent-Based 

Model.  The Agent-Based Model represents the Moose-Wilson Corridor under prevailing 

conditions and considers some of the primary operational changes in Grand Teton 

National Park’s comprehensive management plan for the Moose-Wilson Corridor. The 

implementation of an Agent-Based Model provides a flexible platform to model multiple 

aspects unique to a National Park, including visitor behavior and its interaction with 

wildlife.   Lastly, Chapter 6 summarizes and concludes the dissertation. 

 

 

 

 

 



 

 

 

Proactive Decision Support Tools for National Park and Non-Traditional Agencies in 

Solving Traffic-Related Problems 

  

Antonio Fuentes 

 

GENERAL AUDIENCE ABSTRACT 

  

In this dissertation, a transportation system located in Jackson, Wyoming under the 

jurisdiction of the Grand Teton National Park and recognized as the Moose-Wilson 

Corridor is evaluated to identify transportation-related factors that influence its 

operational performance. The evaluation considers its unique prevalent conditions and 

takes into account future management strategies. Furthermore, emerging analytical 

strategies are implemented to identify and address transportation system operational 

concerns.  

Thus, in this dissertation, decision support tools for the evaluation of a unique 

system in a National Park are presented in four distinct manuscripts. The manuscripts 

cover traditional approaches that breakdown and evaluate traffic operations and identify 

mitigation strategies. Additionally, emerging strategies for the evaluation of data with 

machine learning approaches are implemented on GPS-tracks to determine vehicles 

stopping at park attractions. Lastly, an agent-based model is developed in a flexible 

platform to utilize previous findings and evaluate the Moose-Wilson corridor while 

considering future policy constraints and the unique natural interactions between visitors 

and prevalent ecological and wildlife.    
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1 CHAPTER 1: INTRODUCTION 

The discipline of Civil Engineering is in an era were multidisciplinary solutions to 

current, and future problems require quick adaptation to advanced technology and computation 

resources. The branch of Transportation Engineering under the discipline of Civil Engineering is 

in a unique position as the management and operations of transportation systems require quick 

and confident decision making in an ever-changing world. Transportation system decisions 

impact the road users immediately while infrastructure decisions are made to prepare for the 

anticipated future. Each decision is made after careful consideration and evaluation of obtained 

data, prevailing conditions and predicted future conditions.   

Transportation data is collected in various formats ranging from electronic counters, 

inductive loop detectors, video monitoring, video recording, electronic sensors, and human on-

site data collection. At present, new fields encompass interdisciplinary approaches to collecting, 

managing and analyzing of data to find fast and useful solutions with the application of 

computational technologies. The field of transportation engineering along with the emerging 

fields of urban computing and data science are in a distinctive position to take advantage and 

apply advanced analytical solutions to large quantities of data that are becoming available in the 

urban setting.  

Urban settings, however, are not a requirement for implementing advanced analytical 

methodologies and solving transportation system solutions. Smaller scale systems and networks 

can implement the same methodologies to identify solutions to their systems, some 

methodologies such as machine learning which encompass statistical, classification and Bayesian 
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inference methodologies acknowledge that there are two regimes: one was much data is available 

and the other, where little data is available (Downey 2013).  

This research focuses on demonstrating applications of transportation system solutions 

and data science methodologies in a National Park transportation system setting. The objective is 

to illustrate how available data can be extended to determine prevalent transportation system 

operational performance, to prepare and plan for future transportation system changes and to 

illustrate applicable methodologies and development of tools to solve common transportation 

system scenarios. One such tool for extending available data is Agent-Based Modelling (ABM) 

by providing a platform capable of generating synthetic data of prevailing conditions and 

capability to test alternatives. Its use in a National Park setting fits as it can capture the unique 

environment present in such a setting (wildlife, site-seeing, time-dependent attractions) and 

allows for the direct instruction of agents to behave and interact with their environment in terms 

of what is observed in the real world.  

 The desired outcome for this dissertation is that it will serve as a reference to illustrate 

approaches for National Park Service managers as well as non-traditional agency professionals. 

This thesis illustrates the process to examine and implement proactive strategies for managing 

transportation system operations with various strategies. This is hoped to be achieved through the 

breakdown of methodologies which guides the National Park Service and non-traditional 

agencies to utilize similar methods to solve local or network-wide transportation issues. The 

methods are applied in the unique setting of a National Park which adds a consideration to the 

types of constraints and behaviors observed, but ultimately the fundamentals behind the applied 

methods remain the same and applicable to appropriate cases.  
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 The work presented in this dissertation identifies some of the unique operations 

experienced in a National Park. Chapter 2 and Chapter 3 describe in detail the procedure to 

evaluate a fundamental aspect of traffic operations which is the queueing of vehicles and delay 

expectations. In Chapter 4, the evaluation of GPS-tracks is used to identify the probability of 

vehicles stopping along the MWC and explore machine learning methodology. Chapter’s 2 – 4 

build the foundation to Chapter 5, where the operations and findings from the previous studies 

are implemented in an ABM. The application of ABM in a National Park setting provides a 

flexible platform to incorporate various aspects that are unique to such a setting. These include 

the unique visitor behavior encountered in a National Park where the delay is a lower priority, 

the interaction with wildlife and the interest of slow travel and sightsee along a corridor. 

Furthermore, this dissertation contributes to knowledge of solving transportation system 

problems with advanced analytical methodologies. As data is becoming easier to obtain and 

access at a lower-cost, transportation professionals have a responsibility to use the latest data to 

implement feasible up to date solutions. Taking advantage of analysis methodologies is difficult 

when the references are in different disciplines. Thus, the dissertation presented here 

demonstrates traditional and advanced approaches to addressing transportation system problems 

with available data.  

1.1 Research Question 

The primary question which this research anticipates to answer is: “How can 

transportation approaches and data science methodologies be implemented in a non-urban setting 

to find transportation system solutions and provide tools and guidance to non-traditional 

professionals?” Answering this question will be addressed through a transportation evaluation of 
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a National Park Service corridor, the Moose-Wilson Corridor (MWC) is located in Grand Teton 

National Park. The transportation approaches will consist of implementing various 

methodologies often used in traffic engineering to evaluate the queueing of vehicles and delay. 

The data science methodologies consist of machine learning approaches to evaluate GPS-tracks 

data of the corridor. Those methodologies culminate in an ABM which is a tool capable of 

modeling the observed behavior of visitors in the MWC and consider the unique interactions that 

are common in a National Park setting including visitor interaction with wildlife and the natural 

scenery. Chapter 2 – Chapter 5 construct a big picture context of the MWC transportation 

system, and how each study provides a building block to a transportation system evaluation. 

1.2 Research Problem and General Approach 

A possible problem encountered by legacy professionals in civil and transportation 

engineering or non-traditional agency professionals tasked with transportation-related problems 

is in taking advantage of available resources and methodologies to solve transportation concerns. 

Open source tools such as R and Python provide powerful avenues for data collection, 

management, visualization, and analysis. Additionally, open-source modeling and simulation 

platforms provide similar benefits in ABM. This research aims to illustrate a data collection 

process and demonstrate traditional and advanced analytic solutions and tool development for 

solving transportation system issues. Additionally, a unique contribution presented by this work 

is in emphasizing a National Park transportation corridor where findings from previous studies as 

well as various interactions not often considered in commercial modeling tools are considered 

together in a single ABM platform.  
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The general approach will consist of taking the Moose-Wilson Corridor transportation 

system, breaking it down into manageable problems and finding solutions. Chapter 2 – 5 are 

standalone manuscripts that have been or will soon be submitted to publication. Each Chapter 

contains a detailed introduction, purpose, literature review, findings, and conclusions. In 

Chapter’s 2 – 4, in addition to the main content of the manuscript, an additional section after the 

chapter’s conclusion provides additional detail and discussion into incorporating the respective 

chapter’s methodology and findings into an ABM.   

In Chapter 2, the Moose-Wilson Corridor entrance station is evaluated for queueing 

performance as well as the evaluation of a future entrance station in the opposite end of the 

corridor. This evaluation consists of utilizing a deterministic approach to analyzing queueing 

performance as well as a simulation approach which considers stochastic variability. Findings 

include a sensitivity analysis of anticipated queueing service times and vehicle lengths at current 

and future entrance stations, under varying arrival rates and service times. Implementing this 

study in an ABM consists of determining Poisson and deterministic values for vehicle arrival 

times and entrance gate service times and thus providing park managers information about the 

variation of measures of performance that can be anticipated from monitoring strategies. 

In Chapter 3, a popular attraction along the Moose-Wilson Corridor known as the 

Laurance S. Rockefeller Preserve is evaluated for queueing performance. The Laurance S. 

Rockefeller system consists of 54 parking spaces, and Little’s Law is implemented to evaluate 

the system’s performance. Findings include an evaluation of the systems performance as well as 

probability mass functions for varying arrival and service rates of the vehicles in the system. 

Implementing this study in an ABM consists of identifying the number of vehicles that visit the 

Laurance S. Rockefeller Preserve and distributing the time spent at this attraction in terms of 
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time spent parked. Thus, providing park managers information about typical and anticipated use 

levels.  

In Chapter 4, a machine learning approach known as a decision tree analysis is 

implemented to evaluate the probability of vehicles stopping along different attractions in the 

Moose-Wilson Corridor. GPS tracking data is utilized to determine start origins, end 

destinations, and stops along the corridor. Findings include the generation of decision trees and 

confusion tables that provide accuracies of the decision tree models. Implementing this study in 

an ABM consists of interpreting each of the decision tree model results to capture the behavior of 

vehicles that made multiple stops while traveling through the Moose-Wilson Corridor. Thus, the 

results provided the probability that a vehicle would stop at an attraction, and subsequently if 

they would stop at another attraction. Therefore, these probability values were directly used as 

rules to guide the agents through the Moose-Wilson Corridor.  

In Chapter 5, a tool is developed and utilized which applies Bayesian methods combined 

with an ABM simulation. The tool is constructed to evaluate a desired management strategy for 

the Moose-Wilson Corridor. Key findings include an estimation of the time of day a 200-vehicle 

capacity will be reached in the Moose-Wilson Corridor. The time of day information allows 

management to evaluate if the capacity is reached when certain levels of visitor’s arrivals are 

observed and allows for preparation and consideration of management alternatives if capacity is 

reached. Thus, this chapter illustrates some of the considerations for developing an ABM tool to 

analyze prevailing conditions and evaluate future changes. Additionally, it highlights the 

appropriateness of using ABM in a setting where visitor behavior and surroundings are unique.  

Lastly, in Chapter 6, a discussion and conclusion of the dissertation are provided.   
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2 CHAPTER 2: Evaluating National Park Entrance Station 

Queues:  A Case Study in Grand Teton National Park 

 

This chapter is adapted from Fuentes, A., Heaslip, K., Kidd, A., D’Antonio, A. (In Review) 

Evaluating National Park Entrance Station Queues: A Case Study in Grand Teton National Park. 

Case Studies on Transport Policy 

2.1 Introduction  

Grand Teton National Park (GRTE) located in Wyoming welcomes local, domestic and 

international visitors each year. Aside from its dominant presence in the preserved lands of the 

west, GRTE exceptionally captures the sense of nature, freedom, and wilderness in the Teton 

mountain range that each visitor is sure to appreciate. GRTE’s prominence can be observed by 

recreation visits over 2.5 million during 2013 and 2014, and surpassing 3.25 million in 2016 

(National Park Service 2016a). With such a large number of recreation visits, GRTE officials 

and staff are challenged to be effective in communicating essential park information, answering 

questions and completing additional responsibilities. Entrance stations and visitor centers are the 

first points of contact for many new and returning visitors. Thus they function as resource hubs 

by providing information to visitors.  

In GRTE’s current management policy, three entrance stations cover the area of 

approximately 1,256 square kilometers. These stations consist of the Granite Canyon entrance, 

the Moose entrance, and the Moran Junction entrance (National Park Service 2016b). Entrance 

stations at GRTE serve to collect fee payments, distribute park information and inform incoming 

visitors of other special items. Likewise, entrance stations provide visitors the opportunity to ask 
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questions and are advised about optimizing their trip experience. Overall, current GRTE entrance 

station policies serve as a positive element for the daily management of operations and park 

objectives. However, entry stations by nature can result in long wait times if the demand for 

visitor arrivals is high or the entrance station service time has high variation. When the delay is 

experienced by the interaction of high vehicle arrivals and high service times, system operations 

and staff can become overwhelmed resulting in negative visitor perception and a possible decline 

in visit satisfaction. 

Additional considerations by GRTE officials included the operations of the corridor in 

which the entrance station is located as well as its nearby surroundings. Therefore, system 

operations at entrance stations may be of importance when taking into consideration the temporal 

variation of traffic upstream and downstream of the entrance gate. Similarly, system operations 

of an entrance station can affect nearby or adjacent locations. Queueing of vehicles that span a 

long distance create congestion and can result in adverse impacts to nearby road facilities and 

establishments. 

The primary objective of this paper is to provide reference and guidance on evaluating 

queuing measures of performance at entrance stations and applying the results to current and 

future policies at National Parks. The policy implications this study intends to address is 

concentrated on the management of entrance station performance for existing operations and 

future planning. When evaluating existing conditions, the policy considerations may be to 

maintain operations at the desired level or under specified thresholds. When considering future 

planning, entrance stations effects such as queue length and queue waiting time may need to be 

considered to minimize the impact to adjacent traffic facilities. The objective will be 

accomplished by focusing specifically on GRTE’s Granite Canyon entrance station as well as the 
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evaluation of a new future entrance station. Thus, an overview of data collection strategies and 

computation of performance measures will be emphasized for current and anticipated scenarios. 

The paper will illustrate the use of queueing theory methodology to gain an understanding of a 

queueing setting, quantify observations and develop information for policy decision making. 

The paper is organized as follows. Section 2 provides a literature review of relevant previous 

studies. Section 3 describes the case study location, its surroundings, and descriptions of the 

considered entrance stations. Section 4 specifies how and where the data was collected, provides 

key assumptions and overviews the collected data. Section 5 specifies the analysis methodology, 

preliminary findings and later the analysis results and analysis discussion. Section 6 provides a 

discussion on how the findings relate to policy implications. Lastly, section 7 concludes the 

paper.  

2.2 Literature Review 

Specific investigations on queueing characteristics and traffic operations on a single 

National Park corridor such as the intent of this study have not been of significant focus. 

Relevant studies on a single National Park corridor include work by Hallo and Manning whose 

efforts were on the Ocean Drive corridor in Acadia National Park. The authors evaluated 

carrying capacity and visitor perception when driving in a scenic corridor. In the authors’ efforts 

to evaluate carrying capacity, key differences for the analysis between a National Park road and 

traditional roadways are identified. Data collection for the corridor was collected through 

trajectory routes from GPS units and a survey of visitors at the end of their travel. Overall the 

study focused on an approach to determine social carrying capacity based on visitor perception 

and prevailing conditions (Hallo and Manning 2010). A separate study focused on visitor 
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interaction with transportation and recreation on the same Ocean Drive corridor in Acadia 

National Park. In this effort, surveys and interviews helped to identify indicators of quality that 

factor into visitor experiences when they drive for pleasure in a National Park setting (Hallo and 

Manning 2009). In describing the Ocean Drive corridor, a reference to the entrance station was 

made in both studies and similarly a common finding that congestion resulted in a negative effect 

on visitor perception. Although not explicitly stated, as the focus was on evaluation within the 

corridor, congestion effects can likely be experienced before entering a corridor as visitor’s 

queue to enter through the park entrance station.   

Similarly, few studies have been published where the primary focus is on the entrance 

station of a National Park. Studies published by Upchurch provided insight into service times 

and capacities for National Parks by focusing on entrance stations in Arches National Park and 

the south entrance of the Grand Canyon National Park. In his study, Upchurch utilized data 

processed from the entrance stations fee collection software to determine arrival rates while 

service time data was collected manually on designated days. The significant contribution this 

study provided aside from its identification of critical factors affecting service time consisted of 

the definition of capacity for an entrance station as the “number of vehicles per hour that can be 

processed in a lane (or lanes)” and its usefulness in the current evaluation and future planning. 

The study reported an average service time and capacity of 32 seconds and 112 vehicles per 

hour, respectively, for Arches National Park and average service time and capacity of 37 seconds 

and 97 vehicles per hour, respectively, for the south entrance station of the Grand Canyon 

National Park. Overall the study also provided an approach to determine staffing decisions at 

entrance gates based on the anticipated capacity levels (Upchurch 2006). A more recent study by 

Upchurch provided entrance station findings for Utah’s Zion National Park. The study’s purpose 
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was to analyze issues related to transportation at the park, and one of the issues identified was 

related to Zion National Park’s entrance station. Overall, by utilizing historical data and methods 

identified by the author's previous work, recommendations were provided to the park regarding 

improvements that would enhance entrance station capacity and operations. The Zion National 

Park entrance station was reported to have 194 vehicles per hour capacity which results in 

approximately a 19 second service time (Upchurch 2015). The previously discussed studies by 

Upchurch provided insights into important considerations queueing plays in a National Park 

setting. By reporting queueing observations and capacities of entrance stations at various 

National Parks, support for decision making is provided. The studies, however, did not fully 

maximize queueing theory capabilities such as the evaluation of future operating performance 

with varying arrival and service rates. 

The use of queueing theory is commonly used in operations research and industrial 

systems, in which the measures of performance are referenced to maximize or minimize the 

efficiency of a system and then make informed policy decisions. Such an approach was utilized 

in a study to address the planning of transportation facilities in the Olympic Village in 

preparation for the 2004 Athens Olympics. In the study, a projected number of visitors based on 

accommodation capacities were used to estimate design constraints for queue lengths and desired 

waiting times for parking areas and entrance gate capacities (Yannis et al. 2009). Another study 

utilized queuing methods to make policy decisions on future berth construction projects in the 

Manila International Container Terminal in the Philippines. In this study queueing theory was 

utilized by considering historical data of arrival rates, service times and the cost of waiting time 

for incoming ships. An analysis of base case operations and the consideration of the construction 

of additional berths found improvements in queueing measures of performance. Ultimately it 
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was recommended that the current number of berths was adequate after a cost-benefit analysis of 

the cost of ships waiting in the queue would not surpass the cost of constructing a new berth  

(Saeed and Larsen 2016).  

A standard method for evaluating queueing theory in a steady state queuing system is 

through the use of Little’s Law, which defines the relationship that the expected number of units 

in a queuing system is equivalent to the service time multiplied by the expected wait time in the 

system (Little 1961). Due to its simplistic approach, Little’s Law has been used in multiple 

advanced algorithms and models for system verification. One such application includes the use 

of Little’s Law to verify the accuracy of a proposed model focused on improving the system 

performance for call centers (Phung-Duc and Kawanishi 2014). A more appropriate study which 

utilizes queueing theory and Little’s Law in a National Park setting was performed at the GRTE. 

In this study, the Laurence S. Rockefeller Preserve (LSR) parking area with 54 spaces was 

evaluated for queueing measures of performance for a system which saw an arrival rate of 

approximately 25 vehicles per hour and a service rate (parked time) of 80 minutes. Overall, it 

was determined by the use of Little’s Law that the current facility utilization use was 61%. 

Findings from this study reported that current operations of the LSR parking were adequate but 

also provided thresholds and mitigation suggestions for conditions that would stress the system 

(Fuentes et al. 2017).  

2.3 Case Study 

GRTE’s Granite Canyon entrance station is located on the Moose-Wilson Road Corridor 

(MWC). As can be denoted by its name, the MWC connects the communities of Wilson to the 

south and Moose to the north. Much of the demand on this corridor can be attributed to its 
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proximity to Teton Village and the Town of Jackson. Teton Village is a popular resort just 

outside GRTE boundaries, and the Granite Canyon entrance is located just north of the resort. 

The Town of Jackson is GRTE’s gateway community southeast of the Granite Canyon entrance 

and GRTE. Teton Village and the Town of Jackson are likely the AM origin and PM destination, 

respectively, for many park visitors entering through the Granite Canyon entrance. The MWC in 

GRTE is highlighted by the red dashed line in Figure 2-1. 

 

Figure 2-1. GRTE Entrance Stations 
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Queuing measures of performance at the Granite Canyon entrance as well as 

consideration of a north entrance station were evaluated. The northern entrance station was 

considered near the MWC and Teton Park Road intersection in the community of Moose. 

Consideration of a northern Moose entrance station is in line with GRTE’s Moose-Wilson 

Corridor Comprehensive Management Plan, and Environmental Impact Statement (Final 

Plan/EIS) released in August of 2016 (National Park Service 2016d). The most notable impacts 

to the MWC’s entrance station performance will be seen by the introduction of a northern 

queueing station and limiting the MWC capacity to 200 vehicles at a time (National Park Service 

2016c). Thus, this study provides an excellent case study was the use of queueing theory 

methodology provides future policy guidance. 

The procedure provides a repeatable approach for assessing current queuing operations at 

an entrance station. Additionally, the results can provide support for addressing safety concerns 

imposed by the policy change of introducing queuing at a new location, in this study the Moose 

end of MWC is the new location where queuing will be introduced. The utilized method of 

evaluation is capable of being extended for current, and future policy evaluations at other 

National Park’s and protected area settings, or any situation in general where queueing is or may 

be observed.  

2.4 Description of Entry Stations 

The study range extended the length of the MWC within the GRTE boundaries and 

consisted of collecting volume arrival data at the Granite Canyon entrance in the southern section 

of the MWC as well as a collection in the northern section of MWC. There is a benefit in 

describing the two additional entrance stations of GRTE to illustrate their varying queueing 
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characteristics. The standardized format of describing a system’s queueing characteristics is to 

define the arrival process type/service process type/number of servers (Teodorovic and Janic 

2016). The labeling of arrivals and departures is achieved by describing their distribution. The 

most common for vehicle arrivals is the Poisson distribution and is denoted by the letter M. A 

constant and deterministic arrival is denoted by the letter D. Due to the randomness in vehicle 

arrivals and departure after service time, each entry station within GRTE can be described by a 

Poisson distribution (M). The alternative would be that the number of arrivals is known before 

they arrive and would be denoted by the letter D. Each of the GRTE entrance station arrivals and 

departures can be assumed to fall under the Poisson arrival distribution. However, the number of 

servers differ between GRTE entrance stations. 

The Granite Canyon entrance consists of a single station, one entry lane and one exit 

lane. As vehicles arrive, some may need to purchase a pass, others may have inquiries regarding 

park activities, or a combination of both events may take place. Vehicles that have a pass are still 

required to stop and show their pass to GRTE staff to proceed. Therefore, due to its single 

window and constraint of serving only one vehicle at a time, the Granite Canyon entrance can be 

defined as an M/M/1, first come first served (FCFS) queue (Taha 2007). Figure 2-1 illustrates an 

aerial image from ESRI’s ArcGIS of the Granite Canyon entrance, Moose Entrance, and Moran 

Junction Entrance to be referenced for comparison. In the figure, the bottom frame illustrates the 

Granite Canyon entrance (M/M/1), the middle frame illustrates the Moose Entrance (M/M/2) and 

the top frame illustrates the Moran Junction Entrance (M/M/3). 

The Granite Canyon entrance is a system and queues are generated within the system. 

Figure 2-2, an aerial image obtained from ESRI’s ArcGIS, illustrates how these terms apply to 

the Granite Canyon entrance station. The overall evaluation of the Granite Canyon entrance will 
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consist of analysis results for the system and the queue, as was similarly accomplished by 

Fuentes et al. for parking at the Laurence S. Rockefeller Preserve also on the MWC (Fuentes et 

al. 2017). The significant values that are expected to be determined are the estimation of average 

queue length and queue waiting time, for the system and the queue. The queue length is the 

number of vehicles waiting to be served, while the queue waiting time is the amount of time 

spent waiting to be served. When estimating the queue length and queue are waiting time in the 

system, vehicles that are in the queue, as well as those in service, are considered. When 

determining queue length or queue waiting time in the queue, only the vehicles that are waiting 

in the queue are considered. Therefore, results for the system will always be higher than the 

results for the queue. Figure 2-2 illustrates the Granite Canyon entrance system, where seven 

vehicles are in the system, and six vehicles are in the queue.   

 

Figure 2-2 Granite Canyon Entrance Station 
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2.5 Data Collection and Assumptions 

Data was collected by the use of data collection cameras for 21 days as part of a suite of 

data collected for the development of the Moose-Wilson Corridor Comprehensive Management 

Plan  (Monz et al. 2014; Monz et al. 2015) during three days in August of 2013, and the 

remainder between June – October of 2014. Data were collected within 13 hours, from 7:00 AM 

– 8:00 PM on sampling days. Study dates and times were selected to achieve a stratified random 

sample of visitor arrivals. 

The first set of data was collected at the Granite Canyon entrance station, while the 

second set of data was captured at the Moose end of the MWC, near the intersection with Teton 

Park Road. Data consisted of vehicle counts and a time stamp at each location. The volume of 

arriving vehicles was observed at the Granite Canyon entrance, and the volume of vehicles 

driving towards Granite Canyon entrance was recorded on the northern portion of MWC. 

The equipment for the Granite Canyon entrance was set-up adjacent to the entrance 

station window and counted vehicles as they departed the entrance station. Vehicles would be 

counted after they had been served and were accelerating out of the entrance station 

approximately 21 meters downstream of the station facility. Thus, data for the service rate of 

park employees (servers) at the entrance station window was not directly recorded. A similar 

approach was taken in capturing the volume at the northern Moose end. This volume is of 

primary interest as the southwest-bound vehicles entering the MWC would be affected by the 

implementation of the new queueing station. Figure 2-3 highlights the area in which the Moose 

end volumes were collected, and where the equipment was set to capture the southwest-bound 
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volume. In Figure 2-3 the red square illustrates the area where the data was collected along the 

MWC, the yellow circle illustrates the intersection of MWC and Teton Park road.  

 

Figure 2-3 Moose End MWC Data Collection Location 

In addition to volume collected at the Granite Canyon entrance, vehicle headway was a 

derived attribute that was related to service time. The vehicle headway is the amount of time that 

separates two vehicles while traveling. Thus, references to similar studies, assumptions, and 

engineering judgment were used to interpret the service rate at the Granite Canyon entrance 

station. Research conducted by Upchurch determined the capacity of 112 vehicles per hour for 

Arches National Park and 97 vehicles per hour for the Grand Canyon National Park south 

entrance, resulting in service times of 32 seconds and 37 seconds respectively (Upchurch 2006). 

Additionally, Upchurch also determined a capacity of 194 vehicles per hour at Zion National 
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Park resulting in service times of approximately 19 seconds (Upchurch 2015). The most critical 

assumption was assuming the service rate to be the headway. In cases where the visitor arrival 

rate is significant, assuming the average headway is equal to the average service rate can be a 

reasonable estimate. The logic behind this assumption is evident when considering a queue that 

is in place, the time taken for a vehicle to leave the entrance station after being served to the 

point where the data is being collected becomes a steady state. This, however, can only be 

inferred when there is high confidence that a queue was in place, such as the peak hours of a 

high-volume day. Additionally, for the first assumption to be considered a second assumption is 

made that vehicles accelerate at the same rate after being served. The previous two assumptions 

were vital in determining the service rate but were also unique to the Granite Canyon entrance 

system. The final assumption consisted of utilizing service rate values estimated from the Granite 

Canyon entrance system as anticipated values for the northern Moose end queueing station 

system.   

2.6 Overview of Collected Data 

The arrival rate of the visitors passing through the Granite Canyon entrance and the 

southwest-bound vehicles at the Moose end was the primary set of data referenced and utilized. 

For the year of 2013, only three days of data were collected in August. For the year 2014, 18 

days of data were collected between June – October.  The obtained data was allotted into 15-

minute bins throughout the daily study period. This allowed for the peak hour to be determined 

with greater precision. Through reference to the peak hour volumes, the average arrival rate was 

determined for both the Granite Canyon entrance station and the considered Moose queueing 

station. The vehicle headway was referenced only for the Granite Canyon entrance and utilized 
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as the service rate throughout the Moose entrance station calculations. Figure 2-4 illustrates the 

average vehicle volume observed at the Granite Canyon entrance between August 2013 and June 

– October of 2014, during the 13-hour data collection period. The highest vehicle arrival rate was 

observed on August 5, 2013, at 143 vehicles per hour between 9:30 AM – 10:30 AM. The largest 

average peak hour volume for an entire day was observed on August 3, 2013, with an average of 

82.3 vehicles per hour. As Figure 2-4 illustrates, the highest volumes at the Granite Canyon 

entrance station were mainly seen during the morning hours. 

Figure 2-5 illustrates the average vehicle volume observed at the Moose in August of 

2013 and June – October of 2014, during the 13-hour data collection period. The highest vehicle 

arrival rate was observed on August 4, 2013, at 151 vehicles per hour between 3:15 PM – 4:15 

PM. The largest average peak hour volume for an entire day was also observed on August 4, 

2013, with an average of 87.0 vehicles per hour. As Figure 2-5 illustrates, the highest volumes at 

the Moose were mainly seen in the afternoon & early evening hours. 

By observing Figures 2-4 and 2-5, a distinction can be made about the MWC’s visitor 

demand. Visitors appear to begin their day entering GRTE at the Granite Canyon entrance 

between the hours of 8:00 AM – 11:00 AM, and re-enter MWC at the Moose between 1:30 PM – 

5:30 PM. This relationship suggests that entering vehicles travel straight through the corridor for 

activities beyond the MWC, and likely exit the park by traveling through the MWC later in the 

day. Therefore, it is reasonable to assume that the queueing measures of performance 

experienced in the Granite Canyon entrance during the morning hours would be comparable to 

what will be experienced in the evening hours at the Moose queueing station. Therefore, similar 

assumptions were made for both locations when implementing queueing theory to estimate 

measures of performance.  
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Figure 2-4 Observed Volume at Granite Canyon Entrance Station 
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Figure 2-5 Observed Volume at the Moose 

 

A comparison can be made to traffic count data published by the National Park Service 

(NPS) IRMA Portal to address the appropriateness of the collected data (National Park Service 

2016b). The portal provides aggregated monthly volume counts for vehicles entering the Moose-

Wilson entrance, which is what this study refers to as the Granite Canyon entrance. Table 2-1 

illustrates how the data provided by the NPS compares to what was observed in the field in terms 

of a percent difference. In Table 2-1, the observed monthly values were estimated by multiplying 

the average 13-hour period volume collected for the days in each month and multiplied by the 

total days in that month. Thus, there is some error present in the observed volumes reported than 

what is reported by NPS IRMA portal, but the collected data likely catches the majority of the 

peak volume from 7:00 AM – 8:00 PM. 
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Table 2-1 Comparison of 13-Hr Collected Data to NPS IRMA Portal 

Collected/ Estimated 
NPS IRMA 

Portal 
% Difference 

Month 13-Hr Avg. Days in Month 
Avg. Est 

Monthly Total 

August, 2013 960 31 29,760 33,877 13% 

June, 2014 695 30 20,850 26,879 25% 

July, 2014 834 31 25,864 35,362 31% 

August, 2014 912 31 28,272 33,045 16% 

September, 2014 656 30 19,680 19,667 0% 

October, 2014 253 31 7,833 9,195 16% 

 

2.7 Analysis Methodology and Preliminary Findings 

Two analysis approaches were utilized to evaluate the queue at both locations of interest 

in the MWC. The first approach consists of utilizing Little’s Law for a single server model to 

determine critical parameters capable of measuring the performance of the system. By utilizing 

the observed values of average arrival rate λ, and the average service rate μ the traffic intensity ρ 

can be determined. Then the average measures of performance can be determined by the 

expected number of visitors in the system Ls, expected number of visitors in the queue Lq, 

expected waiting time in the system Ws, expected waiting time in queue Wq and the expected 

number of busy servers c’ (where c is the available number of servers) which leads to identifying 

the facility utilization value. The following Equations 2.1 – 2.8 illustrate how these parameters 

are determined, as well as determining the probability of any “n” number of vehicles in the 

system (Taha 2007). 

       Eq. 2.1 

      Eq. 2.2 
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      Eq. 2.3 

      Eq. 2.4 

     Eq. 2.5 

      Eq. 2.6 

 

     Eq. 2.7 

    Eq. 2.8 

It must be noted that the above equations are valid under steady-state queuing conditions. 

A steady state condition is determined when the service rate μ, is greater than the arrival rate λ. 

As defined by Little, “under steady-state conditions, the average number of items in a queueing 

system equals the average rate at which items arrive multiplied by the average time that an item 

spends in the system” (Chhajed et al. 2008). The second approach consists of running some 

simulations for the M/M/1 queue at the Granite Canyon entrance and Moose end of the corridor. 

This analysis is different in the sense that the randomness of the Poisson distribution can be 

directly applied to the vehicle arrival rate and service time. Thus, the results for length and 

waiting time differ after each simulation allowing for variation in the results and an idea of the 

expected range of performance measures. Also, the simulation procedure provides more 

reasonable estimates for unstable cases that Little’s Law deterministic nature may overestimate. 
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The critical step taken in achieving the simulation is utilizing the exponential distribution and 

generated random numbers to determine the vehicle inter-arrival times as well as the service time 

for each vehicle. Equation 2.9 illustrates the exponential distribution function. A generated 

random number R is set as the variable F(t). The next step is solving for time t, which will 

determine the vehicle’s inter-arrival time and similarly the service time (Taha 2007). 

    Eq. 2.9 

 

Next, to determine the values of arrival rate λ, and the service rate μ from the previously 

discussed data, the following steps were taken. First, because the interest was to evaluate the 

conditions where the queue has a more significant effect, the arrival rate from the day which saw 

the highest average arrivals is used. Second, the headway between vehicles during peak hours 

was utilized as the service rate. Following the estimation of the arrival rate and the service rate, 

the evaluation of the queue can be conducted. Table 2-2 and Table 2-3 illustrate the data required 

to proceed with the queueing evaluation for the Granite Canyon entrance station and the Moose 

end proposed queueing station.  

In Table 2-2, the highlighted rows denote the times where the most significant amount of 

vehicle arrivals were observed. Thus, these are the cases where it can be almost sure that the 

vehicle headway most closely resembles the Granite Canyon entrance service rate. Therefore, the 

assumption for the evaluation of the queue would have an average service rate of 83 vehicles per 

hour (referencing 8/4/2013 average day arrivals). The average service rate varied between 25 – 

27 seconds but mainly remained below the 30-second mark under higher vehicle arrivals. These 

service rates are in the range of what was observed by Upchurch in the previously discussed 
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National Park entrance station studies (Upchurch 2006; Upchurch 2015). Similarly, Table 2-3 

illustrates only the volume at Moose. Overall the volume observed at the Moose end was slightly 

higher, but otherwise similar to that observed at the Granite Canyon entrance station. 

The data in Table 2-2 and Table 2-3 was further used to determine the average monthly 

arrival rates and service rates. Table 2-4 illustrates the results of averaging the peak-hour arrival 

averages as well as the vehicle headways at Granite Canyon and only considering the Moose end 

monthly average arrivals. These results can be considered as the arrival rate and service rate 

when the system is experiencing the most substantial amount of arrivals in a given month. 

Table 2-2 Arrival Rate, Headway and Service Rate Summary for Granite Canyon 

Entrance Station 

Date 

Avg Day 

Arrivals 
(veh/hr) 

Peak Hour 

Peak 

Hour 

Arrivals 

Avg Headway at  

Peak Hour/ Service Rate 

(veh/sec) 

8/4/2013 82.27 10:45 AM - 11:45 AM 138 0:00:26 

8/5/2013 80.18 9:30 AM - 10:30 AM 143 0:00:25 

8/24/2013 64.92 10:00 AM - 11:00 AM 128 0:00:27 

6/14/2014 48.06 10:45 AM - 11:45 AM 90 0:00:40 

6/15/2014 62.35 10:15 AM - 11:15 AM 124 0:00:29 

6/16/2014 46.00 9:15 AM - 10:15 AM 111 0:00:33 

6/26/2014 55.63 10:30 AM - 11:30 AM 90 0:00:41 

6/27/2014 55.35 9:45 AM - 10:45 AM 112 0:00:31 

6/28/2014 63.49 10:00 AM - 11:00 AM 118 0:00:30 

7/10/2014 64.73 8:45 AM - 9:45 AM 103 0:00:35 

7/11/2014 64.39 8:45 AM - 9:45 AM 109 0:00:33 

7/12/2014 68.49 9:30 AM - 10:30 AM 131 0:00:27 

8/8/2014 73.18 9:45 AM - 10:45 AM 140 0:00:26 

8/9/2014 66.35 8:45 AM - 9:45 AM 110 0:00:33 

8/10/2014 76.22 9:30 AM - 10:30 AM 137 0:00:25 

9/6/2014 52.82 10:15 AM - 11:15 AM 94 0:00:38 

9/7/2014 57.65 9:00 AM - 10:00 AM 101 0:00:35 

9/8/2014 47.61 9:30 AM - 10:30 AM 99 0:00:36 

10/10/2014 21.24 10:30 AM - 11:30 AM 45 0:01:19 

10/11/2014 23.76 9:45 AM - 10:45 AM 49 0:01:14 

10/12/2014 15.55 9:45 AM - 10:45 AM 26 0:02:12 

 



28 

 

Table 2-3 Arrival Rate Summary for Proposed Moose Entrance Station 

Date 
Avg Day λ 
(veh/hr) 

Peak Hour 
Peak Hour 

Arrivals 

8/4/2013 87.00 3:15 PM - 4:15 PM 151 

8/5/2013 79.47 2:45 PM - 3:00 PM 127 

8/24/2013 77.08 3:15 PM - 4:15 PM 127 

6/14/2014 55.43 2:15 PM - 3:15 PM 93 

6/15/2014 62.31 5:00 PM - 6:00 PM 100 

6/16/2014 53.80 3:00 PM - 4:00 PM 87 

6/26/2014 61.61 2:15 PM - 3:15 PM 118 

6/27/2014 52.55 1:00 PM - 2:00 PM 83 

6/28/2014 77.55 3:30 AM - 4:30 PM 131 

7/10/2014 63.98 3:00 PM - 4:00 PM 92 

7/11/2014 68.71 3:30 AM - 4:30 PM 115 

7/12/2014 70.35 4:00 PM - 5:00 PM 106 

8/8/2014 78.10 2:15 PM - 3:15 PM 122 

8/9/2014 75.96 4:00 PM - 5:00 PM 142 

8/10/2014 85.51 4:00 PM - 5:00 PM 139 

9/6/2014 62.45 3:45 AM - 4:45 PM 109 

9/7/2014 71.53 4:45 AM - 5:45 PM 91 

9/8/2014 60.08 4:00 PM - 5:00 PM 90 

10/10/2014 26.10 3:45 AM - 4:45 PM 46 

10/11/2014 30.14 3:15 PM - 4:15 PM 56 

10/12/2014 20.06 3:45 AM - 4:45 PM 40 

 

Table 2-4 Monthly Arrival Rate, Headway and Service Rate Summary 

Month 

Monthly Peak Hour Avg 

Avg Headway at  

Peak Hour/ Service Rate μ 
Granite Canyon Moose 

Aug-13 0:00:26 136.33 135.00 

Jun-14 0:00:31 107.50 102.00 

Jul-14 0:00:32 114.33 104.33 

Aug-14 0:00:34 129.00 134.33 

Sep-14 0:00:34 98.00 96.67 

Oct-14 0:00:35 40.00 47.33 

 

The month of August is denoted as the month which saw the highest arrival rate, as well 

as the month which can be more confidently referenced to assume an adequate service rate. The 

peak hour arrival rates can be referred to as 137 and 129 vehicles per hour the for the Granite 
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Canyon entrance, 135 vehicles per hour for the Moose end and service rates ranging from 25 

seconds to 35 seconds respectively.  

2.8 Analysis and Results 

Little’s Law was implemented to various scenarios in the analysis to observe the variance 

in the results. For conditions at the Granite Canyon entrance, an 83 vehicle per hour arrival rate 

was utilized since it was the most substantial daily arrival rate observed, thus making it the 

conservative choice. Service rate values were obtained by referencing the headways. Thus, a 

reasonable range of service rate was determined to be between 25 seconds to 35 seconds. 

Therefore, an arrival rate λ of 83 vehicles per hour was utilized with a service rate µ ranging 

from 25 seconds to 35 seconds. Table 2-5 illustrates the implementation of Little’s formula over 

the stated parameters. Figure 2-6 illustrates the probability of having 20 vehicles in the system 

under these circumstances.  

Table 2-5 Results of Little’s Formula with λ = 83 veh/hr and µ = 25 – 35 sec 

Arrival 

Rate  

λ 

(veh/hr) 

Service 

Rate 

μ (sec) 

Traffic 

Intensity 

ρ  

Facility 

Utilization 

% 

Average 

Length of 

System 

Ls (veh) 

Length of 

Queue 

Lq (veh) 

Waiting Time 

in System 

Ws (sec)/(min) 

Waiting Time 

in Queue 

Wq (sec)/(min) 

83 

25 0.58 58 1.36 0.78 59 0.98 34 0.57 

26 0.60 60 1.50 0.90 65 1.08 39 0.65 

27 0.62 62 1.65 1.03 72 1.19 45 0.74 

28 0.65 65 1.82 1.18 79 1.32 51 0.85 

29 0.67 67 2.02 1.35 88 1.46 59 0.98 

30 0.69 69 2.24 1.55 97 1.62 67 1.12 

31 0.71 71 2.51 1.79 109 1.81 78 1.29 

32 0.74 74 2.81 2.08 122 2.03 90 1.50 

33 0.76 76 3.18 2.42 138 2.30 105 1.75 

34 0.78 78 3.63 2.84 157 2.62 123 2.06 

35 0.81 81 4.18 3.37 181 3.02 146 2.44 
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Figure 2-6 Probabilities of 0 – 20 Vehicles in the System with λ = 83 veh/hr and µ = 25 – 35 

sec. 

The results show that the expected number of vehicles in the queue at a 25-second service 

rate is 0.78 and increases to 3.37 vehicles when the service rate is 35 seconds. Similarly, the 

average time a vehicle spent in the queue was approximated to range from 34 seconds to 2 

minutes and 26 seconds, while the facility usage ranged from 58% to 81%. Figure 2-6 shows that 

the probability of having zero vehicles in the system decreases by approximately 20% when the 

service rate is increased by ten seconds. 

Applying the same principles, the Moose end queueing measures of performance were 

estimated using Little’s Law. Therefore, an arrival rate λ of 87 vehicles per hour was utilized 

with a service rate µ ranging from 25 seconds to 35 seconds. Table 2-6 illustrates the application 

of Little’s formula over the stated parameters. Figure 2-7 illustrates the probability of having 20 

vehicles in the system under these circumstances. 
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Table 2-6 Results of Little’s Formula with λ = 87 veh/hr and µ = 25 – 35 sec 

Arrival 

Rate  

λ 

(veh/hr) 

Service 

Rate 

μ (sec) 

Traffic 

Intensity 

ρ  

Facility 

Utilization 

% 

Average 

Length of 

System 

Ls (veh) 

Length of 

Queue 

Lq (veh) 

Waiting Time 

in System 

Ws (sec)/(min) 

Waiting Time 

in Queue 

Wq (sec)/(min) 

87 

25 0.60 60 1.53 0.92 59 0.98 38 0.64 

26 0.63 63 1.69 1.06 65 1.08 44 0.73 

27 0.65 65 1.88 1.23 72 1.19 51 0.84 

28 0.68 68 2.09 1.42 79 1.32 59 0.98 

29 0.70 70 2.34 1.64 88 1.46 68 1.13 

30 0.73 73 2.64 1.91 97 1.62 79 1.32 

31 0.75 75 2.99 2.24 109 1.81 93 1.54 

32 0.77 77 3.41 2.64 122 2.03 109 1.82 

33 0.80 80 3.94 3.14 138 2.30 130 2.17 

34 0.82 82 4.61 3.79 157 2.62 157 2.61 

35 0.85 85 5.49 4.64 181 3.02 192 3.20 

 

 

Figure 2-7 Probabilities of 0 – 20 Vehicles in the System with λ = 87 veh/hr and µ = 25 – 35 

sec 

The results show that the expected number of vehicles in the queue at a 25-second service 

rate is 0.92 and increases to 4.64 vehicles when the service rate is 35 seconds. Similarly, the 

average time a vehicle spent in the queue was approximated to range from 38 seconds to 3 



32 

 

minutes and 12 seconds, while the facility usage ranged from 60% to 85%. Figure 2-7 shows that 

the probability of having zero vehicles in the system decreases by approximately 25% when the 

service rate is increased by ten seconds. 

 Furthermore, the additional parameters considered were those where the arrival rates 

were significant. Little’s Law was once again utilized to measure the performance at higher 

arrival rates and service times. For these iterations, the arrival rate of 129, 137 and 143 vehicles 

per hour for the Granite Canyon entrance and 135 and 151 vehicles per hour for the Moose end 

proposed entrance were tested with service rates varying between 26 and 35 seconds. These 

values were considered by the results shown in Table 2-3 and Table 2-4 and are evaluating the 

longer peak hours observed in the collected data. Although the results are high for these 

scenarios, it provides an idea of how the performance measures are sensitive to the service and 

arrival rates in Little’s Law. Additionally, cases, where the service rate could not keep up with 

the demand, resulted in unstable queueing, in which Little’s Law is no longer useful, and 

additional measures must be taken to address the queue. Table 2-7 and Table 2-8 illustrates the 

application of Little’s Law to the Granite Canyon entrance station and the proposed Moose end 

entrance station, respectively.   
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Table 2-7 Results of Little’s Formula with λ = 129, 137, 143 veh/hr and µ = 26-35 sec for the 

Granite Canyon Entrance Station 

  

Table 2-8 Results of Little’s Formula with λ = 135 and 151 veh/hr and µ = 26-35 sec for the 

Proposed Moose Entrance 

Arrival 

Rate  

λ 

(veh/hr) 

Service 

Rate 

μ (sec) 

Traffic 

Intensity 

ρ  

Facility 

Utilization 

% 

Average 

Length of 

System 

Ls (veh) 

Length of 

Queue 

Lq (veh) 

Waiting Time 

in System 

Ws (sec)/(min) 

Waiting Time 

in Queue 

Wq 

(sec)/(min) 

135 

26.0 0.98 98 39.00 38.02 1040 17.33 1014 16.90 

26.6 1.00 100 399.00 398.00 10640 177.33 10613 176.89 

35.0 1.31 131 Unstable 

151 

26.0 1.09 109 Unstable 

26.2 1.10 110 Unstable 

35.0 1.47 147 Unstable 

 

Although the results from Table 2-7 and Table 2-8 show unstable results, the values 

utilized were for the highest observed volumes and would likely not be consistent for longer than 

an hour. However, they do illustrate how small changes in service time can have a significant 

impact on measures of performance. 

The last analysis method utilized was a simulation. The simulation parameters used were 

similar to those used in the Little’s formula analysis. A total of 20 simulations with 160 vehicles 

was conducted for each case. The number of simulations was determined based on having a 

Arrival 

Rate  

λ (veh/hr) 

Service 

Rate 

μ (sec) 

Traffic 

Intensity 

ρ 

Facility 

Utilization 

% 

Average 

Length of 

System 

Ls (veh) 

Length 

of Queue 

Lq (veh) 

Waiting Time in 

System 

Ws (sec)/(min) 

Waiting Time in 

Queue 

Wq (sec)/(min) 

129 

26.0 0.93 93 13.63 12.70 380 6.34 354 5.91 

27.8 1.00 100 237.57 236.57 6630 110.50 6602 110.03 

35.0 1.25 125 Unstable 

137 

26.0 0.99 99 93.74 92.75 2463 41.05 2437 40.62 

26.2 1.00 100 338.62 337.63 26 0.44 8872 147.87 

35.0 1.33 133 Unstable 

143 
26.0 1.03 103 298.90 298.00 7800 130.00 7774 129.57 

35.0 1.39 139 Unstable 
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sample size sufficient enough to capture possible variances. As described by Ritter et al. the 

number of simulations required can vary for stochastic simulations (Rothrock and Narayanan 

2011). The 160 vehicles considered were to make sure that at least one hour was simulated for 

each case. The facility utilization, in this case, was determined as the summation of the time the 

facility was attending to a visitor. The idle time was then determined by subtracting the facility 

time over the total simulation time.  Table 2-9 and Table 2-10 illustrate the average results of 

each simulation scenario in the Granite Canyon entrance station and the proposed Moose 

entrance station, respectively  

 

Table 2-9 Average Results of 160 Vehicle Simulation Under Varying Arrival and Service 

Rates at the Granite Canyon Entrance Station 

Arrival 

Rate  

λ 

(veh/hr) 

Service 

Rate 

μ (sec) 

Average 

% Facility  

Utilization 

% 

Idle 

Queue 

Length,  

Lq (veh) 

System 

Length,  

Ls (veh) 

Waiting 

Time in 

Queue 

Wq 

(sec)/(min) 

Waiting 

Time in 

System 

Ws 

(sec)/(min) 

Total 

Simulation  

Time (min) 

83 
25 57 43 0.80 1.37 35 0.58 60 1.00 106.53 

35 78 22 2.80 3.58 122 2.03 156 2.60 105.99 

129 
25 85 15 3.91 4.75 113 1.88 137 2.29 71.24 

35 99 1 20.22 21.21 732 12.21 768 12.79 86.56 

137 
25 87 13 5.46 6.34 150 2.49 174 2.90 68.02 

35 99 1 23.52 24.51 844 14.07 880 14.66 85.95 

143 25 92 8 7.70 8.61 214 3.56 239 3.98 66.91 
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Table 2-10 Average Results of 160 Vehicle Simulation Under Varying Arrival and Service 

Rates at the Proposed Moose Entrance Station 

Arrival 

Rate  

λ 

(veh/hr) 

Service 

Rate 

μ (sec) 

Average 

% Facility  

Utilization 

% 

Idle 

Queue 

Length,  

Lq (veh) 

System 

Length,  

Ls (veh) 

Waiting 

Time in 

Queue 

Wq 

(sec)/(min) 

Waiting 

Time in 

System 

Ws 

(sec)/(min) 

Total 

Simulation  

Time (min) 

87 
25 60 40 1.00 1.60 40 0.67 65 1.08 99.57 

35 83 17 4.46 5.29 192 3.20 228 3.80 106.18 

135 
25 90 10 5.14 6.04 143 2.39 168 2.80 66.88 

35 98 2 21.45 22.43 774 12.90 809 13.49 87.54 

151 25 94 6 10.52 11.46 287 4.78 312 5.20 65.91 

 

The results obtained from the simulation showed values comparable to those obtained by 

Little’s formula when the arrival and service rates were low. However, it appeared that the 

simulation results for the higher arrival and service rates which were determined to be unstable 

under Little’s Law were more reasonable in terms of queue length and queue waiting time per 

vehicle. This could be explained by the traffic intensity value ρ being high, or closer to one when 

using Little’s Law. 

2.9 Discussion of Results 

From referencing both Little’s Law and the simulation results above, it can be observed 

that an average arrival rate of 83 - 87 vehicles per hour with a varying service rate of 25 seconds 

to 35 seconds can adequately handle the arriving visitors at the Granite Canyon entrance and a 

Moose entrance station. Under these conditions, the maximum facility utilization can be 

anticipated to be at 85% with a maximum average queue length of 3.4 to 4.3 vehicles and a 

maximum average queue waiting time of 2 minutes 15 seconds to 2 minutes 59 seconds.  
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The conditions which were determined to see the most substantial arrival rates of 143 and 

151 vehicles per hour were found to be unstable when utilizing Little’s Law. However, 

simulation results determined that under these parameters and a relatively effective service rate 

of 25 seconds, the facility utilization is between 92% - 94%, with a maximum average queue 

length of 10.52 vehicles and a 4 minute and 48-second average queue waiting time. For 

comparison, Upchurch reported a wait time ranging from 10 – 22 minutes at Zion National Park 

(Upchurch 2015). Although the estimated wait time is lower than what has been observed at 

other National Parks, consideration must be made to visitor perception. In most systems, waiting 

time is a factor that is trying to be minimized in order to increase customer/visitor satisfaction. 

However, in a National Park setting, wait time minimization may not be as critical due to visitors 

likely participating in leisure activities. 

The determined service rate of 25 seconds seems appropriate for the Granite Canyon 

entrance, in comparison to the 32 seconds service at Arches National Park entrance station and a 

service rate of 37 seconds for Grand Canyon National Park’s south entrance (Upchurch 2006). 

The capacity at the Granite Canyon entrance was estimated to be 144 vehicles per hour 

averaging a service rate of 25 seconds. Compared to other entrance stations, the capacity for 

Arches National Park, Grand Canyon National Park, and Zion National Park were determined to 

be 112 vehicles per hour, 97 vehicles per hour and 194 vehicles per hour, respectively (Upchurch 

2006; Upchurch 2015). An essential distinction between the entrance station evaluated in GRTE 

and those evaluated by Upchurch is in their anticipated demand as those evaluated by Upchurch 

can be considered as the primary entrances to their respective National Parks.    

Lastly, the results provide an estimated vehicle queue length which could be converted 

into a distance when assuming a vehicle length and multiplying these two variables. When 
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considering the future policy of a Moose queuing station, it is essential to consider how the 

queue length will affect system performance but also safety concerns. If the entrance station is 

too close to the intersection, the queue may spill back to the MWC and Teton Park road 

intersection resulting in poor traffic conditions, possible negative visitor experiences and safety 

concerns from approaching upstream traffic.   

A study by Mokkapati and Hawkins focused on guidelines for minimum signal sight 

distance considers a distance of 15.2 meters (50 ft) for two vehicles in the queue (Mokkapati and 

Hawkins 2007). The ITE Traffic Engineering Handbook lists a passenger vehicle and single-unit 

truck with a length of 5.8 meters (19 ft) and 9.1 meters (30 ft) respectively (Pande et al. 2015). 

With passenger vehicle length information, a spacing of about 3.7 meters (12 ft) can be 

presumed. However, for the MWC, consideration must be taken to account the variation in 

vehicle type and spacing when queueing. Therefore, considering a 5-vehicle queue estimated 

under the 87 vehicles per hour arrival rate at the Moose end and assuming all passenger vehicles 

with 3.7 meters (12 ft) spacing between queued vehicles, an approximate 43.8 meter (143 ft) 

distance would be expected. However, if the same conditions apply, and we consider all single-

unit trucks instead of all passenger vehicles, the distance increases to 60.3 meters (198 ft). Thus, 

estimating a distance can vary considerably under different assumptions, and a realistic scenario 

has mixed vehicles and mixed spacings in play. A conservative assumption may be to presume a 

5-vehicle queue, with four passenger vehicles and one single-unit truck and 3.7 meters (12 ft) 

spacing. The technical report of the suite of data collected for the development of the Moose-

Wilson Corridor Comprehensive Management Plan reported small observations of trucks and 

vans (Monz et al. 2014). Thus, under these considerations, a minimum distance recommendation 
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for the Moose end queueing station would be approximately 47.1 meters (154 ft) downstream 

from the Teton Park Road intersection.  

It is important to mention that the queuing distance estimation if for current prevailing 

conditions with a one-lane entry. Therefore, the results presented would be valid to Final 

Plan/EIS’s strategy when arriving vehicles are not affected by the MWC 200 vehicles at a time 

capacity constraint. Consequently, the Final Plan/EIS’s strategy to implement the addition of 

lanes at both the Granite Canyon entrance and the Moose queueing station will serve as a 

positive feature in maintaining capacity and preventing the spill back to Teton Park Road 

(National Park Service 2016c).  

2.10 Policy Implications 

The policy implications as they relate to this case study are twofold. First, the current 

assessment of the Granite Canyon entrance has provided a base level of existing conditions for 

queuing operations. The procedure presented in this study provides an approach which is 

repeatable by GRTE when the Moose entrance station is fully operational. Policy decisions made 

by the GRTE administration related to current operations may be to set thresholds on service 

times, capacity, facility utilization or queue lengths. By referencing this case study, a balance 

between park preservation, visitor satisfaction, and GRTE staff could be further explored by 

GRTE. As it relates to findings in this study, service time changes by considering additional 

servers should be considered by GRTE when arrival rates are expected to exceed 100 vehicles 

per hour and similarly, when service time is frequently exceeding 35 seconds. Thus, a 

conservative recommendation would make the capacity of 103 vehicles per hour a recommended 

threshold for the Granite Canyon and Moose end entrance stations. 
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Secondly, the use of queuing theory methodology was further utilized to anticipate 

queueing levels at a new site within GRTE. In this case study, the proposed Moose entrance 

station was evaluated by utilizing collected data and assumptions of similar service time to the 

Granite entrance station. The knowledge gained from the queueing operation assessment 

provides policy decision-makers with crucial information for useful planning data for future 

operations as well as initial thresholds on service times, facility utilization or queue lengths. As it 

relates to findings in this study, the proposition of a new entrance station would need to consider 

the upstream effects of arriving vehicles and their respective queues. It is recommended based on 

initial assumptions that the distance of 47.1 meters (154 ft) is a conservative minimum distance 

for GRTE policy and decision makers to take into consideration.  

Overall the policy implications that are queuing brings to GRTE must be assessed with 

careful consideration. Entrance stations are commonly implemented to control access, and their 

function can influence preservation strategies by how many visitors enter the park and similarly 

visitor satisfaction by setting thresholds and goals that minimize delay during the entering 

processes.  

2.11 Conclusions 

In conclusion, it was determined that the consideration of queueing theory methodologies 

could provide useful information when considering policy changes. Overall, vehicle arrival rate 

data was collected from which queueing length and waiting time were estimated. Additionally, 

results from the queueing analysis were further extended to the estimation of a safe distance 

recommendation for a proposed entrance station. This information & procedure can be used to 

determine and evaluate current operations as well as setting thresholds to a desired level of 



40 

 

operation in future policy decisions. The procedure used in this study applies to any queuing 

setting in a National Park or protected area, where policy changes are being proposed or 

considered. 

The setting and application of queueing theory methodology for this study took place in 

the MWC in the GRTE. Specifically, it was determined that the Granite Canyon entrance could 

be evaluated as an M/M/1 first come first served (FCFS) queue. From data collected for the years 

of 2013 and 2014, the month of August is the month in which highest vehicle arrivals were 

observed at the Granite Canyon entrance. The capacity for the Granite Canyon entrance was 

determined to be 144 vehicles per hour. The average daily arrival rate of 83 vehicles per hour 

was determined to be a conservative value for the Granite Canyon entrance. Similarly, a service 

rate of 25-30 seconds can be considered an adequate value for the observed arrival rate. Under 

this condition, the anticipated facility utilization can be expected to be 81%, with an idle 

expectancy of 19%.  

When considering the proposed queueing station at the Moose end of the park, the 

evaluation was also approached as an M/M/1 first come first served (FCFS) queue. The average 

daily arrival rate of 87 vehicles per hour was determined to be a conservative value for the 

proposed Moose entrance. Similarly, a service rate of 25-30 seconds can be considered an 

adequate value for the observed arrival rate. Under this condition, the anticipated facility 

utilization can be expected to be 85%, with an idle expectancy of 15%.  

Some of the more extreme parameters considered were those in which the vehicle arrivals 

were higher than 100 vehicles per hour, and the service rate was estimated at 35 seconds. These 

were determined to be unstable under Little’s Law. However, the simulation results provided 
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high estimates of queue length and queue waiting time with facility utilization values higher than 

90%. 

What these results can translate into is that currently, operations at the Granite Canyon 

entrance station are adequate. Furthermore, a Moose queuing station can expect similar arrival 

rates as the Granite Canyon entrance. However, the peak hours would likely shift between high 

AM arrivals at the Granite Canyon entrance and high PM arrivals at the Moose queueing station. 

Lastly, careful consideration of the queue lengths and distance estimates must be considered 

when locating the Moose queueing station, as possible queue spill back into the MWC and Teton 

Park intersection could occur. A conservative distance downstream from the Teton Park Road 

intersection was estimated to approximately 47.1 meters (154 ft). The current Final Plan/EIS’s 

proposal to include more than one lane should mitigate the issue of spillback.  

2.12 Applying Findings into an Agent-Based Model 

Applying the methodology discussed in this chapter to an ABM requires the 

consideration of two main aspects. One is the arrival rate of vehicles arriving at the entrance gate 

and the other is the service time at the gate before they can proceed. The arrival rate of vehicles 

can be modeled by the mathematical equation illustrated in Eq. 2.9. By utilizing the ABM’s 

platform capabilities, a random number generator can be generated and be used to solve for the 

interarrival time that a vehicle is introduced to the ABM and thus representing the vehicle arrival 

rates. Every interarrival time can be stored in a list and be coded to release a vehicle into the 

ABM once that specific time is reached. In Eq. 2.9 the lambda is the user specified arrival rate 

parameter in units of seconds/vehicle. Thus, giving the user flexibility into testing observing 

various arrival rates.  
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The same process can be implemented in terms of service time. However, modeling such 

an event in an ABM requires the consideration of a conditional constraint to the agent or 

environment. For example, an agent may be instructed to stop if the cell in front of it is the color 

red and can proceed if the cell is changed to the color green. Similarly, interservice times can be 

calculated based on the user specified lambda arrival rate.  

Therefore, by incorporating these two rules and instructing the agents(vehicles) that they 

are not allowed to pass any agent(vehicle) in front of them. Queueing system levels and 

anticipated queue lengths can be modeled in an ABM and thus generate synthetic data of various 

combinations of vehicle arrival rates and service times.  
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3 CHAPTER 3:  Evaluation of Vehicle Parking Queueing in a 

National Park: A Case Study of the Laurence S. Rockefeller 

Preserve in Grand Teton National Park 

 

This chapter is adapted from Fuentes, A., Heaslip, K., D’Antonio, A. Khalilikhah, M., Soltani-

Sobh, A., (2017) Evaluation of Vehicle Parking Queueing in a National Park: A Case Study of 

the Laurence S. Rockefeller Preserve in Grand Teton National Park. Transportation Research 

Record, 2654, 1-10.  

3.1 Introduction 

Grand Teton National Park (GRTE) is a popular destination for visitors seeking a family 

vacation, outdoor recreation, and the possibility of wildlife sightings. The park attractions 

available to visitors influence how visitors plan their trip and which park routes will be used to 

reach their destination. In order to take full advantage of their visit to GRTE, visitors are likely to 

take more extended periods either at or during their commute to their final destination. The 

amount of time visitors spend at a location could be directly associated with the types of 

activities offered and similarly, the type of visitor (local visitor, out of state visitor, a park 

employee). 

Arguably the more popular attractions which have facilities are located near each other. 

These locations include the Laurence S. Rockefeller Preserve (LSR), the GRTE Headquarters, 

the Craig Thomas Discovery and Visitor Center, and Teton Village (which is located just 

southwest of the Granite Canyon entrance to GRTE). The LSR is located within the park 
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boundaries northeast of Teton Village and southwest of the Park Headquarters and Visitor 

Center. The GRTE Headquarters and the Craig Thomas Discovery and Visitor Center are located 

near the end of the Moose-Wilson Road corridor (MWC) by intersecting with Teton Park Road 

in the community of Moose. Figure 3-1 presents a map of the previously discussed area where 

these attractions are located, and a zoomed given the LSR. These attractions all provide a 

parking area for visitor vehicles and can be accessed either directly through or relatively quickly 

by the MWC. The LSR is located roughly halfway between Teton Village and the Moose 

community. The LSR is a unique attraction due to providing both activities at the facility and 

having various hiking trails nearby, as well as its proximity to Phelps Lake which offers fishing 

activities. This combination might influence visitors to utilize the parking area provided for long 

periods, leading to concern of overcapacity, queueing and possible visitor loss if visitors arrive at 

a more significant rate than visitors who are leaving and are unable to find parking. There are 

often delays, sometimes significant, that occur when people are trying to access the LSR with 

their vehicles. During peak periods the National Park Service (NPS) deploys one or more 

personnel to the parking area to assist visitors and manage the parking as effectively as possible. 

The purpose of this study is to provide GRTE, as well as other national parks, a reference 

in evaluating the measures of performance in other parking systems. More specifically, it can be 

used as a guide to determine current use levels and track how these levels change throughout the 

season, or years. If high use levels are found frequent, then improvements such as expansion or 

timed parking can be implemented, as needed. This will be accomplished by focusing on 

evaluating the queue characteristics at the LSR attraction. 
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3.2 Literature Review 

There is limited literature on parking in national parks. The research team studied previous 

research by Upchurch which investigated the visitor experience at Zion’s National Park in Utah 

by assessing the shuttle service and parking areas. Parking areas for visitors were monitored in 

order to assess time when capacity is reached, and overflow parking is used on high visitation 

days (Upchurch 2015). Some variation from Upchurch’s investigation to those in this study is 

the geography of the parking area. The parking area studied by Upchurch saw a large volume of 

vehicles because it is considered to be the central parking for Zion’s National Park. Also, shuttle 

services to the rest of the park are offered at this location. The LSR parking is a smaller area that 

is visited due to particular interest from visitors and thus does not see as high visitor volumes. 

Although more studies relating specifically to a national park parking area have not been 

conducted, this study, along with Upchurch’s work, open the door to various analysis methods.  

3.3 Study Area 

The LSR is accessed by making a southbound movement at the intersection of MWC and 

the LSR entrance road. Roughly, over a quarter of a mile south of the intersection lies the LSR 

parking area. Figure 3-1 illustrates an aerial image of this location. Furthermore, a representative 

image of the available parking is illustrated in Figure 3-2. There are 54 – 55 designated parking 

spaces (Monz et al. 2014; Monz et al. 2015) and parking in any other areas such as the shoulder 

of the access road are prohibited.  If parking is observed in the shoulder, ticketing by park 

employees is enforced. Overall, the LSR parking area can be considered a system in which 

vehicles enter, park for some time, and depart.  
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Figure 3-1 GRTE Attractions on the Moose-Wilson Corridor 
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Figure 3-2 Google Earth Image Excerpt of LSR Parking 

To define the LSR parking system in terms of queuing theory descriptions, the distinction 

of approach/departure/number of servers must be made. In the case of the LSR, the vehicle 

arrivals and departures are random. Thus the parking system can be assessed as a Poisson 

distribution denoted by the letter M; the queuing disciple can be interpreted as service in random 

order (SIRO). The number of servers is considered the number of available parking spaces. 

Therefore, under the previously defined information, the LSR parking area can be considered as 

an M/M/54 system to remain conservative. However, from aerial observations, as can be seen in 

Figure 3-2, seven additional parking spaces on the south end of the loop could be considered as 

parking spaces. Thus, the LSR system could also be considered as an M/M/61. Further discussion 

on the consideration of the system as M/M/54 and M/M/61 is provided below. 
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3.4 Data Collection and Assumptions  

The data utilized for this study was gathered from some different sources. Two key data 

were required to evaluate the queueing condition in LSR parking system. First, the total number 

of vehicles that arrive at the LSR and second, the average amount of time each vehicle spent 

parked at the LSR parking. 

The method used to determine the arrival of vehicles was through the use of MioVision 

cameras.  A camera captured the vehicle turning movement at the intersection of MWC and the 

entry road to the LSR. The average time that a vehicle spent parked at the LSR was determined 

through assessing GPS tracks. This data was obtained by visitors who agreed to participate in the 

study and were given a GPS device upon entry to MWC (either at the south Granite Canyon 

entrance station or the intersection of MWC and Teton Park Road in the north). By obtaining the 

visitor tracks with time stamps, the amount of time a vehicle was spent parked at the LSR was 

able to be determined. 

Both sets of data were collected during the summer and fall seasons of 2013 and 2014. 

The intersection movement count focused on 13 hours from 7:00 AM – 8:00 PM in which data 

were collected on random days over a total period of eight months. During 2013, a total of 11 

days were collected between July – September. During 2014, a total of 15 days were collected 

between June – October. Similarly, the GPS tracking of vehicles took place during 2013 from 

July – September for 23 days and during 2014 from June – October for 35 days. Each day of 

GPS tracking had a variable amount of data due to the collection from a stratified random 

sample, dependent on visitor participation and visitation levels. 
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There is uncertainty on whether every vehicle seen entering into the LSR system had the 

intentions of parking.  For this reason, a fundamental assumption is made in order to be 

conservative. The assumption is that all observed vehicles turning into the LSR system would 

park and spend time at the LSR. Furthermore, from reference to Figure 2, it is assumed that the 

area large enough to fit the seven vehicles can be considered as a temporary parking area. The 

final assumption consists of assuming vehicles can use this parking if all available spaces are full 

as a “waiting area” until a parking space becomes available. 

Both the M/M/54 and M/M/61 systems are considered simultaneously in this study by 

performing the calculations for an M/M/61 system. The reasoning behind this decision lies in the 

ability to determine a queue length when considering temporary parking. If temporary parking is 

not considered, the queue length cannot be accurately estimated as the process would consider it 

as a visitor loss rather than estimating the queue length. Considering seven parking spaces is 

appropriate, as observations during the data collection process recorded a maximum of 6.4 

vehicles waiting in the queue during August of 2014 (Monz et al. 2014). 

3.5 Overview of Collected Data 

The intersection movement count collected three vehicle movements: those traveling northeast 

towards the MWC and Teton Park Road intersection, southwest towards the Granite Canyon 

entrance, and southbound towards the LSR. The vehicle arrival rate into the system is provided 

in the following summaries of the southbound movements into the LSR. Figures 3-3 – 3-10 

summarize the observed arrival rate for each month of data collection. 
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Figure 3-3 July 2013 LSR Vehicle Arrivals 

The data collected in July 2013 consisted of four days of 13-hour observations. The dates 

of 7/28, 7/29, 7/30 and 7/31 correspond to Sunday, Monday, Tuesday and Wednesday 

respectively.  The maximum peak hour was observed at 43 vehicles per hour from 10:00 AM – 

10:59 AM on Monday 7/29, while the monthly average was determined to be 21.9 vehicles per 

hour.  
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Figure 3-4 August 2013 LSR Vehicle Arrivals 

The data collected in August 2013 consisted of two days of 13-hour observations. The 

dates of 8/9 and 8/10 correspond to Friday and Saturday respectively.  The maximum peak hour 

was observed at 41 vehicles per hour from 10:00 AM – 10:59 AM on Friday 8/9, while the 

monthly average was determined to be 22.0 vehicles per hour.  
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Figure 3-5 September 2013 LSR Vehicle Arrivals 

The data collected in September 2013 consisted of five days of 13-hour observations. The 

dates of 9/14, 9/15, 9/16, 9/17 and 9/18 correspond to Saturday, Sunday, Monday, Tuesday and 

Wednesday respectively.  The maximum peak hour was observed at 52 vehicles per hour from 

11:00 AM – 11:59 AM on Sunday 9/15, while the monthly average was determined to be 24.1 

vehicles per hour. 



54 

 

 

Figure 3-6 June 2014 LSR Vehicle Arrivals 

The data collected in June 2014 consisted of six days of 13-hour observations. The dates 

of 6/7, 6/8, 6/9, 6/20, 6/21, and 6/22 correspond to Saturday, Sunday, Monday, Friday, Saturday 

and Sunday respectively.  The maximum peak hour was observed at 40 vehicles per hour from 

1:00 PM – 1:59 PM on Saturday 6/21, while the monthly average was determined to be 18.5 

vehicles per hour. 
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Figure 3-7 July 2014 LSR Vehicle Arrivals 

The data collected in July 2014 consisted of three days of 13-hour observations. The 

dates of 7/18, 7/19 and 7/20 correspond to Friday, Saturday and Sunday respectively.  The 

maximum peak hour was observed at 54 vehicles per hour from 10:00 AM – 10:59 AM on 

Saturday 7/19, while the monthly average was determined to be 22.3 vehicles per hour. 
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Figure 3-8 August 2014 LSR Vehicle Arrivals 

The data collected in August 2014 consisted of two days of 13-hour observations. The 

dates of 8/2 and 8/3 correspond to Saturday and Sunday respectively.  The maximum peak hour 

was observed at 40 vehicles per hour from 12:00 PM – 12:59 PM on Saturday 8/2, while the 

monthly average was determined to be 22.7 vehicles per hour. 
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Figure 3-9 September 2014 LSR Vehicle Arrivals 

The data collected in September 2014 consisted of three days of 13-hour observations. 

The dates of 9/12, 9/13 and 9/14 correspond to Friday, Saturday and Sunday respectively.  The 

maximum peak hour was observed at 32 vehicles per hour from 11:00 AM – 11:59 AM on 

Sunday 9/14, while the monthly average was determined to be 15.9 vehicles per hour. 
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Figure 3-10 October 2014 LSR Vehicle Arrivals 

The data collected in October 2014 consisted of a one day of 13-hour observation. The 

date of 10/5 corresponds to Sunday.  The maximum peak hour was observed at 28 vehicles per 

hour from 11:00 AM – 11:59 AM on Sunday 9/14, while the monthly average was determined to 

be 14 vehicles per hour. 

As observed from the above data, the peak hours varied over the eight months of data 

collection with three months having a peak hour at 10:00 AM, three months having a peak hour 

at 11:00 AM and the remaining at 12:00 PM and 1:00 PM. However, the majority of the vehicle 

arrivals occur between the times of 9:00 AM – 2:59 PM. Thus, the data within these six hours 

was further considered as the peak hours, and the average was determined for each month. The 

reasoning behind this approach allows for a higher arrival rate average to be considered and 

therefore provides more conservative parameters. Table 3-1 illustrates a summary of these results 

in terms of monthly arrival rates. 
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Table 3-1 Monthly Arrival Rates 

Observation 

Period 

13 Hour Average  

Hourly Arrival Rate 

(Vehicles/Hour) 

9:00 AM - 2:59 PM Average  

Hourly Arrival Rate 

(Vehicles/Hour) 

July 2013 21.90 31.54 

August 2013 22.04 31.75 

September 2013 24.12 34.38 

June 2014 18.51 26.47 

July 2014 22.31 32.22 

August 2014 22.65 30.17 

September 2014 15.85 22.44 

October 2014 14.00 21.00 

 

The time a vehicle spent parked at the LSR was determined through the use of GPS 

technologies. These data had previously been derived and published in technical reports provided 

to the GRTE in work provided by Monz et al. (Monz et al. 2014; Monz et al. 2015).  The 

findings determined that for both the 2013 and 2014 summer and fall seasons, the average 

amount of time vehicles spent parked at the LSR was 1 hour and 20 minutes (80-minutes). 

3.6 Analysis Methods 

Parking at the LSR is evaluated as an M/M/61 system using Little’s law. In order to 

measure the performance, some terms need to be defined. First, the average arrival rate and 

service rate will be identified with the symbols of λ and µ respectively. Utilizing these two 

known values, the expected number of visitors in the system Ls, expected number of visitors in 

the queue Lq, expected waiting time in the system Ws, expected waiting time in queue Wq, and 

the expected number of busy servers/parking spaces c’ (where c is the available number of 
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servers/parking spaces) which leads to identifying the facility utilization value can be 

determined. Equations 3-1 – 3-5 illustrate the relationships used to determine these measures of 

performance (Taha 2007). 

    Eq. 3-1 

     Eq. 3-2 

       Eq. 3-3 

      Eq. 3-4 

     Eq. 3-5 

The distinction of the effective arrival rate (λeff) and the average arrival rate (λ) presents itself in 

a system like the LSR parking. The average arrival rate can be thought as the average of all the 

observed volume of vehicles entering the LSR from the MWC. However, there is a possibility 

that the parking lot is full or fills during the arrival of vehicles. This situation would then result 

in a “loss” of vehicle arrivals (λlost), or vehicles that decide to leave the LSR parking because 

there is no availability. This relationship can be summarized by Equations 3-6 to 3-7 (Taha 

2007). 

      Eq. 3-6 

     Eq. 3-7 
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To further discuss the process of evaluating the LSR’s parking performance, the 

explanation of the probabilities that compose the above-queueing measures of performance will 

be discussed. As previously stated, an LSR’s system can be identified as a Poisson distribution 

with random arrivals and service rates. Thus, the Poisson probability distribution function can be 

referenced to estimate the probabilities of a vehicle occupying a parking space. Furthermore, 

seven parking spaces are considered as temporary locations where vehicles may wait temporarily 

until a parking space opens up. Equations 3-8 to 3-10 illustrate how the probabilities are 

determined for each event (parking spaces occupied). 

       Eq. 8 

      Eq. 9 

     Eq. 10 

3.7 Analysis and Results 

Various parameters were considered during the evaluation in order to observe possible 

extreme cases of performance for the LSR parking system. The maximum average arrival rate 

observed during the 13-hour data collection period was during September 2013 with an average 

rate of 24.1 vehicles per hour. Similarly, the six-hour peak hour rate was observed in September 

2013 at an average rate of 34.8 vehicles per hour. These two values were rounded up (25 and 35 

vehicles per hour) and utilized as the average arrival rate and input into the queuing equations. 

Also, the arrival rate of 45 vehicles per hour was considered as an extreme case.  Furthermore, 

the service rate was determined by referencing the average amount of time a vehicle spent 
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parked at the LSR. The value of 1 hour and 20 minutes (80 minutes) was the average service rate 

observed. However, an average service rate of 2 hours (120 minutes) and 3 hours (180 minutes) 

were also considered as extreme cases. Table 3-2 illustrates the measures of performance under 

these conditions. 

Table 3-2 LSR Parking Queue Evaluation Results 

λ  

(Veh/Hr) 

µ  

(min) 
λlost λeff 

Ls  

(Veh) 

Ws  

(min) 

Ws  

(HH:MM:SS) 

Lq  

(Veh) 

Wq  

(min) 

Wq  

(HH:MM:SS) 

c'  

(Spaces) 

Facility  

Utilization 

25 

80 0.00 25.00 33.33 80.00 1:20:00 0.00 0.00 0:00:00 33.33 0.61 

120 0.69 24.31 49.53 122.24 2:02:15 0.91 2.24 0:02:15 48.62 0.88 

180 7.06 17.94 58.54 195.82 3:15:49 4.73 15.82 0:15:49 53.81 0.98 

35 

80 0.39 34.61 46.58 80.76 1:20:46 0.44 0.76 0:00:46 46.14 0.84 

120 8.18 26.82 57.91 129.54 2:09:32 4.27 9.54 0:09:32 53.65 0.98 

180 17.00 18.00 59.94 199.84 3:19:50 5.95 19.84 0:19:50 53.99 0.98 

45 

80 5.53 39.47 55.45 84.30 1:24:18 2.83 4.30 0:04:18 52.62 0.96 

120 18.02 26.98 59.51 132.34 2:12:20 5.55 12.34 0:12:20 53.96 0.98 

180 27.00 18.00 60.33 201.12 3:21:07 6.33 21.12 0:21:07 54.00 0.98 

 

The above process provided a Poisson probability distribution function for each scenario.  These 

distribution functions provide information on the probability of having n number of vehicles in 

the system. Figure 3-11 illustrates these results. 
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Figure 3-11 Probability Distribution Functions of Considered Arrival and Service Rates 

The figures above illustrate a normal distribution for the cases of λ = 25 veh/hr and µ = 

80 minutes, λ = 25 veh/hr and µ = 120 minutes, λ = 35 veh/hr and µ = 80 minutes. These 

describe situations where the highest probability of n vehicles in the system are below the 

available number of parking spots. However, the remaining cases which were considered as the 

more extreme followed an exponential distribution. These suggest that, under the given arrival 

and service rates, the LSR’s parking has a greater probability of reaching capacity for both the 54 

available parking spaces and the seven temporary spaces, and in turn leading to high queue 

lengths, queue waiting time and visitor loss.  

3.8 Discussion of Results 

The average arrival rates and service rates which were observed (λ = 25, 35 veh/hr and μ 

= 1 hour 20 min) provided acceptable results for the performance measures of the LSR parking 
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system, with the largest expected queue waiting time of 46 seconds. Overall, these results 

suggest that the LSR’s current parking capacity is sufficient under the observed visitor arrivals.  

However, as the results above suggest for the extreme cases, an increase of arrival rate to 

45 veh/hr will begin to worsen the performance measures and increase both the anticipated 

vehicle queue length and queue waiting time. All of the service rates considered resulted in 

facility utilization values greater than 95% and a visitor loss greater than five veh/hr. Similarly, 

poor results were observed under the λ = 25 veh/hr with µ = 3 hr and λ = 35 veh/hr with µ = 2 hr 

and 3 hr.  

Therefore, under the observed parameters, the LSR’s parking is expected to perform well 

and have little queueing and little loss of visitor arrivals. Problems are expected to occur if the 

average arrival increases to 45 veh/hr or if the average time vehicles spend parked increased to 

greater than 2 hours. The seven parking spaces which were considered as a temporary parking 

area for “waiting” vehicles would only be utilized under the higher arrival and service rates.  If 

the LSR is to experience an increase of arrival rates or vehicle parking time possible mitigation 

strategies include enforcing a parking time limit to keep the facility utilization at a reasonable 

value. Furthermore, overflow parking in an unpaved area is a possibility along with utilizing the 

temporary parking area as permanent parking spaces.  

3.9 Conclusions  

The LSR parking system can be evaluated as an M/M/54 without considering seven 

parking spaces as a temporary “waiting area” and, if considered, it would be referenced as an 

M/M/61. The queuing disciple is described as service in random order (SIRO), due to the 

uncertainty of vehicles arriving and leaving while other parking spaces are available. Arrival rate 
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data was collected by observing the intersection movement of MWC and the LSR entry road, and 

all movements south into the LSR were assumed to be the arrival rate. This data was collected 

for 13-hour periods during random days over eight months between the summer and fall season 

of 2013 and 2014.  

It was determined that September 2013 provided the largest average arrival rate of 24.1 

veh/hr. Similarly, the hours in which the most significant arrival rates were observed was 

between 9:00 AM – 2:59 PM. Considering these six hours, the average arrival rate was 

determined to be 34.4 veh/hr. The average time a vehicle spent parked (service rate) at the LSR 

was determined through reference to GRTE technical reports, in which the average time was 

found to be 1 hour and 20 minutes (80 minutes) for both 2013 and 2014 seasons. 

The analysis consisted of using Little’s law to determine the measures of performance for 

the LSR’s parking system. This was completed under the observed conditions as well as larger 

average arrival and service rates, which were considered as extreme cases. Nine total analysis 

was conducted for the arrival rates of 25, 35 and 45 veh/hr each with a service rate of 1 hr 20 min 

(80 minutes), 2 hr (120 min) and 3 hr (180 min) in order to evaluate how the measures of 

performance would change.  

Under the observed conditions, the LSR’s parking system experiences good performance. 

Under an arrival rate of 25 veh/hr and an 80-minute service rate, the expected queue length and 

queue waiting time are zero. The normal average parking space usage is 33.3, and the facility 

utilization is 61%. Under an arrival rate of 35 veh/hr and an 80-minute service rate, the expected 

queue length remains low and the queue is waiting time anticipated to be 46 seconds. The 

expected average parking space usage is 46.1, and the facility utilization is 84%. The remaining 

cases resulted in poorer results with high anticipated visitor loss, vehicle queue length, and queue 
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waiting time. If higher arrival rates and service times were to be observed, possible solutions 

could include enforcement of time spent parked (service time) or providing overflow parking. 

Lastly, this paper describes the steps and analysis methods to evaluate the measures of 

performance for a queueing system. With this information, the GRTE can re-evaluate the LSR 

parking queue and facility utilization estimates based on visitor changes and different seasons. 

This process is also applicable to any other parking area within a national park or in general 

where queues may be anticipated. By utilizing the methodology outlined above with data that 

can be obtained relatively easily, levels of use can be determined. With this information, national 

parks can make better-informed decisions relating to the expansion of parking facilities or 

management of parking by visitors by setting timed parking spaces. 

3.10 Applying Findings into an Agent-Based Model 

Applying the methodology discussed in this chapter to an ABM requires the 

consideration of two main aspects. One is the number of vehicles that are expected to visit the 

LSR and the second is the duration of time they will spend there. As discussed in the previous 

sections, under observed conditions the LSR’s parking operations appear to be in good condition 

as queue waiting time and vehicle queueing is low. However, tying in the findings from Chapter 

2 allows us to determine a proportion of agents (vehicles) that are likely to stop at the LSR 

attraction after passing through the entrance stations and spending a determined amount of time 

at this attraction.  

Thus, instructing agents (vehicles) to stop at the LSR would consist of assigning a 

random number between 0 – 1 and based on certain thresholds be instructed to stop at the LSR 

(i.e., 0 - .15 = 15% proportion of vehicles in the MWC will turn into the LSR and spend parked 



67 

 

time at this attraction). Instructing the agents to spend time at the LSR is accomplished by 

encoding rules that enforce the agent to hold their position for a determined amount of time. The 

time can be determined from a random draw from a normal distribution bounded by the mean 

value and standard deviation of collected data.   
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4 CHAPTER 4: A Decision Tree Approach to Predicting Vehicle 

Stopping from GPS Tracks in a National Park Scenic Corridor 

 

This chapter is adapted from Fuentes, A., Heaslip, K., Sisneros-Kidd, A. M., D’Antonio, A. 

Kelarestaghi, K. B. (In Review) A Decision Tree Approach to Predicting Vehicle Stopping from 

GPS Tracks in a National Park Scenic Corridor. Transportation Research Record. 

4.1 Introduction  

National parks are an essential part of the lands that make up the United States as they 

provide leisure alternatives that promote the nation’s history and importance of preservation. 

From a transportation perspective, they present a unique system in which different behaviors can 

be observed when time constraints and delays are not as pressuring as an urban environment. 

Scenic corridors at national parks provide an exciting challenge as they often carry the most 

history, require the most preservation and often see the most significant visitor demand. This 

study is focused on evaluating one such scenic corridor in Grand Teton National Park (GRTE), 

the Moose-Wilson Corridor (MWC). GRTE has three entry stations, one of which is in the 

MWC. The MWC can be entered from a south entry point near Teton Village, a popular resort 

which is outside the boundaries of GRTE, or through a north entry point near GRTE 

headquarters. The corridor itself includes asphalt and gravel surface types and is regulated at the 

35-mph speed limit. The MWC corridor spans a total of 7.7 miles and is required to be traveled 

to reach some of the primary attractions of GRTE which include the Death Canyon and Granite 

Canyon trailheads, the Laurance S. Rockefeller Preserve (LSR) and Sawmill Ponds overlook 
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(Service 2017). Figure 4-1 illustrates a map of the MWC area along with the described 

attractions. 

 

Figure 4-1 The Moose-Wilson corridor and its attractions 
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Previous research and data collection methods on national park scenic corridors have 

utilized survey and GPS-based tracking methods to emphasize the behavioral aspects of visitors 

and how their time is spent and distributed. Survey methods of data collection have been 

highlighted by Pettebone et al. for Bear Lake Road in Rocky Mountain National Park through a 

stated choice survey aiming to estimate travel mode choices (Pettebone et al. 2011). GPS-based 

tracking methods have been presented and implemented by D’Antonio et al. (D'Antonio et al. 

2010) for three national park locations which include Bear Lake Road at Rocky Mountain 

National Park, Tuolumne Meadows trail in Yosemite National Park and the Teton Range for 

analysis of visitor use, spatial patterns and recreation.  In this study, GPS tracking data collected 

from visitors during the 2013 and 2014 seasons will be utilized to predict the probability that a 

visitor in a vehicle stopped at one of the considered attractions of the MWC. This paper aims to 

visualize, assess, and predict the probability of vehicles stopping along the MWC corridor 

through the implementation of decision tree methodologies. Utilizing such an approach in a 

national park setting provides park management, scientists and engineers with two critical 

resources. First, this paper provides a reference to implementing a decision tree analysis from 

available GPS-tracks and discusses how it can assist in decision-making strategies. Additionally, 

it provides a glimpse of new machine learning methods that are becoming more applicable as 

technology continues to advance, and data becomes more readily available. 

A benefit to the use of a decision tree methodology in the MWC and general national 

park settings is that the results are easily interpreted and relationships between variables are 

quickly identified. Additionally, it provides an appropriate study of a behavior that is common in 

a national park scenic corridor setting while providing a glimpse of data analytic capabilities. 

Advancement in technology has allowed for data to be more easily accessed and analyzed. Data 
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of interest in the field of transportation includes time-sensitive vehicle counts to determine 

temporal variation in volume and can now be collected through various advanced technology. 

Spatial data collection has also been facilitated through mobile technology with GPS capabilities 

and provides rich data for transportation planners and engineers. These data are available in 

various formats, through different sources, and can provide greater accuracy in planning and 

developing decision-making strategies. The contribution presented in this paper consists of 

demonstrating how GPS tracking data can be used to build a decision tree capable of informing 

park management of the probabilities that a visitor in a vehicle will stop at an attraction.  In this 

paper, the scenic corridor is the MWC, and the attractions of interest include Death Canyon, 

Granite Canyon, LSR and Sawmill Ponds. Furthermore, the study incorporates a non-parametric 

machine learning approach to a unique national park setting where more significant variation in 

visitor behavior is observed. Finally, the results and methods implemented can aid national park 

managers in understanding current system behavior, identify relationships, and plan for future 

policy decision-making strategies.     

The remainder of this paper is organized into four sections; the first provides a literature 

review of relevant national park studies, GRTE focused transportation research and decision tree 

applications. The second provides an overview of the study data, explanation of the considered 

variables, and explanation of the analysis structure. The third provides the results and discussion, 

while the last section summarizes and concludes the paper and findings.  

4.2 Literature Review 

National parks provide a rich environment for conducting research studies related to 

recreation, ecology, history, and anthropology. Similarly, they are a unique setting for 
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researching transportation from a different perspective, where the daily constraints and pressure 

of reducing delay are relaxed, and different driver behavior can be observed. Early transportation 

studies conducted in national park settings include work by Upchurch who examined entrance 

station capacity and service times as well as parking limitations and mode alternatives at various 

national parks (Upchurch 2006; Upchurch 2015). Upchurch’s findings identified differences and 

limitations observed at entrances and on scenic roadways, such as the seasonal variation of 

visitors and differences throughout the time of day. 

Similarly, Hallo et al. focused on a national park setting by investigating the social 

carrying capacity of a scenic road corridor at Acadia National Park through quantitative survey 

approaches, simulation, and evaluating driving for pleasure in a scenic roadway (Hallo and 

Manning 2009; Hallo and Manning 2010). Hallo’s contribution presented corridor specific 

findings which helped to visualize how visitors perceive road capacity as well as one of the first 

discussions of GPS devices used for data collection and simulation modeling purposes.  

Additionally, D’Antonio et al. (D'Antonio et al. 2010) provided detailed case studies of 

GPS-based tracking capabilities in three different national parks where GPS-based tracking 

methods, applications, and protocols are detailed. Findings determined that GPS-based tracking 

methods were promising as more detailed spatial and temporal data was obtained by GPS 

technology over traditional methods. Kidd et al. (Kidd et al. 2015) implemented a GPS-based 

tracking method in Acadia National Park to further understand visitor behavior during 

recreational activities through educational strategies. Kidd et al. used GPS tracks to evaluate off-

trail travel by visitors after receiving information and educational messages from different 

sources which included personal contact and various forms of messaging.   
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 Recently, various studies focusing on GRTE have been published which further capture 

the unique importance of its transportation system and visitor behavior. During the 2013 and 

2014 season, GRTE released technical reports written by Monz et al. regarding the visitor use 

levels, types, patterns and impacts seen in the MWC (Monz et al. 2014; Monz et al. 2015). From 

the data collected by Monz et al., (Monz et al. 2014; Monz et al. 2015) additional studies have 

been published which have developed management strategies and recommendations for the 

MWC in GRTE. Fuentes et al. evaluated the queuing levels at the Laurance S. Rockefeller 

Preserve (LSR) on the MWC. The methodology of their work aimed to estimate the parking 

utilization based on visitor arrival rates and determined that an observed arrival rate of 25 

vehicles per hour and an 80-minute service rate resulted in a facility utilization of 61% (Fuentes 

et al. 2017). Furthermore, a stated choice approach was utilized by Newton et al. (Newton et al. 

2017) through survey methods to investigate transportation attributes important to visitors at the 

MWC, determining that parking availability was the highest importance over waiting time at the 

entrance, speed of traffic, and volume of traffic. Finally, Kidd et al. (Kidd et al. 2018) utilized 

GPS tracks collected from the MWC and a multivariate statistical approach to evaluate patterns 

of vehicular visitation along its attractions and ultimately determined that visitors can be 

classified into three categories, opportunistic commuters, wildlife/scenery viewers, and hikers. 

The work presented in this paper differs from previously published MWC studies as it 

utilizes and outlines a decision tree methodology which is a non-parametric classification 

approach and intends to predict the probability of vehicles stopping at various attractions 

throughout the MWC. Decision trees are part of a broader scope of computational strategies and 

data analysis methods that have seen a recent increase in use and application as data acquisition 

has become more readily available. The definition of data analytics has been described to be an 
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“interdisciplinary field that has adopted aspects from many other scientific disciplines such as 

statistics, signal theory, pattern recognition, computational intelligence, machine learning, and 

operations research” (Runkler 2012). With its interdisciplinary capabilities, decision trees have 

been used to address various transportation problems. A few worth noting include work by 

Zheng et al. (Zheng et al. 2016) which implemented a decision tree approach to predict accidents 

at highway-rail grade crossings. In their model 23 variables were considered as explanatory 

variables and final accuracies were determined to be 77.2% for predicting accuracies of crossing 

without a crash and 84.1% for predicting crossings with a crash. 

Similarly, Qiao et al. (Qiao et al. 2017) used a decision tree approach to determine when 

post flooded roads should be opened, focusing more on the factors or variables that influence the 

tree structure and ultimately identifying true structural state after flooding, demand for 

connectivity, and worst-case consequences. Although the work presented uses a previously 

collected dataset, it is not farfetched to assume that soon data collection methods will see greater 

automation and will be able to predict visitor behavior in real-time more rapidly. Thus, the 

methodology and procedures presented in this study will aid in providing park managers the 

opportunity to glimpse and prepare for future technological capabilities. 

4.3 Data Collection 

The data used for this study was collected by a team of Utah State University and Penn 

State University researchers over a three-month period (July - September) in 2013 and a five-

month period (June - October) in 2014 (Kidd et al. 2018; Monz et al. 2014; Monz et al. 2015). A 

random stratified sample of visitors was asked to participate in the study voluntarily. Following 

procedures outlined by D’Antonio et al., each visitor willing to contribute to the study was given 
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a Garmin eTrex 10 GPS unit that would track the vehicle movement every 10 seconds along the 

MWC (D'Antonio et al. 2010). The GPS unit was given to the visitor upon entry (at both north 

and south entry points) to the MWC, and each visitor was asked to return the unit upon exiting 

the corridor. Only one GPS unit was allotted per vehicle regardless of the number of visitors at 

the party. Thus each vehicle represented one observation. 

During the two-year sample period, a total of 547 observations were collected for 2013 

and 869 observations were collected for 2014 totaling 1,416 observations. Since the primary 

interest of this paper is attempting to predict when a vehicle stopped in one of the corridor 

attractions, the data was refined to sub-sets focusing only on vehicles that stopped while in the 

MWC. Stopping in this study was defined as no vehicle movement for 10 seconds or more, due 

to visitor behavior often consisting of stopping only to view wildlife and scenery and then 

advancing through the corridor (Kidd et al. 2018; Monz et al. 2014; Monz et al. 2015). Overall, it 

was determined that for the year 2013, 278 out of 547 observations could be evaluated and for 

the 2014 year, 536 out of 869 observations could be evaluated, resulting in a combined sample 

set of 814 observations. 

Furthermore, the percentage of vehicles that stopped at the considered attractions in the 

MWC from the refined sample set determined that 9.7% stopped at Death Canyon, 12.9% 

stopped at Granite Canyon, 40.8% stopped at LSR, and 65.7% of the observed vehicles stopped 

at Sawmill Ponds. Figure 4-2 illustrates a summary of these findings. Table 1 below describes 

the variables that were used from the GPS tracks and were considered for the building of the 

decision tree model. 
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Figure 4-2 Distribution of vehicle stops at MWC attractions 

4.4 Decision Tree Methodology 

Decision tree approaches are a non-parametric approach to classification of data. Non-

parametric strategies are often utilized when the data does not meet the assumptions of normality 

that are often imposed in frequentist statistics. Thus non-parametric statistics can be described as 

“distribution-free since they make no underlying assumptions of the data” (Boslaugh and 

Watters 2008). Such an approach is suitable in this data as multicollinearity issues between 

variables may be present in vehicles that stop at similar attractions. 

The decision tree methodology consists of identifying a variable that has the most 

substantial relationship to the response variable and is then set as the parent node of the tree. 

From there, child nodes are identified depending on the algorithm implemented until some 

stopping criteria are met.  Tree split points are determined through a purity assessment, by 



77 

 

ensuring that the population of the sub-partition is as pure as possible. Two measures of purity 

discussed by Kassambara, include the Gini index and the Entropy, illustrated in Equation 4-1 and 

Equation 4-2 respectively, where p is the proportion of misclassified observations. Both indices 

range from 0 to 1, where 0 signifies the highest purity and 1 the greatest impurity (Kassambara 

2018). The decision tree methodology was implemented in this study through the R software, by 

utilizing the “rpart” (recursive partitioning and regression trees) package and applying the 

Classification and Regression Trees (CART) algorithm (Kassambara 2018; Team 2015; 

Therneau et al. 2010). 
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Table 4-1 Summary of variables collected by GPS and considered for the study 

Variable Name Descriptive 

Avg. Std. 

Dev. 

Year 1: 2013, 2: 2014 2013.66 0.47 

Ent_Fr 1: Entry from North, 0: Entry from South 0.52 0.50 

Ex_Fr 1: Exit from North, 0: Exit from South 0.65 0.48 

Stop_DC  1: Vehicle Stop at Death Canyon, 0: Otherwise 0.10 0.30 

Stop_GC 1: Vehicle Stop at Granite Canyon, 0: Otherwise 0.13 0.34 

Stop_LSR 1: Vehicle Stop at LSR, 0: Otherwise 0.41 0.49 

Stop_PF 1: Vehicle Stop at Poker Flats, 0: Otherwise 0.05 0.22 

Stop_SP 1: Vehicle Stop at Sawmill, 0: Otherwise 0.66 0.47 

Ent_BefNoon 1: Vehicle Entered Before Noon, 0: Otherwise 0.54 0.50 

Ex_BefNoon 1: Vehicle Exit Before Noon, 0: Otherwise 0.33 0.47 

Ent_0_4 1: Vehicle Entered between 12 AM – 4 AM, 0: Otherwise 0.00 0.00 

Ent_4_8 1: Vehicle Entered between 4 AM – 8 AM, 0: Otherwise 0.01 0.11 

Ent_8_12 1: Vehicle Entered between 8 AM – 12 PM, 0: Otherwise 0.52 0.50 

Ent_12_16 1: Vehicle Entered between 12 PM – 4 PM, 0: Otherwise 0.46 0.50 

Ent_16_20 1: Vehicle Entered between 4 PM – 8 PM, 0: Otherwise 0.00 0.06 

Ent_20_0 1: Vehicle Entered between 8 PM – 12 AM, 0: Otherwise 0.00 0.04 

Ext_0_4 1: Vehicle Exited between 12 AM – 4 AM, 0: Otherwise 0.00 0.04 

Ext_4_8 1: Vehicle Exited between 4 AM – 8 AM, 0: Otherwise 0.00 0.00 

Ext_8_12 1: Vehicle Exited between 8 AM – 12 PM, 0: Otherwise 0.33 0.47 

Ext_12_16 1: Vehicle Exited between 12 PM – 4 PM, 0: Otherwise 0.50 0.50 

Ext_16_20 1: Vehicle Exited between 4 PM – 8 PM, 0: Otherwise 0.16 0.37 

Ext_20_0 1: Vehicle Exited between 8 PM – 12 AM, 0: Otherwise 0.00 0.05 

LocRes 1: Driver is a local resident, 0: Otherwise 0.14 0.34 

RentVeh 

1: Vehicle is a rental car, 0: Otherwise, NA if 

undetermined 

0.30 0.46 

GrpSz 1: group size ≥ 1, 0: Otherwise, NA if undetermined 2.74 1.82 

TT (Minutes) 1: Total Time vehicle spent in Corridor ≥ 0, 0: Otherwise 85.55 85.70 

 

     Eq. 4-1 

    Eq. 4-1 
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4.5 Model Implementation and Determination of Accuracy 

The implementation of the decision tree methodology consisted of two key steps. First, 

identification of the response variables consisted of selecting four response variables which are 

stopping at Death Canyon, Granite Canyon, LSR and Sawmill Ponds. It must be noted that the 

same dataset was utilized on each of the response variables and re-implemented. Therefore, each 

of the response variables is also predictor variables in another model. This structure allowed the 

capture of possible attractions and destinations that may share similar visitation trends. For 

example, if results show that visitors enter from the north entry and stop at Sawmill Ponds and 

then stop at Death Canyon, it is a logical sequence since Death Canyon is the next attraction 

along the MWC. 

Second, the total dataset of 814 observations was randomly shuffled and split into two 

sets containing 80% and 20% of the observations. Thus, the training set consisted of 651 

observations (80%), and the testing set consisted of 163 observations (20%). The shuffling and 

splitting procedure was completed for each of the response variables of interest. After the 

decision tree model had been obtained utilizing the training set, the model itself was 

implemented on the test set. Thus, a predicted and actual result was available for comparison 

along with true negative, true positive, false negative and false positive values.  

The predicted and actual results allow for the performance evaluation of the models 

which in turn provide measures to assess the model and better understand the data. The model 

accuracy can be determined through the formula illustrated in Equation 4-3 and can be 

interpreted as the overall frequency of correctly classified predictions provided by the model. 

The model precision is illustrated in Equation 4-4 and can be interpreted as the probability that a 
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positive observation is correct when predicted as positive. The model recall or sensitivity is 

illustrated in Equation 4-5 and can be interpreted as the probability that a positive observation is 

correctly recognized by the model. Finally, the specificity is illustrated in Equation 4-6 and is the 

recall on negative examples, meaning the probability that an observation which is truly negative 

will be correctly recognized by the model. In the equations below, NTP is the number of true 

positives, NTN is the number of true negatives, NFP is the number of false positives and NFN is the 

number of false negatives  (Kubat 2015). 

     Eq. 4-3 

      Eq. 4-4 

     Eq. 4-5 

      Eq. 4-6 

 

4.6 Analysis and Results 

A total of 25 explanatory variables (illustrated in Table 4-1) were run dependent on each of the 

four response variables of stopping at the Death Canyon, Granite Canyon, LSR and Sawmill 

Ponds. Before the analysis was started, an investigation of the response variable distributions 

was completed for the original dataset of 814 observations. Figure 3 illustrates the distribution of 

the explanatory variables that were found to influence the structure of the decision tree as well as 

some that were anticipated to affect. From Figure 4-3, it can be observed that 2014 saw a more 
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significant number of sampled visitors, while the north and south entry/exit points resulted in a 

similar number of observations. The time spent in the corridor resembles a left-skewed 

distribution with most of the vehicles spending under 50 minutes in the corridor and a median 

value of 42 minutes. Finally, the resident observations revealed a higher number of non-residents 

and some unidentifiable observations, while the rental vehicle observations similarly illustrated a 

greater amount of non-rental vehicles, but also a more significant amount of unidentifiable 

observations. 

 

 

Figure 4-3 Distribution of Considered Explanatory Variables 

Following, Figures 4-4 to 4-7, and Tables 4-2 to 4-5 present the decision tree model, 

confusion matrix, and performance evaluation results for Death Canyon, Granite Canyon, LSR 

and Sawmill Ponds, respectively. In Figures 4-4 to  4-7 below, the decision tree nodes 
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represented the explanatory variable with the greatest purity, followed by their binary responses, 

and response and predicted probability where 0 is the lowest probability, and 1 is the greatest 

probability.  To describe the decision tree interpretation procedure, the Granite Canyon decision 

tree model will be thoroughly discussed. The same procedure of interpretation can be applied to 

the remaining Death Canyon, LSR, and Sawmill Ponds models. 

In the Granite Canyon results, the first parent node identified in the decision tree was the 

exit location, meaning that if a vehicle exited from the north, there is a predicted probability of 

0.92 that the vehicle did not stop at Granite Canyon. The following child node was stopping at 

LSR, meaning that if a vehicle exited from the south and stopped at LSR, then there is a 

predicted probability of 0.86 that the vehicle did not stop at Granite Canyon. The following child 

node was stopping at Sawmill Ponds; thus if a vehicle exited from the south, did not stop at LSR 

but did stop at Sawmill Ponds, then there is a predicted probability of 0.84 that the vehicle did 

not stop at Granite Canyon. Lastly, the last node was determined to be stopping at Death 

Canyon. Therefore, if a vehicle exited from the south, did not stop at LSR, did not stop at 

Sawmill Ponds and did stop at Death Canyon, then the predicted probability that the vehicle did 

not stop at Granite Canyon is 0.79, otherwise if it did not stop at Death Canyon then the 

predicted probability that it did stop at Granite Canyon is 0.74.   
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Figure 4-4 Decision tree for Death Canyon stop as the response variable 

Table 4-2 Confusion matrix for Death Canyon model 

  

Did Vehicle Stop at Death Canyon? 

Predicted 

No Yes 

Actual 
No 150 1 

Yes 8 4 

Accuracy 94% 

Precision 80% 

Recall/Sensitivity 33% 

Specificity 99% 
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The Death Canyon decision tree model consisted of four nodes, where the year variable 

was the parent node, and travel time in the corridor, stopping at LSR, and stopping at Sawmill 

Ponds were its child nodes. The Death Canyon model predicted the probability of stopping 

favored spending more than 42 minutes in the corridor, not stopping at LSR and not stopping at 

Sawmill Ponds. A possible interpretation could be that most visitors that stop at Death Canyon 

do so in anticipation of spending more than 42 minutes at the attraction. Therefore, the purpose 

of the visit to MWC could be categorized as visitors planning on participating in time-dependent 

recreational activities such as hiking. The small proportion of actual stops (12) and the behavior 

of not stopping at other locations also suggests that visitors are in MWC for the sole purpose of 

Death Canyon. Lastly, the parent node (i.e., year variable) suggests that in 2014, the Death 

Canyon had a very low predicted probability of stopping. This could be explained by seasonal 

effects at GRTE or possibly weather-related factors.  

The Death Canyon decision tree model performance evaluation resulted in an accuracy of 

94%, a precision of 80%, a recall of 33% and specificity of 99% with eight false negatives and 

one false positive. The model results indicated a high accuracy (94%) in terms of correct 

classification, and a high precision rate (80%) for classifying vehicles that stopped correctly. 

There is a 33% probability that the model will correctly identify a vehicle which stopped and a 

99% probability that the model will correctly identify vehicles which did not stop. Therefore, 

there is a high certainty that the model can correctly identify vehicles that do not stop; however, 

the model does not perform as well when predicting vehicle stopping patterns.  
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Figure 4-5 Decision tree for Granite Canyon stop as the response variable 

Table 4-3 Confusion matrix for Granite Canyon model 

  

Did Vehicle Stop at Granite Canyon? 

Predicted 

No Yes 

Actual 
No 142 5 

Yes 11 5 

Accuracy 90% 

Precision 50% 

Recall/Sensitivity 31% 

Specificity 97% 

 

The Granite Canyon decision tree model consisted of four nodes, where the exit location was the 

parent node, and stopping at LSR, stopping at Sawmill Ponds and stopping at Death Canyon 

were its child nodes. The Granite Canyon model predicted a probability of stopping favored by 

not stopping at LSR, not stopping at Sawmill ponds, and not stopping at Death Canyon. The 
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Granite Canyon entrance was determined to be bound by the exit location. Since it is on the 

southern section of MWC and since the visitor data does not demonstrate stopping anywhere 

else, it would be reasonable to assume that Granite Canyon visitors enter and exit from the 

southern location. The Granite Canyon attraction exhibited similar behavior to the Death Canyon 

attraction in that the proportion of vehicles that stopped was low. Thus, a possible interpretation 

is that visitors with intentions of visiting Granite Canyon travel on the MWC for that reason.   

 The Granite Canyon decision tree model performance evaluation resulted in an accuracy 

of 90%, a precision of 50%, a recall of 31% and specificity of 97% with 11 false negatives and 

five false positives. The model results in high accuracy (90%) in terms of correct classification, 

but the precision of classifying vehicles that will stop correctly is only 50%. There is a 31% 

probability that the model will correctly identify a vehicle which stopped and a 97% probability 

that the model will correctly identify vehicles that did not stop. Therefore, the model 

performance is similar to the Death Canyon model in that the model performs better when 

identifying vehicles that do not stop. The lower precision of 50% for classifying vehicles that 

stopped correctly is lower than desired, but the high specificity would favor classifying vehicles 

as not stopping at Granite Canyon. 
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Figure 4-6 Decision Tree for LSR Stop as the Response Variable 

Table 4-4 Confusion matrix for LSR model 

  

Did Vehicle Stop at LSR? 

Predicted 

No Yes 

Actual 
No 75 20 

Yes 19 49 

Accuracy 76% 

Precision 71% 

Recall/Sensitivity 72% 

Specificity 79% 

 

The LSR decision tree model consisted of seven nodes, where the time spent in the 

corridor was the parent node and the remaining attractions of Granite Canyon, Death Canyon, 

Sawmill ponds, and the year were its child nodes. The LSR model predicted a higher probability 
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of stopping if vehicles spent less than 50 minutes in MWC and did not stop at Sawmill Ponds, 

Granite Canyon or Death Canyon. Similarly, if vehicles spent more than 50 minutes and did not 

stop at Death Canyon or Granite Canyon, stopping at LSR saw a higher probability. Overall, 

results for stopping at LSR tend to favor not stopping at the other attractions. Additionally, there 

appears to be a seasonal effect for the year of 2014 as there was a predicted probability of 0.57 of 

stopping at LSR if the vehicle had also stopped at Granite Canyon.  

The LSR decision tree model performance evaluation resulted in an accuracy of 76%, a 

precision of 71%, a recall of 72% and specificity of 79% with 19 false negatives and 20 false 

positives. The model captures the different behavior that was previously observed in the Granite 

Canyon and Death Canyon models in that more vehicles are stopping. The model results indicate 

a drop in accuracy in terms of correct classification at 76%, but the precision in classifying 

vehicles that will stop correctly is more significant than what was previously observed at 71%. 

There is a 72% probability that the model will correctly identify a vehicle which stopped and a 

79% probability that the model will correctly identify vehicles which did not stop. Therefore, in 

terms of recall and correctly classifying vehicles that stop at LSR, the model performs much 

better than the previous Granite Canyon and Death Canyon models. 
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Figure 4-7 Decision Tree for Sawmill Ponds Stop as the Response Variable 

Table 4-5 Confusion matrix for Sawmill Ponds model 

  

Did Vehicle Stop at Sawmill Ponds? 

Predicted 

No Yes 

Actual 
No 40 12 

Yes 28 83 

Accuracy 75% 

Precision 87% 

Recall/Sensitivity 75% 

Specificity 77% 

 

The Sawmill Ponds decision tree model consisted of seven nodes, where the time spent in the 

corridor was the parent node and the attractions of LSR, Granite Canyon, Death Canyon, and 

rental vehicle were its child nodes. The probabilities of stopping at Sawmill ponds are more 
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evenly distributed and appear to have a more significant relationship with other attractions and 

the amount of time spent in the MWC. However, the greatest predicted probability of 0.97 was 

observed when vehicles did not spend less than 101 minutes in MWC, did not stop at LSR, 

Granite Canyon and Death Canyon. This result indicates what is likely the typical behavior in 

MWC, which is that most visitors stop at Sawmill Ponds even after stopping at other attractions. 

The observations that show greater probabilities of stopping at Sawmill Ponds could be 

explained by the convenience and ease of access to the Sawmill Ponds overlook when traveling 

on the MWC.  

 The Sawmill Ponds decision tree model performance evaluation resulted in an accuracy 

of 75%, a precision of 87%, a recall of 75% and specificity of 77% with 28 false negatives and 

12 false positives. The model similarly captures a different behavior than was observed in the 

Granite Canyon and Death Canyon models in that more vehicles are stopping, but a closer result 

to what was observed in the LSR model. Therefore, the model results in excellent accuracy in 

terms of correct classification at 75%, and the precision in classifying vehicles that will stop 

correctly is the highest out of the previous models at 87%. There is a 75% probability that the 

model will correctly identify a vehicle that stopped and a 79% probability that the model will 

correctly identify vehicles which did not stop. Therefore, out of the previously considered 

models, the Sawmill Ponds model provides the greatest precision in correctly identifying 

vehicles that will stop. 

 Overall the data used in this study likely resembles similar behaviors and patterns of use 

that occur in other national park settings, where some attractions are targeted by certain types of 

groups or visitors, and other attractions are more likely to be visited by the greater majority. This 

can be interpreted in the models as some of the models resulted in high specificity, or high 
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probability that vehicles classified as not stopping would not stop. A promising result, however, 

was observed in the attractions which saw a better distribution of visitor stopping vs. not-

stopping. Although the model accuracy suffered, the model recall and model precision were 

improved resulting in what would be considered an ideal model. Therefore, future studies or 

enhancement of current models would be advised to ensure a sample set that contains a more 

uniform distribution of stopping and non-stopping events. 

 

4.7 Discussion of Results 

The decision tree analysis utilized in this paper highlights how some of the MWC 

attractions are interrelated in attracting visitors and influencing the probabilities that visitors 

stop. Higher numbers of vehicles that stopped were observed for both Sawmill Ponds and the 

LSR, and each consisted of six child nodes composed of attractions and time spent in the 

corridor. Granite Canyon had a favorable effect on increasing the predicted probability of 

stopping at Sawmill Ponds and LSR. This could be explained by the southern entry of visitors 

that stop at Granite Canyon and travel straight through MWC, as Granite Canyon is one of the 

first attractions followed by LSR and Sawmill Ponds.  

An interesting finding was identifying the amount of time spent in the MWC and how 

that affected the predicted probability of a vehicle stopping at the attractions. A precise 

observation in the data and in general is that the longer a vehicle spent in the corridor, the higher 

probability that it stopped at one of the attractions. However, the inclusion of time spent in the 

corridor allows for identification of the thresholds where time is partitioned for the considered 

attractions. The Death Canyon decision tree model illustrates this datum where 42 minutes in the 
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corridor was an attribute in predicting if a vehicle stopped or did not stop at the attraction, 

making 42 minutes a possible threshold for Death Canyon. Finally, some considered explanatory 

variables were determined not to influence the probability of stopping. This was more evident in 

Death Canyon and Granite Canyon and suggested that those attractions are likely favored by a 

small proportion of visitors interested in spending a more considerable amount of time in MWC 

and likely participating in time-dependent recreational activities.  

The use of a decision tree methodology provides a potential approach for understanding 

and predicting visitor behaviors at specific park attractions by evaluating probabilities of vehicles 

stopping along a scenic corridor. The strength of the methodology lies in the graphical output as 

well as easily evaluating the model performance. Some of the limitations to the model and in 

general decision tree approaches can be observed when greater interactions between variables are 

present and more complex relationships are required to be identified. This is evident when 

comparing the LSR and Sawmill Ponds models to the Death Canyon and Granite Canyon models 

that had fewer child nodes. Future application of decision tree analysis in national parks is 

recommended to narrow down predictor variables of interest to simplify the model and ensure 

that the model is not overly sensitive on the data used for training it.  

The methodology presented illustrates how machine learning methods and GPS-based 

tracking data can assist in providing predicted stopping information, relationships between 

variables, and critical time thresholds spent at considered attractions. This can assist national 

park managers in understanding visitor behavior based on easy to identify characteristics. By 

overcoming cellular or wireless service constraints, the acquisition of GPS-based tracking data 

through smartphone strategies may become more accessible for national parks, thus making the 
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presented work in this study a prime example of what can be repeated through data analytics and 

machine learning approaches.  

4.8 Management Impact 

The findings provide GRTE managers with information about how visitors are likely to 

stop at certain attractions in the MWC. Managers can, in turn, provide specific attraction 

information to visitors accordingly. Additionally, understanding how attractions influence 

stopping at other locations in the MWC provides an opportunity for park managers to reinforce 

information to the visitors or provide unique messages to specific groups. For example, results 

showed that the Granite Canyon and Death Canyon attractions each identified a fewer number of 

visitors that were not influenced by stopping at other locations. This suggests that there is a small 

window of opportunity to reach a unique group of visitors interested in attractions like Granite 

Canyon or Death Canyon. Finally, the developed models allow park management to estimate the 

probabilities of the number of visitors at specific attractions if entry and exit monitoring 

strategies are implemented. This can assist in future planning efforts in terms of parking 

threshold development and informing incoming visitors of the likelihood of findings parking at 

key attractions.  

4.9 Conclusion 

This paper presented an approach to evaluating collected GPS data through a non-

parametric classification scheme known as decision trees. This approach, although not new, is 

becoming more useful in the era of big data and data analytics. Its non-parametric characteristics 

allow for a more confident evaluation of variables that may have high multicollinearity issues 

often seen in related response variables in frequentist statistics. The methodology and procedure 
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are useful as GPS tracking data may become more readily available through advancements in 

technology and cellphone/smartphone devices. Thus, the study provides a good example and a 

glimpse of a type of analysis that is available for national parks to implement intelligent 

decision-making strategies.  

Four decision tree models were developed utilizing a data set with 814 observations, split 

into a training dataset with 651 observations (80%) and a 163 observation (20%) testing data set. 

The model accuracy for the considered response variables of stopping at Death Canyon, Granite 

Canyon, LSR and Sawmill Ponds were determined to be 94%, 90%, 76%, and 75% respectively. 

The LSR and Sawmill Ponds decision trees were each composed of six child nodes that consisted 

of other MWC attractions and the time spent in the corridor. The Death Canyon and Granite 

Canyon decision trees each had three child nodes mainly comprised of the other MWC 

attractions. Overall it was determined that Death Canyon and Granite Canyon exhibited similar 

decision tree results, attracting a smaller proportion of visitors which spent more time in the 

corridor and likely were attracted for recreational activities. The LSR and Sawmill Ponds 

decision tree model showed a more even distribution dependent on other attractions in the MWC 

but also on time spent in MWC. Due to its tree structure, Sawmill Ponds was observed to likely 

capture the majority of visitors that travel in MWC as vehicles that spent less than 101 minutes 

in the corridor and did not stop at Granite Canyon or Death Canyon had a predicted probability 

of stopping of 0.97. These findings can assist park management and planning by estimating 

attraction levels relative to attraction capacities if monitoring techniques are implemented. 
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4.10 Applying Findings into an Agent-Based Model 

Applying the findings discussed in this chapter to an ABM requires the consideration of 

various aspects. First is the initial proportion of vehicles that will stop at the considered 

attractions along the corridor as the first stop must be encoded and assigned to each agent. 

Similarly, as discussed in chapter 3 a random number generated between 0 – 1 must be assigned 

to each agent (vehicle), and a certain threshold will correlate to stopping at the considered 

attractions.  

Considering multiple stops requires repeating the procedure where an additional random 

number is generated and labeled as a second stop. The stopping conditions from the second stop 

can be extracted from the results generated from the decision tree models.  
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5 CHAPTER 5: A Bayesian and Agent-Based Model Approach to 

Evaluating Transportation Alternatives in a National Park 

Corridor 

 

This chapter is adapted from Fuentes, A., Heaslip, K., D’Antonio, A. (In Preparation). A 

Bayesian Method and Agent-Based Model Approach to Evaluating a Transportation Corridor in 

a National Park.  Journal of Transport Geography. 

5.1 Introduction 

The National Park Service (NPS) in the United States is challenged with a mission to 

preserve federal and private lands in their prevalent natural, cultural and ecological condition. 

Additionally,  the NPS goals for the future include developing new meaning and value to parks 

which still consist of conservation and recreation, but also expand on education, research, and 

the sharing of knowledge (NPS 2016a). Achieving the NPS mission is becoming a more 

significant challenge as recreational visits have been increasing since 2013, (NPS 2018) and park 

managers are tasked with multiple objectives which include: fulfilling the NPS mission, ensuring 

park operations are adequate and providing visitors with sufficient information and guidance 

upon arrival. The NPS objective to expand on the learning and research occurring at the parks 

provides park managers an opportunity to take proactive measures to meet and fulfill the NPS 

mission. 

In this paper, a discussion of a tool developed to evaluate an NPS transportation corridor 

is presented proactively. Proactive management, as opposed to reactive management, consists of 
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taking measures and actions in preparation for anticipated changes. In the NPS case regarding 

transportation operations, proactive strategies may include being familiar with growth trends of 

visitation levels and taking appropriate measures to ensure the NPS can be adequately prepared 

to handle such levels instead of reacting to them once those levels are reached. Thus, the tool 

was developed by referencing data collected from the Moose-Wilson Corridor (MWC) in Grand 

Teton National Park (GRTE). However, the tool could be adapted for use in other NPS settings. 

GRTE, as well as other national parks, have focused on developing comprehensive management 

strategies that fulfill the NPS mission while protecting resources and values. In August of 2016, 

GRTE released the “Moose-Wilson Corridor Final Comprehensive Management Plan / 

Environmental Impact Statement” which evaluates four action alternatives to be considered for 

implementation in the MWC (NPS 2016b). The preferred alternative consists of incorporating 

various operational measures and the introduction of a new entrance station/queueing facility. 

One of the critical operational measures includes limiting the number of vehicles in the MWC to 

200 vehicles at any one time. Which although enforces the goal of protection and conservation of 

the NPS federal lands, it also creates a management challenge in terms of transportation 

operations and expectations to GRTE and its respective visitors. 

Therefore, this paper discusses a tool developed for transportation system evaluation in a 

national park and does so by utilizing a Bayesian method analysis in combination with Agent-

Based Modelling (ABM). The motivation for using a Bayesian method analysis along with 

agent-based modeling is twofold. First, Bayesian inference has been described as an approach 

where its use is suitable with little or large amounts of data (Downey 2013). Incorporating such 

an approach is appropriate in an era were data availability and acquisition is enhancing at a rapid 

rate. Thus, there is an opportunity to identify a starting point for a framework where past data 
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can be combined with more recent observations to generate informative posterior distributions 

for decision-making purposes. 

Additionally, the posterior distribution can later become the prior distribution in future 

analysis, which ultimately enforces an incentive to continue to monitor and implement consistent 

data collection strategies. Second, the incorporation of an ABM approach provides a platform to 

model and simulate events of interest. The motivation for implementing an ABM approach in 

this study is to capture the variation of behaviors and interactions experienced in the unique 

setting of a national park. Recreational driving and unique site-specific events such as wildlife 

sightings and scenery viewing are challenging to model in traditional transportation modeling 

platforms that are geared to address urban and rural driving conditions and behaviors. Thus, 

ABM provides an avenue to model what is observed in the NPS setting directly. Additionally, a 

benefit to becoming familiar with ABM in an NPS setting is the flexibility in incorporating 

various events of interest on a single platform.  

In this paper, the developed tool addresses the NPS planning process by adapting the 

transportation and movement of vehicles to the GRTE MWC’s anticipated and desired 

operational changes. The rules in the ABM platform consist specifying the arrival rates of 

vehicles, the service times at the entrance gate, the desired destination of vehicles, the time spent 

at the destination and limiting the total number of vehicles in the MWC capacity to 200 vehicles 

as is specified in the MWC GRTE plan. Additionally, the tool provides a certain degree of 

control to the user in allowing the introduction of a wild-life interaction by generating user-

specified delay at the desired location. In developing the tool, a base model of the MWC is 

provided for park staff, and furthermore provides an approach forecasting the time of day where 

the corridor would reach capacity. Reaching capacity of 200 vehicles is an event that triggers 
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mandatory additional management of the MWC (e.g., closing the corridor to new incoming 

vehicles) and overall effects the management strategies of GRTE. In the tool, rules enforcing 

observed events and actions were determined from collected data and coded to the vehicle agents 

in the ABM. 

The collected transportation data includes vehicle arrival rates, service times, turning 

movement proportions to attractions and duration at attraction locations that were used to 

evaluate the corridor transportation system. The attractions in the MWC consists of: Poker Flats, 

Granite Canyon, the Laurence S. Rockefeller (LSR) Preserve, Death Canyon and Sawmill Ponds. 

The implementation of the tool provides information about the type of future impacts that can be 

anticipated with GRTE’s preferred comprehensive management plan. The overall objective of 

this paper is to illustrate a novel approach to utilizing available data to evaluate management 

plans or test alternatives with the use of Bayesian methods and ABM. Expressly, the methods are 

incorporated into a tool that is implemented to answer a critical question which will allow park 

staff to better prepare for the anticipated changes to the corridor. The critical question that the 

tool answers is “Given observed arrival, service and visitation levels to considered attractions. 

At what time of day, if any, will a 200-vehicle capacity be reached in the MWC?” 

The remainder of this paper is organized into the following sections. Section 2 provides a 

literature review of related work and methodologies implemented in this paper. Section 3 

provides an overview of the data used in the development and testing of the methodology and 

tool. Section 4 discusses the methodologies implemented in the utilization of the tool. Section 5 

provides the results obtained from the implementation of the tool on the MWC. Section 6 

provides a discussion of the performed work and describes the management implications. Lastly, 

Section 7 provides a summary and concludes the paper.    
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5.2 Literature Review 

The tool developed in this study consists of utilizing two methods that have been proven 

to be useful in the area of data analysis and simulation. Bayesian methodology is a well-known 

concept which utilizes Bayes theorem to generate informative posterior distributions and has 

recently seen an increase in use due to computational advancements. Similarly, ABM is a 

method that provides agency professionals and researchers a platform to evaluate flexible events 

and experiments of interest. Bayesian methods and ABM are proactive approaches that can be 

adapted into the NPS planning process and are capable of efficiently utilizing collected data to 

generate and test possible implementation alternatives with open source platforms. 

Bayesian method is a term that can be used to describe the use or application of Bayesian 

inference. Bayesian inference is distinctive of the classical inference or statistics often referred to 

as frequentist statistics in that “it treats model parameters as random variables rather than as 

constants” (Puza 2016). This is more relevant in that assumption of normality must be met in 

frequentist statistics to be able to make inferences on results, whereas working directly with 

distributions in Bayesian statistics (Cowles 2013). Overall, the Bayesian method consists of 

using Bayes theorem to utilize a prior distribution (past and historical data) and a likelihood 

(current data) and determine a posterior distribution which contains a higher degree of 

confidence and information about an event of interest (Cowles 2013; Downey 2013; Martin 

2016; Puza 2016). Although Bayesian inference is not a novel concept, recent advances in 

computation have increased the efficiency in solving Bayesian inference problems that often 

require Markov Chain Monte Carlo (MCMC) sampling techniques to estimate posterior 
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distributions (Cowles 2013; Martin 2016). Overall, one of the conventional approaches to 

summarizing the spread of the posterior distribution is defined through the Highest Posterior 

Density (HPD) interval which is commonly used at the 95% HPD or 98% HPD. Different from 

the frequentist confidence interval, the Bayesian HPD allows for the discussion about the 

probability of a parameter having some value (Martin 2016). Additionally, the forecasting 

capabilities of Bayesian methods have been identified in various efforts that include GIS related 

transportation safety studies (Li et al. 2007; MacNab 2004; Miaou and Song 2005).  

Agent-Based Modelling (ABM) is a modeling technique that applies to many disciplines. 

It is used in transportation is substantial as it allows for the simulation of prevalent conditions 

while allowing for the testing and assessment of alternatives without modifying or altering the 

real-world environment. Various commercial software such as VISSIM, AIMSUN, and 

CORSIM among others are specialized for transportation simulations and require a thorough 

understanding of the input parameters to obtain dependable results. Much of the logic, decision-

making rules and algorithms to urban vehicle behavior and vehicle maneuvering are encoded 

within the software. The difference in ABM is that one begins the modeling from scratch in an 

environment provided by the ABM platform which is not restricted to the consideration of only 

vehicles on a roadway network, but flexible enough to include agents of any type if appropriately 

described. The most widely used ABM platform is NetLogo, a free open source system authored 

by Uri Wilensky and developed at the Center for Connected Learning and Computer-Based 

Modeling (CCL) at Northwestern University. The author defines ABM as “a computational 

modeling paradigm that enables us to describe how any agent will behave” (Wilensky and Rand 

2015). Working in NetLogo consists of providing rules to an environment of patches 

(cells/squares) and turtles (agents) that change over ticks (time). The patches represent a two-
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dimensional grid that can be described as an x-coordinate and y-coordinate on a plane/graph 

where if desired the patches can be given specific instructions of how to behave, what actions to 

take as well as interactions with other patches and turtles. The turtles represent the agents that 

can interact with each other and with the patches. Turtles typically traverse or perform actions in 

the bounded world that represents the NetLogo simulation visual environment as ticks (time) 

advance. In general,  the modification of the patches, turtles, and ticks provides a flexible 

modeling environment where any unit of measurement can be incorporated to an ABM 

simulation if the proper unit conversions are implemented (Wilensky 1999b). NetLogo has been 

successfully implemented to investigate transportation-related issues and phenomena. Various 

examples include the evaluation of remote working conditions or work from home initiatives on 

the environment (Ge et al. 2018) and the evaluation of travel behavior of fishermen in southern 

India with the introduction of cell phone information and communication technology (Foss and 

Couclelis 2009). 

The NPS planning processes considers multiple aspects in order to ensure the NPS 

mission is maintained. Thus, the NPS planning process encompasses the implementation of 

Environmental Impact Statements to ensure future alternatives conserve federally managed 

lands. As it relates to GRTE, recent interest in the MWC has emerged due to natural changes in 

the GRTE since the NPS parkwide transportation planning effort outlined in 2007. Changes 

include increased visitation levels and overall traffic as well as the introduction of the LSR 

Preserve to GRTE jurisdiction, new wildlife species migrating in the MWC area, and greater 

awareness of archeological considerations in the region. Thus, GRTE took active measures to 

develop the “Moose-Wilson Corridor Final Comprehensive Management Plan / Environmental 

Impact Statement” with the overall objectives of establishing a “long-term vision and 
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comprehensive management strategies within the Moose-Wilson corridor to ensure the 

protection of significant national park resources and values” (NPS 2016b). 

Overall four alternatives were considered in the “Moose-Wilson Corridor Final 

Comprehensive Management Plan / Environmental Impact Statement” which were identified as 

Alternatives A – D. The alternatives will be discussed in terms of their impact to the 

transportation operations in MWC. Alternative A consisted of a no-action approach which 

continued current operations without any future implementations and overall served as a base 

alternative to compare alternatives B – D against. Alternative B, consisted of restricting through 

traffic in either direction during peak use periods, where access would be constrained past the 

LSR Preserve, and speed limits would be advised at 20 mph. Alternative C was the NPS 

preferred alternative and consisted of limiting the number of vehicles in the corridor at any one 

time during peak periods, introducing queuing lanes to the north and south ends of the MWC 

corridor, consideration of a transit system in the future and 20 mph speed limit. Alternative D 

consisted of allowing access to the MWC through a reservation system, where visitors without a 

reservation would be accommodated on a first come first serve basis (NPS 2016b). 

5.3 Data 

The data was collected for the MWC which is geographically located in western 

Wyoming and is within the boundaries and under the jurisdiction of GRTE. The MWC 

transportation characteristics consist of a two-lane road with opposing flows of traffic that are 

approximately 7.1 miles in length. Speed limits varying between 25 mph - 35 mph depending on 

road surface type (asphalt paved/unpaved). Additionally, entrance to the park is controlled by the 

Granite Canyon Entrance station which is located just north-east of Teton Village, a popular 
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resort just outside the boundary of the GRTE. The Granite Canyon entrance station manages 

visitor entry to travelers in the north-east direction towards the GRTE Headquarters and the 

Craig Thomas Discovery and Visitor Center. The north-east section currently remains 

unmanaged for incoming visitors traveling south-west through the MWC. The MWC and its 

associated safety concerns and characteristics are described in detail in a road safety audit (RSA) 

completed by the Federal Highway Administration in 2013 (Brinkly et al. 2014). 

The data referenced in this study was obtained from two sources collected during the 

2013 and 2014 seasons in the MWC at GRTE. Video collection systems captured vehicle counts 

and volumes in the MWC. Data was collected where the Granite Canyon Entrance is presently 

located in the south-west portion of MWC. Similarly, data were collected in the northern portion 

of the MWC near Teton Park Road, where an anticipated entrance station/queueing facility is 

desired to be introduced according to GRTE’s comprehensive management plan preferred the 

alternative. Through the video data collection, time of arrivals was referenced to estimate arrival 

rates and headway times collected at the Granite Canyon entrance station were used to infer 

service times. 

Furthermore, a stratified random sample of GPS tracks obtained from MWC visitors was 

also utilized. The GPS tracks were collected during the same periods in the 2013 and 2014 

seasons and provided detailed information regarding visitor travel patterns as well as proportions 

of visitors that would visit the various attractions of interest. A full description of the collected 

data is available in technical reports provided to GRTE by a team of student researchers from 

Utah State University and Penn State University (Monz et al. 2014; Monz et al. 2015).  

The data of interest for this paper was the observed vehicle arrivals during peak hours. It was 

determined that August resulted in the largest observed arrival rates in the southern and northern 
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segments of the MWC. Furthermore, the arrival rates were broken down into 15-minute bins of 

observations from were the peak-periods were identified from 8:30 AM – 1:00 PM. In terms of 

video collection strategies, six total days of data collection were collected for the Granite Canyon 

entrance station and the Moose end location which consisted of August 4th  (Monday), August 5th  

(Tuesday) and August 24th  (Sunday) in 2013 and August 8th, (Friday), August 9th  (Saturday) 

and August 10th  (Sunday) in 2014. Figure 5-1 illustrates the average vehicle arrivals at each 

location from the observed data. 

 

Figure 5-1 Arrival Rates at Granite Canyon Entrance Station and Moose End 

Lastly, the GPS tracks were utilized to determine the proportion of vehicles which 

stopped at the considered attractions along the corridor. During the data collection period, a total 

of 547 GPS tracks were obtained in 2013 and 869 were obtained in 2014 totaling 1,416 tracks 

available. Of the 1,416 available tracks, 814 tracks were classified as stopping where stopping 

was defined as a vehicle not moving for more than 10 seconds. Therefore, the final proportions 

of vehicle movements are summarized in Table 5-1.  
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Table 5-1 GPS Tracks Data and Stopping Proportions 

Vehicles Not Stopping 

Total 

602 

Vehicles Stopping 

Total Stopped At 

814 

30 Poker Flats 

78 Granite Canyon 

248 LSR 

59 Death Canyon 

399 Sawmill Ponds 

 

5.4 Methodology 

5.4.1 Bayesian Methods 

The Bayesian inference procedure focused on referencing the observed arrival rates and 

inferred service times of the Granite Canyon entrance station to develop a posterior distribution 

and identify the 95% HPD region for that event. Overall three parameters of interest were sought 

to be obtained, the lower bound of the 95% HPD which is the 2.5% posterior quantile, the 

posterior mean and the higher bound of the 95% HPD which is the 97.5% posterior quantile. 

Due to the analysis presented in this paper is the initial instance of performing Bayesian 

inference in the corridor, a common non-informative prior was utilized which is identified as 

Jeffreys prior throughout the Bayesian analysis. The Jeffrey’s prior is an alternative to using a 

uniform distribution prior, where an event is just as likely to occur or not occur, in other words, a 

uniform distribution where there is a 50% probability that an event occurs or does not occur. The 

Jefferey’s prior can be described as a beta distribution with alpha and beta parameters of 0.5 and 

has the advantage of being “invariant under transformations” (Cowles 2013) which enables 

flexibility if the transformation of parameters is required. 
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The Bayesian inference analysis was implemented in python and utilized the NumPy, 

SciPy, Pandas, Matplotlib, Seaborn and PyMC3 libraries where the PyMC3 library contains the 

Bayesian inference capabilities with MCMC sampling capabilities (Martin 2016). Thus, three 

Bayesian inference analysis was conducted for the Granite Canyon entrance station, the Moose 

end and the observed service rates to obtain the respective 2.5% posterior quantile, posterior 

mean and 97.5% posterior quantile of interest. 

The Granite Canyon Entrance Station and the Moose entrance station each consisted 18 

input observations representing a 15-minute bin period ranging from 8:30 AM and 1:00 PM and 

resulted in 18 posterior distributions each. The Bayesian inference for service time was 

conducted only for the service times during the August peak periods. Therefore, considering 

Jefferey’s prior with the arrival rates from the Granite Canyon Entrance Station, the Moose end 

and one for the observed service times as the likelihood, Figure 5-2 and Figure 5-3 illustrate the 

95% HPD region of the Granite Canyon Entrance Station and Moose end, respectively, while 

Table 5-2 illustrates the 95% HPD of the derived service times. 
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Figure 5-2 Bayesian Inference 95% HPD of August Peak Period at Granite Canyon 

Entrance Station 

 

Figure 5-3 Bayesian Inference 95% HPD of August Peak Period at Moose End 
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Table 5-2 Bayesian Inference 95% HPD of August Peak Period Service Rate at Granite 

Canyon Entrance 

Date 
Service 

2.50% Mean 97.50% 

8/4/2013 18 28 38 

8/5/2013 18 28 38 

8/24/2013 18 28 39 

8/8/2014 18 27 37 

8/9/2014 24 35 46 

8/10/2014 20 30 40 

Average Service Rate (veh/Sec) 19 29 40 

 

4.2 Agent-Based Model 

The ABM portion consisted of modeling the current MWC characteristics into a typical ABM 

environment where observed levels of vehicle arrivals and vehicle behaviors could be simulated. 

For this paper, the NetLogo ABM platform was utilized (Wilensky 1999a), and NetLogo’s 

parameters were appropriately converted to represent the distance of the MWC, the placement of 

the entrance stations and the locations of where the considered attractions were about the MWC. 

The common units in NetLogo consist of turtles, patches, and ticks which represent the agents, 

cells, and time respectively. The agents were modeled as the vehicles traveling through the 

MWC, the cells represented the grid where the agents would travel through, and each was coded 

to be a 5 x 5-meter cell, and lastly, each tick or time unit was represented as 1 second. Thus, the 

total number of cells or patches in the NetLogo model resulted in 2,311 cells across the x-axis 

which represented 11,555 meters (7.18 miles) of the MWC. Similarly, the y-axis represented the 

distance needed to be traveled to reach each of the considered destinations and was maxed out by 

the LSR in the south-east at 100 patches (500 meters) and Death Canyon in the north-west at 400 

patches (2,000 m).   
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 Additional consideration of adapting NetLogo’s units to represent the MWC consisted of 

labeling two “breeds” or types of agents referred to as northbound (NB-Vehs) and southbound 

vehicles (SB-Vehs). Each breed had specific instructions regarding their travel directions 

(North/South), speed and acceleration as well as awareness to slow down and not overlap or pass 

another agent on representing a car-following situation. In this study, the car-following rules 

implemented more closely resemble Pipe’s model which is modeled after California Vehicle 

Code and keeps a minimum vehicle length distance from the following vehicle and the lead 

vehicle (Elefteriadou 2014). The network consisted of a two-lane corridor representing the main 

road of the MWC, and two-lane roads that reach the considered attractions of Poker Flats, 

Granite Canyon, LSR, Death Canyon and Sawmill Mill Ponds. Table 5-3 summarizes the 

assumed parameters and distances assuming the origin of the x-coordinates starts 200 meters 

before arriving at the Granite Canyon entrance station and the y-coordinates are the distance 

from the MWC. Figure 5-4 summarizes the MWC Network as it was modeled in NetLogo. In 

Figure 5-4 the Moose end entrance station can be modified by the user, in the experiments 

conducted for this paper, the Moose end entrance station was set at 300 meters away from the 

“End of Network” or the northernmost intersection where MWC intersects with Teton Park Rd.   
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Table 5-3 Description of NetLogo Parameters and MWC Network Characteristics in 

NetLogo 

NetLogo Parameters 

One tick 1 second 

One patch 5-m x 5-m cell 

One turtle 
NB - Vehicle Agent 

SB - Vehicle Agent 

MWC Network Characteristics 

Granite Entrance Station X = 40 (200 m), Y = 100 (Datum) 

Poker Flats X = 153 (765 m), Y = 97 (15 m) 

Granite Canyon X = 367 (1,835 m), Y = 106 (30 m) 

LSR X = 1083 (5,415 m), Y = 0 (500 m) 

Death Canyon X = 1299 (6,495 m), Y = 500 (2,500 m) 

Sawmill Ponds X = 1881 (9,405 m), Y = 97 (15 m) 

Moose Entrance Station X = 2011 (10,055 m), Y = 100 (Datum) 

 

 

Start of 

Network

End of 

Network

Granite 

Entrance 

Station

Poker Flats

Granite Canyon

LSR

Death Canyon

Sawmill Ponds

565 m200 m

15 m

1,070 m

30 m

1-Lane 

Bridge
2,370 m 1,210 m

500 m

1,080 m

2,500 m

2,910 m

15 m

1,950 m

 

Figure 5-4 MWC Network Representation in NetLogo 

Furthermore, the rules integrated for the agents to follow consisted of moving from the 

start of the Network towards the End of Network if they were an NB-Vehicle and from End of 

Network to Start of Network if they were an SB-Vehicle. Both NB and SB vehicles were to 

follow the vehicle in front of them. Additionally, each vehicle was assigned a random number 

between 0 – 1 upon passing their respective entrance station which determined what attraction 

they would be stopping at. Table 5-4 illustrates how these numbers were distributed based on 

GPS tracking data obtained during the data collection process. 
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Table 5-4 Stopping Rules for NB-Agents & SB-Agents in MWC NetLogo Model 

Vehicles Not Stopping 

Random Number Range Action 

0.0000 - 0.3910 Thru 

0.3911 - 0.4300 U-Turn 

Total Proportion 43% 

Vehicles Stopping 

Random Number Range Stopping At 

0.4301 - 0.4511 Poker Flats 

0.4512 - 0.5058 Granite Canyon 

0.5059 - 0.6791 LSR 

0.6792 - 0.7207 Death Canyon 

0.7208 - 1.0000 Sawmill Ponds 

Total Proportion 57% 

 

Furthermore, referencing the GPS tracks, the time spent at each location was estimated 

based on total time spent in the corridor. Observed values from the data collection were input 

into the ABM model in terms of mean and standard deviation of time spent at each attraction. In 

NetLogo, additional flexibility was provided for future users in that a user input box for the mean 

and standard deviation for time spent at an attraction was allowed to be easily modified. Thus, 

using NetLogo’s capabilities, a random number was drawn from a normal distribution with 

constraints based on the specified mean and standard deviation that would determine how long 

an agent would spend at any one attraction. Therefore, the process of an agent to visit a site 

consisted of the following steps. Upon, passing through the entrance station a random number 

pulled from a normal distribution and between 0 and one was assigned to each agent, that 

number would determine their stopping destination based on the Table 4 specifications. The 

duration of time spent at the attraction was determined from a random number generated by 

NetLogo bounded by user-specified inputs of mean and standard deviation. The mean and 

standard deviation used for this study consisted of values observed during the data collection 

process. 
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Figure 5-5 illustrates a screenshot of the NetLogo ABM model, where the user can 

modify various operational parameters of the model. The arrival rates can be modified to allow 

for vehicles arrivals in a deterministic fashion or through a Poisson process. Similarly, the 

entrance stations are encoded into a patch behavior where a color designation can serve vehicles 

in a deterministic or Poisson fashion. Furthermore, the monitoring includes queuing levels at the 

Granite Canyon Entrance Station, the Moose End entrance station, the number of vehicles at the 

considered attractions of Poker Flats, Granite Canyon, LSR, Death Canyon and Sawmill Mill 

Ponds and the total number of vehicles in the MWC as time progressed are also monitored.  

 

Figure 5-5 The MWC Modeled in NetLogo 

An additional feature which is included in the NetLogo ABM Model is the consideration 

of wildlife jams to the corridor. This feature is provided to the user in terms of providing control 

to where in terms of location a wild-life jam may occur, and for how long it will last. The vehicle 

agents are instructed to react to the jam by stopping and thus introducing a delay to the corridor. 

Including this characteristic highlights the flexibility available in ABM to modeling the unique 
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scenario in the MWC that involves frequent interaction with wildlife and the natural scenery. 

Although in this study the wildlife jam feature was not included in the data collection process, its 

discussion is vital for two reasons. First, it highlights the appropriateness of the use for ABM to 

be used to evaluate different NPS corridors where additional unique events may be modeled. 

Secondly, it provides a path for future research that could incorporate a specific plan to address 

the sensitivity wildlife jams may have to vehicle travel in the MWC. 

 

5.5 Results 

5.5.1 Agent-Based Model 

The resulting 95% HPD values determined from the Bayesian analysis were used as the 

primary inputs in the ABM simulation for a time period from 8:15 AM – 1:00 PM for a total of 

17,100 seconds (ticks) where the first 15 minutes were allotted to a warm-up period of vehicles 

already in the corridor. Three cases were evaluated an referred to as the 2.5% posterior quantile 

case, the posterior mean case and the 97.5% posterior quantile case. A total of 20 simulations per 

case for three cases were executed resulting in available data for 60 simulations were an 

identified random seed value was maintained for repeatability measures. Figure 5-6 illustrates 

the results from the simulations of the average number of vehicles arriving at the Granite Canyon 

entrance gate considering the previously identified and discussed parameters. From the 

simulation results, as expected the 2.5% posterior quantile results had favorable results, vehicle 

arrival levels remained below ten vehicles until approximately 10:30 AM, at which point 10 

vehicles could be anticipated to be constantly arriving within the monitoring area until 1:00 PM. 

The posterior mean and the 97.5% posterior quantile resulted in each having similar behaviors 
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and vehicle arrival levels under the considered conditions similarly beginning to peak at the 

10:30 AM time of day. Similarities can likely be attributed to the considered arrival and service 

rates converging under the coded conditions which include a specified monitoring distance of 

vehicle arrivals. Additionally, the change in slope shortly after 11:00 AM can be attributed to the 

200-vehicle capacity being reached within the corridor and vehicles being unable to enter until 

others leave after the 11:00 AM time of day. 

 

Figure 5-6 Average Vehicles Arriving at the Granite Canyon Entrance in MWC from 

NetLogo Simulations 

Figure 5-7 illustrates the results from the simulations of the average number of vehicles 

arriving at the Moose end future entrance gate considering the previously described parameters. 

There is a clearer distinction between the 2.5% posterior quantile, posterior mean and 97.5% 

posterior quantile. Overall the system arrival levels begin to accumulate starting at 11:00 AM 

considering the posterior mean conditions and as early as 10:00 AM under 97.5% posterior 
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quantile conditions. The sudden peaks in the results can be explained by the MWC reaching 200 

vehicles in the system and blocking access to the arriving vehicles.  

 

Figure 5-7 Average Vehicle Arrivals in the Moose End of MWC from NetLogo Simulations 

Figure 5-8 illustrates the results from the simulations of the average number of vehicles 

expected to be in the Poker Flats attraction of MWC. Overall Poker Flats was the least 

interesting attraction in terms of observed visitors stopping due to the low proportion of visitors 

stopping during the data collection process. Overall, considering the modeled parameters the 

Poker Flats attraction resulted in approximately one vehicle being present throughout the 8:30 

AM – 1:00 PM time frame.  
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Figure 5-8 Average Number of Vehicles at Poker Flats Identified in the MWC from 

NetLogo Simulations 

Figure 5-9 illustrates the results from the simulations of the average number of vehicles 

expected to be at the Granite Canyon attraction of MWC. The maximin number of vehicles at the 

Granite Canyon attraction under the 2.5% posterior quantile, posterior mean and 97.5% posterior 

quantile were estimated to be five vehicles, eight vehicles, and 14 vehicles respectively. This 

finding is important as GRTE park managers can anticipate the number of vehicles to be at the 

Granite Canyon trailhead under observed conditions and can help identify how the visitor time 

that is spent in Granite Canyon affects the remainder of the corridor.  
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Figure 5-9 Average Number of Vehicles at Granite Canyon Identified in the MWC from 

NetLogo Simulations 

Figure 5-10 illustrates the results from the simulations of the average number of vehicles 

expected to be in the LSR attraction of MWC. The maximin number of vehicles at the LSR 

Preserve attraction under the 2.5% posterior quantile, posterior mean and 97.5% posterior 

quantile were estimated to be 19 vehicles, 31 vehicles, and 45 vehicles respectively. Estimation 

of vehicles at the LSR attraction is important to the GRTE park managers as there is a parking 

capacity limit of 54 designated spaces, thus under the high arrival rates of the 97.5% posterior 

quantile and observed stopping proportions; it is reassuring to observe levels below the 54-

parking space limit.  
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Figure 5-10 Average Number of Vehicles at LSR Identified in the MWC from NetLogo 

Simulations 

Figure 5-11 illustrates the results from the simulations of the average number of vehicles 

expected to be in the Death Canyon attraction of the MWC. The maximin number of vehicles at 

the Death Canyon attraction under the 2.5% posterior quantile, the posterior mean and 97.5% 

posterior quantile were estimated to be 13 vehicles, 21 vehicles, and 35 vehicles respectively. 

The behavior observed in Death Canyon can be described as an incrementing step graph due to 

the long durations that were observed the attraction. From the simulated results, there is little 

evidence that vehicles visiting the Death Canyon attraction and intending to spend time there 

would leave the MWC during the considered 8:30 AM – 1:00 PM timeframe.  
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Figure 5-11 Average Number of Vehicles at Death Canyon Identified in the MWC from 

NetLogo Simulations 

Figure 5-12 illustrates the results from the simulations of the average number of vehicles 

expected to be at the Sawmill Ponds attraction of MWC. The maximin number of vehicles at the 

Sawmill Ponds attraction under the 2.5% posterior quantile, the posterior mean and 97.5% 

posterior quantile were estimated to be 17 vehicles, 20 vehicles, and 31 vehicles respectively. 

Sawmill Ponds was observed to be one of the most visited attractions by the MWC visitors, 

likely due to its ease of access and the opportunity it provides the visitors to connect with 

MWC’s natural environment. The main take away from the results is that the estimated 

fluctuation of a visitor at Sawmill Ponds is greater than any other attractions. Number of vehicles 

at Sawmill Ponds appear to reach and remain at a steady state between 10:00 AM – 11:30 AM. 

Relative to park management, this attraction would likely benefit the most from operational 

parking strategies to optimize flow in and out of the Sawmill Ponds attraction.  
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Figure 5-12 Average Number of Vehicles at Sawmill Ponds Identified in the MWC from 

NetLogo Simulations 

Thus, to summarize and provide perspective from the model results of the attraction 

visitation levels and the approach used to estimate the MWC capacity, the results are 

summarized in Table 5. Additionally, Table 5 below illustrates the anticipated number of 

vehicles that were referenced in the comprehensive management plan (NPS 2016b) to estimate 

the 200 vehicle capacity derived out of the maximum person capacity at three out of the five 

attractions. Thus, it can be observed that the model results for the 97.5% posterior quantile more 

closely resemble the numbers used in the development of the MWC 200 vehicle capacity. The 

results provide confidence that the current 200 vehicle capacity is well designed to account for 

the conservative values tested in the model, and below the posterior mean values which were 

observed in the field.  
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Table 5-5 Comparison of Comprehensive Management Plan Vehicles at Attractions to 

NetLogo Model Results 

  Estimated by GRTE 
NetLogo Model Results 

2.50% Mean 97.50% 

Poker Flats - 0 1 1 

Granite Canyon 17 5 8 14 

LSR 44 19 31 45 

Death Canyon 80 13 21 35 

Sawmill Ponds - 17 20 31 

Total Vehicles at Attractions 141 54 81 126 

Available Vehicle Capacity in 

MWC 
59 146 119 74 

 

Lastly, Figure 5-13 illustrates the average of the total number of vehicles that were 

observed in the MWC simulations. Keeping in mind that vehicles were not allowed to enter the 

MWC after 200 vehicles were within the MWC boundaries between the Granite Canyon 

entrance and the Moose end entrance. The results show that under the 2.5% posterior quantile 

conditions the posterior mean conditions the number of vehicles in the MWC resulted in 

approximately 170 vehicles and the 200-vehicle capacity was not reached. However, the 170-

vehicle mark was reached just before 11:00 AM under the posterior mean conditions and around 

10:15 AM under the 97.5% posterior conditions. The results illustrated in Figure 5-13 address a 

critical issue in GRTE’s comprehensive management plan and overall raises awareness about the 

time of day the MWC will reach 200 vehicles when considering the visitor stops along the MWC 

attractions and the duration of time spent at each location. Overall, the most significant impact 

this finding has is informing at what time of day capacity will be reached or if capacity will be 

reached at all in the MWC. Along the same lines, it provides GRTE management with a tool 

with predictive capabilities to testing more up to date arrival rates and determine if capacity is 
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reached. More importantly, it helps park management to prepare to consider if, when and where 

additional management strategies are needed given visitor levels and travel patterns.   

 

Figure 5-13 Average Total number of Vehicles in the MWC Corridor Identified in the 

MWC from NetLogo Simulations 

5.2 Verification 

 Verification methods consisted of evaluating the time spent within the MWC. The GPS 

tracks provided information for vehicles that did not stop while traveling through the MWC. 

Similarly, information was provided for vehicles that did stop and the time spent in the MWC. 

Therefore, Table 5-6 illustrates a comparison of the time spent in the MWC from the collected 

GPS vehicles compared to the considered NetLogo simulations. It must be noted that because 

Death Canyon saw such a significant amount of time spent in the attraction, the vehicles did not 

exist within the considered time from of 8:30 AM – 1:00 PM and thus, information was not 

available for direct comparison. The percent difference is calculated for each case against the 
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GPS collected data, overall there was adequate consistency between the NetLogo simulations 

and the percent difference did not exceed 50% for the cases which were able to be compared. 

Table 5-6 NetLogo Time in MWC Comparison to GPS Data 

  
GPS 

(Minutes) 
NetLogo (Minutes) 

% Difference: GPS & Netlogo 

Minutes 

2.50% Mean 97.50% 2.50% Mean 97.50% 

Thru (No Stop) 22 21.85 14.78 14.42 0.68 39.26 41.63 

Poker Flats 26 33.17 24.26 23.38 24.24 6.92 10.61 

Granite Canyon 55 63.08 47.67 81.89 13.69 14.28 39.29 

LSR 89 85.81 91.58 74.62 3.65 2.86 17.58 

Death Canyon 203 . . . . . . 

Sawmill Ponds 34 39.64 40.90 40.44 15.32 18.42 17.30 

Average % Difference 11.51 16.35 25.28 

 

5.3 ANOVA 

A final analysis consisted of performing an analysis of variance (ANOVA) followed by a 

Tukey’s posthoc test comparing the time of day expected for 200 vehicles to be reached in the 

MWC. Figure 5-14 illustrates a boxplot representing the time of day 200 vehicles were reached 

from each simulation case, while Table 5-6 and Table 5-8 represent the ANOVA results and 

post-hoc Tukey analysis.  
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Figure 5-14 Box-Plots of the Time the MWC Capacity of 200 Vehicles was Reached 

Table 5-7 ANOVA Table of Time of Day to Reach 200 Vehicles in the MWC 

Source DF Sum of Squares Mean Square F Ratio 

Model 2 133119600 66559800 12.4923 

Error 34 181153791 5328052.7 Prob > F 

C. Total 36 314273390   <.0001 

 

Table 5-8 Tukey's HSD Post-Hoc Test 

Level Least Sq Mean 

2.5% A     45359.667 

Mean   B   40668.556 

97.5%     C 38435.688 

Levels not connected by the same letter are significantly different. 

 

Therefore, it was determined that the null hypothesis is rejected and that the considered 

2.5% posterior quantile, the posterior mean and 97.5% posterior quantile have significantly 

different time of day values were the anticipated number of vehicles will reach 200 in the MWC. 

Performance of Tukey’s honestly significant difference (HSD) post-hoc test further illustrates 

that each case considered is significantly different from each other when evaluating the data with 
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frequentists approaches. Overall, Figure 5-14 provides further information about the variation of 

when the 200-vehicle capacity can be reached. Under the 2.5% posterior quantile, the 

observations which saw a 200-vehicle capacity were approximately after or around the 12:30 PM 

threshold. The posterior mean saw a greater spread in times ranging from approximately 10:45 

AM to just after 12:00 PM. Lastly, the 97.5% posterior quantile conditions saw capacity being 

reached shortly before 10:00 AM until 11:00 AM.   

Thus, the ANOVA results previously presented describe the time of day bounds that the 

200-vehicle capacity may be reached in the MWC. With monitoring strategies in place to capture 

vehicle arrival rates and entrance station service times, park managers could estimate the 

potential time of day capacity is reached in the MWC. Favorable conditions of low arrival rates 

and quick service times would correlate to the 2.5% posterior quantile results and reaching 

capacity at approximately 12:30 PM. Alternatively, conservative conditions of high arrival rates 

and slower service times would correlate to the 97.5% quantile results and reaching capacity as 

early as 10:00 AM. This information can provide park managers threshold levels of when 

additional staff may be required to handle mitigation strategies at the MWC entrance station 

locations given that monitoring is in place.  

 

5.6 Discussion and Conclusions 

A tool which consisted of implementing Bayesian methods and ABM was developed in 

order to evaluate an NPS transportation corridor. The tool capitalizes on carrying out analytical 

methods which are becoming prevalent in the field of transportation engineering when data 

collection and data analysis is required. In addition to presenting the tool, the paper provides a 
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methodology capable of being adapted to other NP locations to answer similar management plan 

questions or test various strategies with open-source resources.  

The tool was utilized in the GRTE to evaluate the preferred alternative of the “Moose-

Wilson Corridor Final Comprehensive Management Plan / Environmental Impact Statement.” 

The tool was able to use available data to estimate critical aspects of interest to GRTE such as 

the time a 200-vehicle capacity limit is reached in the MWC. The presented work demonstrates 

an approach to investigating possible scenarios in the MWC utilizing advanced data analytics 

procedures and ABM modeling platforms. The data analytics portion uses collected previously 

collected data from 2013 and 2014 that serves as the likelihood for Bayesian method evaluation. 

Bayesian inference is not a new concept but is being used utilized more frequently due to 

advances in computation power and the overall push in data acquisition that has emerged in 

recent years. Results from the Bayesian analysis consisted of identifying a 95% HPD region that 

could be used as bounds to input into an ABM representing the MWC.  

The purpose of the ABM was to represent the MWC and examine the anticipated changes 

proposed by the comprehensive management plan. Utilizing the 95% HPD region output from 

the Bayesian method analysis provided bounds which would define the parameter inputs for 

three different cases when comparing simulations, the three cases where: the 2.5% posterior 

quantile, the posterior mean and the 97.5% posterior quantile. Furthermore, observed proportions 

and stopping durations from GPS tracks allowed for the determining and assigning rules to 

agents about which attractions they would stop at and how long they would be stopped along the 

MWC.  

Thus, the described procedure was implemented to estimate the operations within the 

MWC at GRTE when limiting the capacity of MWC to 200 vehicles. The Bayesian inference 
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provides a 95% HPD region which increases the overall confidence that the considered 

parameters being utilized in the ABM are what would be observed in real time. The NetLogo 

ABM provides a platform to simulate transportation evens in the MWC. However, the overall 

capabilities of events that can be simulated by the NetLogo ABM are not limited to only 

transportation events and can be modified and adapted to include additional events common in 

an NPS setting such as interaction with wildlife or other ecological phenomena.  

Overall considering the time of day when 200 vehicles were reached under the 2.5% 

posterior quantile values resulted in an average time of day of 12:26 PM.  The posterior mean 

case resulted in greater instances where the 200-vehicle capacity was reached in the MWC with 

the average expected time to be at 11:13 AM considering observed values. Lastly the higher 

97.5% posterior quantile which consisted of, the greater vehicle arrival rates and longer service 

times resulted in stressed operational measures at the entrance stations. Overall the 200-vehicle 

capacity was observed to be reached at an average time of 10:40 AM under the 97.5% posterior 

quantile conditions. 

An ANOVA analysis comparing the means between the considered cases of the 2.5% 

posterior quantile, the posterior mean and 97.5% posterior quantile found that each case was 

statistically significantly different from each other. However, because the 95% HPD was used to 

determine the bounds of the simulation parameters the probability obtained from the performed 

analysis that 200 vehicles are reached between 10:40 AM and 12:26 PM is 0.95.  

6.1 Management Impacts 

The most significant impact the tool provides to the NPS parks interested in performing a 

proactive evaluation is demonstrated through the evaluation of the MWC in GRTE. The tool 

provides GRTE management; a platform were the current preferred management plan can be 
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tested. The point of most significant concern for GRTE and other parks of the NPS is the 

objective of conservation and preservation and limiting visitor capacity as proposed with the 

200-vehicle limit in GRTE is a direct way to address and ensure the NPS mission. By having 

access to estimates of possible time of day periods where the 200-vehicle capacity is reached, 

GRTE can better prepare to handle possible queueing levels at the entry points to the MWC or 

also enforce time spent at the attractions of Poker Flats, Granite Canyon, the LSR Preserve, 

Death Canyon and Sawmill Ponds. Under the observed posterior mean conditions, were the 

largest vehicle arrivals for August were input into the ABM, the time of day where 200 vehicles 

were reached was approximately 11:13 AM.  

The power of ABM should not be overlooked as it is a flexible platform was the NPS can 

evaluate future planning endeavors that are not only limited to transportation-related efforts. 

Similarly, the flexibility to change input parameters such as arrival rates and service rates are 

likely to change over time especially since visitation levels have been observed to be increasing 

over time and the common seasonal effects.  

5.7 Conclusions 

In conclusion, a tool was developed to evaluate an NPS transportation corridor. The tool 

consisted of capitalizing on the use of advanced analytical methods that consist of Bayesian 

methodology and ABM. To illustrate the tools capabilities data from the MWC at GRTE was 

modeled in the NetLogo ABM platform to evaluate the preferred alternative of the “Moose-

Wilson Corridor Final Comprehensive Management Plan / Environmental Impact Statement.” 

The alternative consisted of limiting the number of vehicles in the corridor at any one time 

during peak periods, introducing queuing lanes to the north and south ends of the MWC corridor, 
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consideration of a transit system in the future and 20 mph speed limits. Currently, a 200-vehicle 

capacity is expected to be enforced where access will not be allowed in the MWC during this 

period.  

The data used was collected during the 2013 and 2014 seasons at GRTE and consisted of 

vehicle arrival rates at the Granite Canyon Entrance Station and the Moose end of the MWC. 

Additionally, a stratified random sample of GPS tracks of visitors traversing the MWC corridor 

and visiting key attractions of interest which include Poker Flats, Granite Canyon, the LSR 

Preserve, Death Canyon and Sawmill Ponds.  

A Bayesian method approach was applied to the arrival rate data and service time data to 

obtain a 95% HPD region that would serve as bounds for values to be modeled in an ABM. The 

evaluation focused on peak periods observed during the data collection process which were 

observed during August of 2013 and August of 2014, where the morning periods of 8:30 AM – 

1:00 PM were explicitly evaluated. Additionally, the obtained GPS tracks allowed for the 

estimation of stopping proportions of vehicles traveling through the MWC and the time spent at 

each attraction. 

The tool is an ABM that was modeled on the NetLogo platform and was modified to 

represent the MWC starting from the Granite Canyon Entrance station and ending at the Moose 

End intersection with Teton Park road. Key aspects of the NetLogo ABM allow for the user to 

modify variables of interest such as the arrival rates and service rates of the Granite Canyon 

Entrance Station and the Moose end as well as specifying whether they arrive or provide service 

in a deterministic of Poisson fashion. Similarly, the time spent at each location is a parameter 

that can be altered by a user by inputting the average time spent at the location and the standard 
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deviation. Currently, the observed values are encoded into the model and were also the values 

utilized to complete the evaluation for this paper.   

The arrival rates and service rates obtained from the Bayesian method approach were 

used to run 20 simulations for three cases of the 95% HPD region. Three cases considered were 

the 2.5% posterior quantile, the posterior mean and the 97.5% posterior quantile that resulted in a 

total of 60 simulation data sets for a simulation period ranging from 8:30 AM – 1:00 PM. Data 

consisted of monitoring results in the developed tool which also monitored the vehicles (agents) 

traveling through the MWC and stopping at assigned attractions for a specified amount of time.  

It was estimated that under the 2.5% posterior quantile values which were the parameter 

values of low arrival rate and faster service time, the average estimated time of day for the MWC 

to reach the 200-vehicle capacity was 12:26 PM. Under the posterior mean values which were 

the observed average values of vehicle arrivals and service times, the average estimated time of 

day for the MWC to reach the 200-vehicle capacity was 11:13 AM. Lastly, under the 97.5% 

posterior quantile parameter values which were the conservative values of high arrival rates and 

slower service times, the estimated time of day for the MWC to reach the 200-vehicle capacity 

was 10:40 AM. 

Therefore, the tool provides a useful resource for NPS managers to evaluate current and 

future management strategies. For this paper, the tool was tested with data from the GRTE, 

MWC and the respective MWC management plan. The evaluation focused on estimating a 

unique unknown event of reaching a 200-vehicle capacity in the MWC during peak visitation 

periods with the use of Bayesian methods and ABM. The time range to reaching capacity was 

estimated considering a 95% HPD region of observed conditions and visiting proportions and 

durations. The developed tool provided the NPS with a valuable resource and methodological 
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approach to future management plans as illustrated in the GRTE MWC management plan. 

Additionally, the ABM platform developed can be updated and reused to capture any changes 

within the MWC as well as integrating additional behaviors from visitors or wildlife in the area.  
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6 Chapter 6: Conclusion 

In conclusion, in this dissertation, various methods illustrate how available data can be 

extended to determine prevalent transportation system operational performance, prepare and plan 

for future transportation system changes and illustrate methodologies, tools, and approaches to 

evaluating a unique transportation system. Under the same scope, proactive support 

methodologies and support tools were discussed and serve to illustrate approaches of 

transportation system operation management for National Park Service managers as well as non-

traditional agency professionals. This was accomplished by focusing on the Moose-Wilson 

Corridor located in Grand Teton National Park. 

This was accomplished in Chapter 2, through evaluation of the queuing levels of 

performance through the Little’s Law methodology and simulation. The methodology 

implemented serves as a useful tool for National Park Service entrance stations and is not only 

restricted to vehicle arrivals. Also, in Chapter 2, similar methodologies were implemented to 

evaluate a considered entrance station at the northern end of the Moose-Wilson Corridor and 

provide guidance and recommendations to the anticipated number of queued vehicles and the 

consideration of distance and placement from the nearest intersection to avoid queue spillback.  

  In Chapter 3, traditional queueing methodologies and the application of Little’s law 

provided a thorough evaluation of the parking queueing levels at the Laurance S. Rockefeller 

Preserve (LSR) in the Moose-Wilson Corridor. Consideration of arrival rates throughout the day 

and the approximate duration spent parked allowed for the estimate of queueing measures of 

performance for the parking area. With such information, recommendations regarding parking 

time limit enforcement when certain thresholds are reached were provided.  
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In Chapter 4, the use of GPS tracks collected along the Moose-Wilson Corridor was 

utilized to implement a non-parametric machine learning strategy to attempt to identify stopping 

attractions along the corridor. The machine learning strategy consisted of a decision tree 

approach and considered the time spent in the corridor as well as other stops made throughout 

the corridor and provided predictions about the probability that a visitor would stop in a certain 

attraction. Findings from this study allowed park managers to glimpse into implementing new 

decision-making strategies and easily observe trends of visitor attractions while being able to 

inform incoming visitors of the probability of finding parking spaces if monitoring is 

implemented.  

Lastly, in Chapter 5 the use of arrival rates, service times and GPS tracks collected from 

the Moose-Wilson Corridor were used to generate a Bayesian inference 95% Highest Posterior 

Density bounds that would later be input as parameters to an Agent-Based Model. The overall 

objective of Chapter 5 is to investigate the transportation operations of the Moose-Wilson 

Corridor considering the preferred management plan that limits vehicle capacity to 200-vehicles. 

Findings from this study determined three average times of day results that correlate to three 

values within the 95% Highest Posterior Density (2.5% posterior quantile, posterior mean, 97.5% 

posterior quantile) of observed arrival and service rates at the Moose-Wilson Corridor. Overall 

guidance and anticipated time of day were approximations provided for reaching the 200-vehicle 

capacity limit in the Moose-Wilson Corridor under the future preferred management plan 

operations.  

Overall each chapter served to provide information relevant to park management at 

GRTE and illustrates a detailed process to evaluate a National Park corridor. A big component of 

this work is the implementation of ABM to model a National Park transportation system.  
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ABM provides a platform for evaluating the unique transportation characteristics 

observed in a National Park. Additionally, it inherently contains the flexibility to include 

multiple interactions that may be observed in a non-urban environment. One that stands out is the 

interaction that visitors have with the wildlife present in a National Park and the desire to spend 

time observing the natural scenery of the environment. Such behavior is capable of being 

considered in an ABM after overcoming the learning curve of the ABM platform. Additionally, 

regarding the presented study, because the transportation operations are dependent on the unique 

events of GRTE, many commercial tools are not readily adapted to address the unique conditions 

that involve considering wildlife or sightseeing scenarios.  

 


