INVENTORYING FOREST RESOURCES

STANDARD OPERATION PROCEDURES

Wrangell-St. Elias National Park and Preserve Glennallen, Alaska 99588

TABLE OF CONTENTS

Page
Table of Contents ii
Introduction 1
Field procedures 4
Timber inventory sheet guidelines 8
Office procedures 22
Appendices

1. Sample size collection 27
2. Definitions of common forestry terms 28
3. Random numbers table 29
4. Tatum aids 33
5. 1986 revision of the Alaskan vegetation 35
6. Relaskop use 39
7. Limiting distances 45
8. Useful conversions and plot radius factors 46
9. Key characters of tree species 48
10. Five year mortality 50
11. DBH taking suggestions 51
12. Tree height suggestions 59
13. Damage codes 66
14. Photograph labeling 73
15. Tree borer sharpening 75
16. Basal area computation, V-BAR tables 77
17. Stand table factors 84
References 85

INTRODUCTION

The purpose of these standard operating procedures is to establish a basic forest resource inventory methodology for future inventories as well as to provide instruction for those unfamiliar with forest inventory procedures. Furthermore, the outlining of considerations and procedures used in planning a forest inventory allows other inventory designs or methodologies to be employed to accomodate specific data needs and unique forest resource areas.

Important factors to be considered in planning and organizing a forest resource inventory include, the length of the season available to do fieldwork, types of access required, and the estimated project cost. The number of personnel needed for the project should be considered as well as the level of experience these individuals should possess. Equipment necessary for sampling should be available and in good repair.

The approximate size of the area to be sampled needs to be determined. The use of a clear dot grid placed over a map or photo can help estimate timber stand acreage. The objectives of the study, inventory and statistical methodology, the parameters to be estimated and the precision desired should be clearly identified and stated before fieldwork begins. Eg.: The objective of the inventory is to determine volume, current
annual productivity and density of the Batzulnetas timber stand with a 80 \% level of confidence. The study population should be defined. Is the timber to be inventoried considered one stand of trees or would the study area be more appropriately divided into several strata or timber types. If the variation among stands within timber types is less than the variation among stands that are not in the same type, the population estimate will be more precise than if the sampling is done at random over the entire population. An examination of aerial photographs with a stereoscope may be helpful in determining whether a timber stand should be divided in to one or several strata. If possible, visit the area and perform some practice timber plots, especially if field personnel are unfamiliar with timber cruising methodology. Decide what criteria the differentiation of timber stands into strata or types will be based upon (canopy cover, species composition, volume, location, etc.).

Decide what data is to be collected and which measurement techniques will be used to collect this data. (Eg.: Age, 10-year increment, height, $D B H$ and bark thickness measurements are required to determine current annual productivity.) All timber sampling within a strata or stand must be done with the same basal area factor (BAF). A preliminary trip to the field may be required to practice field techniques, identify problems and decide which basal area factor is most appropriate. Stands with similar density and volume which have already been surveyed could
be used as a guide to determine which BAF is most propriate. Other local land management agencies may be contacted to find out what BAF was used by field crews for similar timber stands.

In determining the sample size; area size, number of strata, variance within the population and the desired level of statistical confidence must be considered. Appendix 1 contains some guidelines on sample size selection. Appendix 2 includes definitions of several commonly used forestry terms.

Sampling units need to be defined and a method of selecting sample units in the field must be chosen. A clear plot grid can be used to systematically or randomly locate plots throughout the sample area on either an aerial photograph or on a topographical map. If more points have been located on the map than the number of plots required for sampling at a certain level of statistical significance, a method for randomization of plots should be employed. Appendix 9 includes a random numbers table for use in sample site selection.

A methodology for locating plots in the field must be determined. The location of systematically arranged plots is often considered to be easier and less expensive than randomly placed plots because azimuths and spacing between plots is consistent. Field plot location by pacing in chains is explained in the field procedures section.

Recommended field equipment and supplies are listed below:
Tatum and tatum aids
Plot sheets and \#2 lead pencil
Relaskop (WRST has a metric Relaskop)
Clinometer (with a of slope scale and a topographic scale to calculate tree height)
Compass (check declination)
DBH tape (in inches or cm , to the nearest $1 / 10$ " or mm)
50' or 75^{\prime} measuring tape
Tree borer (a $10 "$ borer is usually sufficient)
Extra tree borer extractors (in case of breakage)
Tree borer bit sharpening kit
Straws and masking tape (for storing extracted tree cores)
Handlens (for counting age of tree cores)
Small ruler.
Camera and extra camera battery (a wide angle lens is preferable)
Several rolls of film (ASA 200 film is preferable in darker situations found beneath stands with dense canopy cover)
Chalkboard and plot pole
Chalk
USGS 1:63,360 topographical maps
Aerial photographs with plastic covers
A roll of brightly colored flagging

Personal gear:

shotgun and shells
field vest
bug dope
raingear
lunch and water
radio
first aid kit
emergency food and clothing
rubber or hip boots for wet lowland areas and creek crossings

FIELD PROCEDURES

Establishing Plot Location:

Because it is important to accurately establish plot locations, a
system of pacing in chain lengths should be employed. Pacing also allows for an unbiased determination of plot center in the field. A chain is a standard length of measurement 66 feet long. Because there are 80 chains to mile, the number of chains to be traversed is easy to determine with a ruler and a topographical map or aerial photograph. Prior to, and intermittently during the field season, each crew member should determine their individual rate of pacing per chain length on different types of terrain. After marking a 66 foot length on the ground with c tape measure, count the number of normal, comfortable strides required to traverse a chain length. More steps may be needed to traverse a chain on tussocks, rough or steeply sloped terrain.

With a topographical map or aerial photograph, determine the compass bearing and number of chains to be paced from the starting location to the plot location. While pacing, occasionally check the compass for accuracy of direction. It is helpful to align the compass sight with a distinctive landmark or a particular tree and then pace toward it. The last pace of the last chain is where the plot center is to be located.

Once the plot center has been determined, the Timber Inventory Data Sheet is to be completed (Figure 1). Laminated plastic sheets (tatum aids) with applicable codes and explanations are available to help fill out the data sheet (Appendix 4).

Figure 1: Timber Inventory Data Sheet

TIMBER INVENTORY DATA SHEET

Point No.: \qquad Rank: \qquad - \qquad - \qquad
T: \qquad R : \qquad S: \qquad
\qquad 1/4, \qquad $1 / 4$

Map: \qquad $-$ \qquad Aerial Photo \#: \qquad Date: \qquad
Observers: \qquad BAF: \qquad
Elevation: \qquad Slope: \qquad

Aspect:

\qquad
Drainage: \qquad Veg. Type: \qquad Photo \#'s: \qquad
Tree Tree DBH Ht. Crown Crown Brk \& 10 Tree Damage Use Spp. Hist in. ft. Ratio Class year inc Age Class Class

Figure 1 cont.:

Comments: \qquad
Understory Species: \qquad
\qquad
\qquad
Wildlife: \qquad
\qquad

WRST Photo \#'s:

Timber Inventory Sheet Guidelines. Write "NA" in data sheet fields where information is not applicable.

Point No.: Fill in the point number.

Rank: If a rand sampling of plots is being done, put random sample rank number here. If not, leave blank or delete from form.

T: R: S: Record township, range, section and quarters.

Map: Fill in the topographical quadrangle name and map number. Eg.: Nab A-3.

Aerial Photo \#: This indicates the flight line and number of the color infrared aerial photograph on which the plot is located. Eg.: 99-4717

Date: Fill in current date.

Observers: List initials of the technicians. The initials of the person filling out the form should be first.

BAF: The basal area factor (BAF) is a constant used in variable plot cruising to estimate the basal area occupied by tree stems on a per acre or per hectare basis. Basal area is a measure of square feet or square meters of space occupied by the stem of a
tree 4.5 feet from the ground. Eg.: a tree with a 7 inch DBH has a basal area of .2673 square feet. Basal areas are listed in
 sample a timbe stand is dependant on the size and density of trees in the stand. As a general rule, the BAF chosen should yield an average of between four and eight "in" trees per plot. Only one BAF is to be used in sampling a given population. Data collected with different $B A F^{\prime} s$ may not be analyzed collectively. Past timber surveys in Nabesna and McCarthy areas have used a BAF of $21 / 4$ if a metric scale Relaskop was used (American scale equivalent of 22.05), and 20 if an American scale Relaskop was used.

Elevation: Elevation is determined from 1:63,360 scale USGS topographical maps.

Slope: Record slope in percent either with the clinometer or the Relaskop. Obtain percent slope, first by looking upslope, then looking downslope and averaging the two values. Slope is usually very slight in forested lands in interior WRST.

Asnect: Record the general direction toward which the terrain slopes.

Drainage: Estimate site drainage using visible indicators (eg. wet site indicator plants, ground substrate condition and
presense of standing water). Consider the past month's and current weather conditions when estimating site drainage. Code as follows:

1 Very poorly drained. Water table remains at or near the surface (above 45 cm or 18 in .) most of the year. Soils have a mucky or peaty surface horizon.

2 Poorly drained. Soil is wet much of the time, with water table seasonally near the surface for prolonged intervals. The water table is $45-90 \mathrm{~cm}(18-36 \mathrm{in}$.$) and soils usually$ lack a mucky or peaty surface horizon.

3 Somewhat poorly drained. Soil is wet for significant periods, but not continuously, because of a slowly permeable layer or high water table ($90-150 \mathrm{~cm}$. or $36-60 \mathrm{in}$.). The soil has a very thick, dark A horizon due to the abundant growth of course grasses.

4 Moderately well drained. Soil is wet for a small but significant part of the year. The soil has a thick dark A horizon and indistinct mottling in the B horizon.

5 Well drained site. Water leaves the soil readily but not rapidly. The soil is intermediate in texture and lacks mottles.

6 Somewhat excessively drained site. Water leaves the soil rapidly. Soils may be shallow and sandy and very porous.

7 Excessively drained site. Water leaves the soil very rapidly. Soils are very porous.

Veg. Type: Vegetation type is keyed to the first four levels of the Viereck et al., 1986 Revision of the Alaska vegetation classification (Appendix 5). The area is determined to be forested or non-forested, to have open closed or woodland canopy coverage, coniferous, deciduous or mixed coniferous/deciduous composition, as well as which tree species are present. In attempting to estimate the percentage of canopy closure, visualize the amount of grounc that would be covered by shadow
from tree canopy cover, if the sun were directly overhead.

Photo \#'s: Photo information may be included in the "Photo \#'s" space provided at the top of the timber inventory sheet, if problems with future photo identification are anticipated. To take photos, the photo board and plot pole are placed at plot center. Information on the photo board should include date, location and plot number or identification. When possible, exclude field gear and personnel from the photograph. Two photographs are then taken, the first to the north, the second to the south. A wide angle lens is preferable. It is helpful to take pictures of notable features and situations which occur in between plots. A photographic log should be kept.

Information on the grid portion of the timber inventory data sheet is collected on all trees $3.9 " \mathrm{DBH}$ or larger which are in the variable radius plot. "Tally trees" or trees determined to be "in" are selected by using an appropriate BAF and making a 360 degree sweep around the plot center, while holding the Relaskop directly over plot center. For more detailed instructions on using the Spiegel Relaskop, refer to Variable plot sampling by Dilworth and Bell, (1982 and 1984), The Relascope, by William Finlayson, or Appendix 6. Usually one crew member operates the Relaskop and fills out the data sheet while the other person gathers DBH and height information. If there is difficulty with remembering which trees are "in", chalk can be used to number
trees on their bark. When the width of a tree at DBH is visually equal to the critical angle of a BAF, it is a "borderline" tree. A borderline tree is "in" if the distance between plot center and the tree is less than or equal to its limiting distance as determined by the DBH of the tree. For limiting distances of an English basal area factor of 22.05 (metric scale BAF of $21 / 4$), refer to Appendix 7.

Seedling and sapling tally: Seedling and sapling densities are determined by tallying all seedlings and saplings growing within a fixed radius plot. Seedlings are defined as trees with a DBH less than one inch. Saplings have a DBH between one inch and less than four inches. The center of the variable radius plot is also used as the fixed radius plot center. The area of the fixed radius plot should equal that of the variable radius plot for a tree with a diameter at the cutoff point between a sapling and a tree, at its limiting distance for the BAF being used (Appendix 8). With a metric scale basal area factor of $21 / 4$ (an American scale BAF equivalent of 22.05), all seedlings and saplings ace tallied in a circular plot with a radius of 5.6 feet or 1.7 meters. Figure 2 indicates field data sheet information to be recorded for seedlings and saplings. When applicable, use damage class codes that pertain to seedlings and saplings: "02" - acceptable seedling or sapling, poor form; and "91"layered se $2 d i n g$.

Figure 2. Field data sheet information to be recorded for seedlings and saplings.

Tree Species: Record tree species as a three digit code for all trees tallied. Important key identifying characteristics for each tree species listed below can be found in Appendix 9 and is included on the tatum aid sheets.

Code
white spruce black spruce paper birch balsam poplar quaking aspen black cottonwood

> Picea glauca Picea mariana Betula papyrifera Populus balsamifera Populus tremuloides Populus trichocarpa

Tree History: Record tree history for each tree tallied. To be tallied as a dead or mortality tree, trees must be four inches DBH or greater at time of death (dead seedlings and saplings are not tallied). In addition to dead and mortality trees which are standing upright, leaning and down trees should be tallied. Guidelines for estimating five year tree mortality is located in Appendix 10 and is included on the tatum aid sheets. Tree history codes are as follows:

Code
1 All live tally trees: Includes seedlings and saplings.
4 Salvable dead: Tree dead for more than five years, more than 50 percent sound on a cubic foot basis.

5 Salvable mortality: Dead less than five years, presently more than 50 percent sound on a cubic foot basis.

6 Non-salvable Mortality: Dead less than five years, presently less than 50 percent sound on a cubic foot basis.

7 Non-salvable dead: Dead more than five years, less than 50 percent sound on a cubic foot basis.

DBH: Record tree diameters to the nearest tenth of an inch or millimeter, at breast height (4.5 feet or 1.3 meters), on the uphill side of every tree tallied in the plot. DBH is also recorded for all saplings (1 " to 3.9 " DBH) in the fixed radius plot. Measure DBH by snugly wrapping a DBH tape around the tree at right angles to its lean, 4.5 feet from the ground. If the tree has an large irregularity (swelling, depression, branches, etc.) at DBH, measure diameter immediately above the irregularity at the place where the irregularity no longer affects stem form. If the tree forks at or above 4.5 feet, consider the tree as one tree and measure the DBH below the swell in the bole, if present. If the tree forks below 4.5 feet, consider it to be two trees and measure each fork as an individual tree. In either case, measure the diameter of the tree as near DBH (4.5 feet) as possible. Leaning trees are considered tally trees if they are within the limiting distance at breast height. For more detailed instructions on measuring $D B H$ and on limiting distances, refer to Appendix 11 and 7, respectively.

Height: Height is recorded with a clinometer for every tallied
tree and is measured to the nearest foot of the main stem top. On American scale clinometers, the left scale is percent and the right scale is usually topographic with a baseline distance of 66 feet. Refer to Appendix 12, for suggestions on taking accurate tree heights. If the tree is forked above DBH and has two full live tops, measure height of the tallest main stem top. If the tree forks below DBH, count as two trees and measure DBH and height for both. If the tree has live foliage and a dead or broken top, measure height of the dead or broken main stem top, even if a live lateral branch is taller than the main stem top.

Crown Ratio: Crown ratio, or percent live crown is related to vigor and growth of a tree. Crown ratio is expressed to the nearest 10 of of the total tree height supporting live crown, and is recorded as a l-digit code. For trees with uneven crown growth or distribution, visually transfer the lower branches on the longer side to the short side to achieve a balanced crown. Eg: for a tree with a 48 of live crown, record " 4 ".

1	$0-19$	$\%$	4	$40-49$	$\%$	7	$70-79$	$\%$
2	$20-29$	$\%$	5	$50-59$	$\%$	8	$80-89$	$\%$
3	$30-39$	$\%$	6	$60-69$	$\%$	9	$90+$	

Crown Class: Determine crown class for each tally tree. Crown class is a description of the relative position of the tree crown with respect to competing vegetation that surrounds the tree.

1. Open Crown. Trees with crowns which have received light from above and all sides throughout most of their lives. Their forms or crown shapes have not been and are not likely to be influenced by other trees.
2. Dominant. Trees with crowns extending above the general level of the crown canopy and receiving full light from above and partly from the side; larger than the average trees in the stand, and with crowns dense, comparatively wide and long, but possibly somewhat crowded on the sides.
3. Codominant. Trees with crowns forming the general level of the crown canopy and receiving full light from above but comparatively little from the sides; usually with medium-size crowns more or less crowded in the sides.
4. Intermediate. Trees shorter than dominants or codominants, with crowns below or barely reaching into the main canopy, receiving little direct light from above and none from the sides, usually with small crowns considerably crowded in the sides.
5. Overtopped. Trees with crowns entirely below the general level of the crown canopy, receiving no direct light from above or from the sides.

Tree Age and Bark \& 10 Year Increment.:
At least two dominant and/or codominant trees are bored at every plot. Not necessarily the largest or tallest trees in the plot, trees bored for age should as much as possible be free from disease and defect, of good form and vigor, not excessively limby and have at least 40% live crown. Because not all plots have trees which fit these criteria, choose trees which best approximate the conditions stated above for coring. Avoid coring trees which have rot or excess sap on the bark. More trees are bored in plots which have a large number of "in" trees (more than 7 or 8), to account for a varied species composition and different size and age classes. The width of the bark/cambium layer is recorded in order to determine the diameter of the tree inside its bark and thus the volume of the tree minus the volume of the bark. Diameter outside bark is expressed as DOB.

Diameter inside bark is expressed as DIB. The width of the last ten year increment is recorded in order to calculate the current annual productivity of the timber stand.

Trees are cored at breast height, or 4.5 feet from the ground on the uphill side of the tree. Bore the corer to the center of the tree and insert the extractor spoon into the corer upside down. Turn the corer one rotation counterclockwise (or backwards) in order to break the tree core away from the inside of the tree and withdraw the extractor spoon with the tree core. To reduce the possibility of the corer getting stuck in the tree, remove it from the tree after extracting the extractor spoon prior to analyzing the tree core.

Once the core has been extracted, the width of the tree bark/cambium layer is measured and recorded in 1/20ths of an inch. Used by WRST field personnel, the Silva Ranger: compass possesses an appropriately scaled ruler. The width of the most recent ten years of growth (the outermost ten annual growth rings) is also recorded in $1 / 20$ ths of an inch. The use of a handlens will greatly facilitate the counting of small or tight tree rings. The age of the tree is determined by counting all tree annual growth rings and adding seven years to the total, to account for the number of years it took the tree to reach breast height (USDA and Ak DNR, 1983). If the corer was off-center from the exact center of the tree, estimate the additional number of
rings needed to reach the center of the tree from the innermost ring intersected by the borer. If tree age is to be counted in the office, count at least the 10 j ar increment in the field to minimize error due to shrinkage f om the core drying. If the tree core is to be saved, place it in a straw, stopping both ends with masking tape and writing the plot number and tree number on the tape. If the core is too long for one straw, break it in half and place it in two straws. Once back in the office, unblock one of the straw ends in order to prevent mildew from forming ou the core.

Damage Class: Record the presence or absence of serious damage or pathogen activity for all live trees and cause of death, if it can be determined, for all mortality trees (Figure 3). Record primary and secondary damage which refers to the relative time each damage occurred. If a tree was damaged by insects thus causing a dead top, record insect damage as the primary cause and the dead top as the secondary damage. If a tree has two unrelated damages, code the most severe as primary and the less severe as secondary. A general rule is to code damage only when something is wrong with the tree which will:

1. Provent it from living to maturity, or surviving ten more years if already mature.
2. Reduce or has seriously reduced quality of the tree's products, i.e. houselogs and firewood (damage resulting from rot, lightning strike, etc.).

For more detailed descriptions of damage codes, refer to Appendix 13. Make special note of the presence of spruce beetles in the timber stand.

Figure 3. Damage class codes.

Code		Code	
01	No damage	50	Weather
02	Acceptable seedling or	51	Wind
	sapling, poor form	52	Lightning
10	Insect damage	53	Snow
11	Bark beetles	54	Frost
12	Defoliators	55	Flooding
13	Sucking insects	56	Earth movement
14	Tip and shoot borers		
15	Gall-forming insects	60	Suppression
20	Disease, unidentified	70	Unknown
21	Rust	71	Leaning 15 \% or more
22	Rot	72	Forked
25	Severe rot	73	Broken top
26	Witches-brooms	74	Dead top
		75	Uprooted
30	Fire	76	Bole split
		77	Sweep Crook
40	Animal caused	78	Abrasion
41	Domestic animal	79	Unhealthy foliage
42	Porcupine		
43	Rabbit	80	Logging damage
44	Beaver		
45	Big game	90	Cull or offsite tree
46	Human	91	Layered seedling

Use Class: This is an optional category used to indicate the suitability of the tree for use as a houselog or firewood. If in some future timber survey, information on another criteria is to be gathered (ie. cubic or surface defect), the heading of this column can be altered.

Comments:

Although they are sometimes tedious to fill out in the field,
comments written on the back of the form can later prove to be an invaluable source of information about specific or unusual observat ons and general stand trends, etc. that are not necessarily or obviously reflected by the numeric parameters recorded on the front of the form. Written observations can also qualitatively interpret and reinforce the physical setting and general conditions evident in or near the plot vicinity. Observations made in between plots can be written here as well.

Understory Species:

List all of the major understory species observed in the plot area. In general, the most dominant species aro listed first. Use of plant species codes (the first three letters of both the genus and species names) is an efficient way of recording understory species. Eg.: Vaccinium uliginosum is "VACULI". In the case where only genus has been determined, use the first five letters of the genus name. Eg. Equisetum is "EQUIS". Vascular plant nomenclature follows Hulten, 1968.

Wildlife

Here space is provided for comments pertaining to wildife observations (animal sightings, presence of a cavity nest, etc).

WRST Photo \#'s

Space is provided to later fill in official eleven digit WRST photo numbers once these numbers have been assigned to
individual plot photographs. Information is provided in Appendix 14 concerning the proper labeling of slides.

Eg.: 05-01-108-0288
"05" indicates association with the Resource Management program.

The third and fourth digits indicate the WRST district in which the photo was taken. In this case, "01" means the Nabesna district.
"108" indicates the photo was taken in conjunction with the Forest Products program.

The last four digits indicate the particular sequential number assigned to each individual slide.

Information and equipment maintenance chores should be performed in the office after every trip to the field in order to prepare for the next field outing and to avoid an accumulation of incomplete data forms. Exposed film should be prepared for processing. Field equipment should be maintained or turned in for repair (tree borer sharpening instructions, Appendix 15). The field supply of items like field data forms and straws should be replenished. Field plots should be mapped onto 1:63,360 maps. Field data forms should be organized and information such as elevation and township and range etc., should be filled in. It is important to write down field notes describing unusual observations, problems, inconsistencies and questions before they are forgotten.

Once all of the field data has been collected, data calculations can be started. Several good sources of information on statistics, basal area computation, the construction of V-Bar tables and stand tables, etc. are listed in the references section as well as in Appendix 16. The park/preserve presently has a computer program called "Basica Crude", which statistically computes gross timber volume and dead timber volume by species per acre using V-Bar tables, basal area and appropriate timber volume equations (see Figure 4). The appropriate timber volume tables can be found in Haack, 1963 and Gregory and Haack, 1964.

Tree density per acre and DBH size class distribution tables are constructed using appropriate stand table factors (Appendix 17). Tally the number of trees in the stand in each size class, divide each total by the number of plots, then multiply by the appropriate stand table factor for each DBH size class. Odd DBH size classes with intervals of two inches, starting with the five inch (4 to 5.9") DBH size class are used. Dead and mortality tree densities and species composition of the stand are computed similarly. Steps for computing current annual productivity (cubic feet per acre) are listed in Figure 4. Also refer to Hush et al., 1972; p. 314.

Figure 4. Steps for Computing Current Annual Productivity. Numbers in brackets refer to column number of the stock table on page 27.
[1] DBH size class midpoint, eg.: DBH size class 7 includes trees between 6.0" and 7.9" DBH.
[2] The Stand Table Factor indicates the number of trees per acre represented by each "in" tree tallied during variable plot cruising. Decreasing with increasing DBH, each DBH size class has a different stand table factor. Stand table factor $=$ the Basal Area Factor (BAF in this case $=22.04$) divided by the basal area (sq. ft.) of the midpoint DBH class.
[3] Present Stand Table (live trees/acre): Tally the total number trees in each DBH size class from the data sheets. Divide each total by the number of plots, then mul:iply by the appropriate Stand Table Factor [2] for each DBH size class.
[4] Average Bark Thickness (in): computed by averaging bark thickness measurements for each DBH size class from original data sheets and doubled to obtain diameter measurement.
[5] Present DBH diameter inside bark (DIB): subtract [4] from [1] for each size class. This is the diameter of the tree minus the diameter of the bark.
[6] 10 year increment (in): compute by averaging 10 yeir increment measurements for each DBH size class from original data sheets and doubled to obtain the diameter of the 10 year increment.
[7] Estimated future DBH (in) DIB: Add [5] and [6] for an estimate of the DBH of each size class in 10 years.
[8] Divide 2.0 inches (the number of inches in each DBii size class) by [6] to compute the average estimated number of 10 year periods required for trees in each DBH size class to advance to the next DBH size class.
[9] Determine average height (feet) for trees in each IBH size class from the original data sheets.
[10] Compute the height difference between each DBH size class [9] and the next larger DBH size class.
[11] Estimated 10 year height increment (feet): Divide [10] for each DBH size class by [8] to compute how much each DBH size class grows in a 10 year period.
[12] Estimated future height (feet): add [9] and [11] for each DBH size class.
[13] Present average volume (DIB) (cu. ft./tree): with Ave. Est. Ht./tree [9] and present DBH (DIE, (in) [5], use the volume equation for trees of interior Alaska for the appropriate tree species to compute Ave. Est. tree volume (cu. ft./tree) for trees in each DBH size class.

Alaska white spruce, Smalian's Formula, NOR-5* $V=-.69934+.0021294646 D^{2} H$

Interior aspen, Smalian's Rule, NOR-6, 4" top** $V=-.5553-.02216 D^{2}+.00246 D^{2} H$

Interior paper birch, Smalian's Rule, NOR-6, 4" top** $\mathrm{V}=-2.5767+.9524 \mathrm{D}-.10446 \mathrm{D}^{2}-.03303 \mathrm{H}+.00282 \mathrm{D}^{2} \mathrm{H}$ Haack, 1963* and Gregory and Haack, 1964**
[14] Average Estimated Future Volume (DIB) (cu. ft./tree): use Ave. Est. future DBH [7] and Ave. Est future height [12] and the appropriate volume equation to compute Ave. Est. future volume/tree.
[15] Present Stock Table (cu. ft./acre): multiply [3] and [13] to compute estimated volume (cubic feet/acre) for each DBH size class.
[16] Estimated Future Stock Table (cu. ft./acre): multiply [3] and [14] to compute the estimated future volume (cu. ft./acre) for each DBH size class.
[17] Estimated Current Annual Productivity (cu. ft./acre/year): Subtract [15] from [16] for each DBH size class and divide by 10 . Sum this column to compute the total amount of current annual volume productivity for an acre in the stand (cu. ft./acre/year).

Figure 4 cont.: Stock table used to derive the current annual timber productivity for the Chisana timber stand.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	$[10]$

[1]	[11]	[12]	[13]	[14]	[15]	[16]	[17]
DBH Class (in)	Est. 10 Yr. Ht. Inc. (ft)	Est. Fut. Ht. (ft)	Present Vol/Tree (DIB) (cu.ft.)	Est. Fut. Vol/Tree (DIB) (cu.ft.)	```Present Stock (cu.ft./ acre)```	```Est. Fut. Stock (cu.ft./ acre)```	Curr.Ann. Vol. Prod. (cu ft./ acre/yr.)
5	1.36	31.36	0.63	0.84	81.89	109.87	2.80
7	0.55	40.98	2.82	3.07	421.18	458.04	3.69
9	1.00	47.60	6.10	6.67	593.93	649.66	5.57
11	0.37	54.69	11.14	11.92	655.47	701.25	4.58
13	0.46	57.26	17.16	18.30	390.83	416.69	2.59
15	--	59.50	24.11	25.30	329.88	346.10	1.62
17	--	50.33	25.39	26.05	50.79	52.10	0.13
19	--	59.33	39.82	--	63.71	(63.71)	0.00
Total							20.98

Seedling and sapling densities are computed by tallying the total number of seedlings and saplings present in the stand, then by multiplying by the ratio of the size of an acre to the size to the fixed radius plot and finally by dividing each total by the number of plots.

Ex.: For a stand with a total of 28 seedlings in 12 plots with a fixed radius of 5.6 feet. (There are 442 plots with a radius of 5.6 feet in an acre.) $28 \times 442 / 12=1031.33$ seedlings/acre. A simple T-test can be used to determine variance and confidence intervals of seedling and sapling densities per acre.

Once densities, volumes, current annual productivity, etc. have been determined, they should be incorporated and written into results and discussion narratives, in conjunction with comments recorded in the field. Papers previously written for the park, eg., the Inventory of Forest Resources of Wrangell St. Elias National Park and Preserve, and the Inventory of Forest Resources at the Chisana Stand, may be used as guidelines. In addition, pertinent forest resource literature and references in the park/preserve library may be reviewed for background information. The results should be discussed in light of park values and management goals and concerns. A recommended forest resource management strategy(s) chosen from an array of feasible management alternatives should be identified. Specific guidelines on how this strategy is to be implemented should accompany the narrative/discussion.
compensate for the vertical angle without having to use an abney or other device.

Establishing Plots and Determining Tree Counts

Number of sample plots. Sample plots or points are located in a manner similar to that used for fixed-radius plot cruising. Mechanical or random sampling patterns may be used with single points or plot clusters. The use of clusters decreases travel time and tends to minimize costs in achieving a prescribed sampling error. The cluster represents an observation and the " n " of sample size in
 single points, whichever sampling method is used.

The statistical formulas for determining the number of sample plots are essentially the same as for fixed-radius plots. If the points are close enough that with the prism to be used there will be an overlap of plots, then the formula for an infinite population is used. The same formula would be used for large areas.

$$
n=t^{2} C^{2} / A^{2}
$$

If there is no chance of overlap and the area being sampled is small, the formula for a finite population is:

$$
n=\frac{N t^{2} C^{2}}{N A^{2}+t^{2} C^{2}}
$$

When:
$n=$ number of sampling points or ouservations
$N=$ possible number of plots in area to be sampled ${ }^{1}$
$C=$ estimated coefficient of variation (based on previous vartable plot cruises of similar stands)
$A=$ allowable error (standard error of the mean) in percent
t = number of standard errors (expression of confidence limits)
${ }^{1}$ The possible number of plots will vary with the BAF used and the diameters of the trees. One approach in determining N is to estimate the diameter of the average tree and imaginary plot size for such a diameter. For example, the plot size of a 30 -inch diameter using a BAF 25 prism is about $1 / 5$-acre which indicates N is 5 per acre of the total area being sampled.

Appendix 2. Definitions of some common forestry terms.

Basal area (BA): A measure of square feet of space occupied by the stem of a tree at breast height, 4.5 feet.

Basal area factor (BAF): The BAF is a constant for a given critical angle and varies with the size of the critical angle. It gives the basal area per acre for each tree intercepted from a sampling point.

Board foot-basal area ratio (V-BAR): The ratio between the volume of the tree and its basal area.

Density: The size of a population expressed on a per acre or hectare basis. Density can be broken into diameter size classes.

DOB and DIB: Diameter outside bark and diameter inside bark.
Diameter size classes: A classification of trees according to mid-point diameter size classes.

Gross volume: The total volume of a tree, including all defects and rot.

MAI or mean annual increment: the increase in diameter for a given number of years divided by that number of years.

Net volume: The gross volume of a tree less deductions for rot, sweep or other defect affecting its use for wood products.

Plot radius factor (PRF): For a given critical angle, the plot radius factor is the distance per unit of tree diameter from the sampling point to a point at which the tree would be a borderlint tree. The plot radius factor times a tree diameter is the maximum distance at which a tree would be counted and is used to determine whether borderline trees are "in" or "out".

Site index: A measure of site productivity based upon the heigh of trees at a given base age. Site index classes are height classes represented by a graphed curve of height over age for each class.

Variable radius plot: A plot on which a predetermined critical angle is projected from a central point, and swept in a full circle, to determine the basal area, tree count and volume per unit of area. The radius of this plot is a function of tree basal area and is therefore variable.

V-Bar: The ratio of the tree volume to the basal area.

TABLE D. 45 Ten Thousand Random Digits

TABLE D. 45 (cont.) Ten Thousand Random Digits

TABLE D. 45 (cont.) Ten Thousand Random Digits

	$50-54$	$55-59$	$60-64$	$65-69$	$10-74$	$75-79$	$80-84$	$85-19$	$90-94$	$95-99$			

TABLE D. 45 (cont.) Ten Thousand Random Digits

Table D. 45 was prepared using an algorithm for the IBM 360 computer (International Business Machines, 1968: 77).

Appendix 5. 1986 Revision of the Alaskan Vegetation Classification (Viereck et al., 1986).
1a. Trees over 3 m in height present and with a canopy cover of 10 of or more 1 Forest 2
1b. Trees over 3 m in height absent or nearly so, with less than 10 of cover. (Dwarf trees, less than 3 m tall at maturity may be present and abundant) 7
1 Forest
2a. Over 75 \% of the tree cover contributed by needleleaf (conifer) species......1A Needleleaf Forest 3
2b. Less than 75% of tree cover contributed by needleleaf (conifer) species 4
3a. Tree canopy of 60-100 \%
cover..........................1A(1) Closed needleleaf forest
3b. Tree canopy of 25-59 \% cover....1A(2) Open needleleaf forest
3c. Tree canopy of $10-25$ \% cover 1A(3) Needleleaf woodland
4a. Over 75 of tree cover contributed by broadleaf species Broadleaf Forest 5
4b. Broadleaf or needleleaf species contribute 25-75 \% of the tree cover.......1C Mixed Broadleaf/Needleleaf Forest 6
5a. Tree canopy 60-100 \% cover 1B(1) Closed broadleaf forest
5b. Tree canopy 25-59 \% cover........1B(2) Open broadleaf forest
5c. Tree canopy 10-24 \% cover............1B(3) Broadleaf woodland
6a. Tree canopy 60-100 \% cover 1C(1) Closed mixed forest
6b. Tree canopy 25-59 \% cover 1C(2) Open mixed forest
6c. Tree canopy 10-24 \% cover 1C(3) Mixed woodland
7a. Vegetation with at least 25 of cover of erect to decumbant shrubs or with at least 10 \% cover of dwarf trees (less than 3 m tall at maturity) 8
7b. Vegetation herbaceous (may have up to 25 \% shrub cover) 1

Appendix 5 cont.

Alaskan Vegetation Classification to Level 3

Level 1 Level 2 Level 3

1. Forest A. Needleleaf forest (1) Closed needleleaf forest(2) Open needleleaf forest(3) Needleleaf woodland
B. Broadleaf forest (1) Closed broadleaf forest(2) Open broadleaf forest(3) Broadleaf woodland
C. Mixed forest(1) Closed mixed forest(2) Open mixed forest(3) Mixed woodland

Appendix 5 cont.

Aleskan Vegetation Classification to Level 4 (Forest)

1A1 Closed needleleaf forest (60-100\% canopy)
K. white spruce - is widespread in southcentral and interior Alaska and extends to the limits of tree growth along rivers draining the Brooks Range. It generally occupies sites with well-drained, permafrost-free soils.
L. black spruce - generally occurs on poorly drained organic soils, often underlain by permafrost. It has wide distribution in interior Alaska.
M. black spruce-white spruce - occurs in interior Alaska near the northern and western limits of trees. It also occurs on terraces and at the base of south-facing slopes.

1A2 Open needleleaf forest (25-60\% canopy)
F. white spruce - is similar to the closed white spruce type but with more shrub cover because of the more open tree canopy. Found commonly on well-drained sites and near treeline in interior Alaska.
G. black spruce - is extremely common on poorly drained cold sites in interior and south-central Alaska.
H. black spruce-white spruce - occurs mostly near treeline in interior, southwestern, western, northwestern and south-central Alaska.

1A3 Open needleleaf woodland (10-25\% canopy)
C. white spruce - is a very open, woodland type especially common at the northern limits of tree growth and at elevational tree lines.
D. black spruce - is found on wet, boggy sites where it often grades into a sphagnum bog, and on dry upland sites where lichens are frequently important in the understory. It is common in interior, south-central, southwest and northwest Alaska.
E. black spruce-white spruce - occurs in interior, southcentral, southwest and northwest Alaska, especially near the northern, western and altitudinal limit of trees.

Appendix 5 cont.

1C1 Closed mixed forest (60-100\% canopy)
A. spruce-birch - tends to occur on cool, wet sites when black spruce is present in the mixture; white spruce favors forest warmer, drier sites. The type is found primarily in interior and south-central. Alaska and, to a lesser extent, in northwest and southwest Alaska.
B. spruce-birch-poplar (cottonwood) - reported from the Susitna Valley in south-central Alaska.
C. spruce-birch-aspen - reported from interior Alaska.
D. aspen-spruce - is an intermediate sucessional stage, with spruce as the eventual climax. Aspen generally occurs with whit spruce on warm, well-drained sites. The type is most common in interior and south-central Alaska.
E. poplar-spruce - is an intermediate successional stage leading to white spruce climax on flood plain sites in interior, south-central, southwestern and northwestern Alaska.

1 C2 Open mixed forest (25-60\% canopy)
A. spruce-birch - occurs on a variety of upland sites in interior, south-central, southwestern and northwestern Alaska.
B. aspen-spruce - reported from the Porcupine River area in interior Alaska.
C. birch-poplar (cottonwood)-spruce - reported from the Susitna Valley, south-central Alaska.
D. spruce-poplar (cottonwood) - reported from the Susitna Valley, south-central Alaska.

1C3 Mixed woodland (10-25\% canopy)
A. spruce-birch - reported from the Susitna Valley, southcentral Alaska.
B. spruce-poplar (cottonwood) - reported from the Susitna Valley, south-central Alaska.
C. spruce-birch-poplar (cottonwood) - reported from the Susitna Valley, south-central Alaska.

tripod socket

Fig. 1 - Spiegel Relaskop.

From the Reackop, Finlayson

Fig 2 (right)
Scales - full length.

Fig. 3 (below)
Scales-as seen.

Finlayson, wo date. Relastop use.

SPIEGEL- RELASKOP

Inventor: W. W. Bitterlich

These instruatiens prepared by Dr. Jehn F. Aell, School of Ferestry, Oregen State University, Corvallis, Oregen, U.S.A.

INTRODUCTION:
The Soiegel-Relaskop is an instrument designed for use as an angle gauge in the Bitterlich angle method of forest sampling (also known as horizontal point asmpling and variable plot sampling) for derermining basal ares in savare feet per acre. The spiegel-Ralaskop mits: to measure tree heights, to read slope in mifs: to measure tree heights, to read slope in directily mesasure horizontal distances.
Three scaie arrangements - American. Metric tions and usages.
The Spieget-Relaskop is a compact, ruggedlyconstrucred instrument. Weight 14 ounces. Throughouf the remainder of these instructions, the insmument is referred to as RELASKOP.

OPERATION:

If hand hald, the RELASKOP should be positioned as per Fig. 1. For more precise work, mount it on a tripod (Fig. 2). One person. Unassisled. can make eccurate measurements with RELASKOP. Looking through the small window "A" gives a
clear.wide angle view through " B " in which is clesr.wide angle view through " $B^{\prime \prime}$ in which is visible .e series of black and white seales. A shade
bright light. In use, the 3 circular windows " D ", bright light. In use, the 3 circular windows "D", beneath A and B should remain free of obstruc-
tion as they provide light to the scales The button " E ". reieases the brake which holds the scale wheel in position between readings. The scale wheel operates on the pendulum principie but dompens very fast and brakes easily. There are 2 eyes " F^{\prime} on which stras is amached for carrying the instrument suspended from the neck, if desired.
The field of vision through A.E is divided into 2 halves, upper and lower. by a horizontal line which is the measuring "edge" No orner point the RELASKOP user views the terrain and the rees. in the lower one-half the RELASKOP user will see against dark background series of bars and Elack and white bars and scales ex. tending up to the measuring eage.
To tako or reading. the user presses brake release button "E" and the scale sutomatically rotates to the angle the ins:rument is tilled when sight. ing at the point of measurement. Partial release fast stod. The scales for the American (Sisncard) scale RELASKOP are illusirated in Fig. 3 and $3 a$ and thay ore idenitied at the base of the scales when the instrument is thiled down 80°.

Cesines of slopes			
2*-.979	14* . 970	260. 279	38**. $78{ }^{\circ}$
4°-. 998	$16^{\circ} \cdot .961$	28** 8°	40*. 766
$6^{\circ} \cdot .984$	18**.951	90\% . 868	42*.. 743
$8^{\circ} \cdot .990$	20* . 940	32** 848	410 - . 719
10* -.985	22**.927	34° - 828	46. 604
12**.978	24*-.914	36° - 008	488* - 669

If Girard and Bruet form class lables are bing used. form closs ean be sliminated by observing the trees at the top of the first is feot log - wee Ditworth and Bell (Reference No. If for procedure to use.

TO USE AMERICAN SCALE RELASKC? AS A RANGEFINDER
To find ranges of 33. 66 and 99 faet proc-ad as follows: Hold the RELASKOP flar with scales locke:t as per fig. 6.
horiz. distance of 33 h
3 feet are intercepred by " b " 1, " " d " at a horiz. disisnce of 33 m
6 feet are intercepied by 0 is "c" al A imiz discence of 99 t?.
s feet are intercepred by " b " io " 6 " at a horiz. distence of 132 ft .
In using the instrument to establish

Fig. 4 Hivetrating determination of dist met (or renpe) with American sealo RELUSKC?. harizontal distances from the tree to be messurod. "staff exsctiy 6 feet hong is held vertically (or leaned against the tree) at its contral oxis Fiom on estmated horizontal distence of 66 feet from the tree the slope is measured with the instrument and the scale fixed in position at this slope by setting the brake. The instrument is tumed 90° end the staff snowid intercept the disrance along the "measuring edge" from " b " to "d if the 66 feet is estimated eccurately. (Fig. 6) By moving forwerd or beckwards the accivrate point can be established. You can do the same with estaff 3 feet long and a horizontal distance of 33 teat.

TO MAKE SLOPE MEASUREMENTS WITH AMERICAN SCALE RELASKOP DEGRE SCALE
Scale " O^{\prime} to the left of ${ }^{\circ} \mathrm{O}^{\circ}$ is greduated in degrees. Sea fig. 3e. The renge is from olus 70° to minus 80°.

PIRCENT sCAIE
Scale "p- to the laft of Scaie " D^{*} is graduated in percent. See fig. 3a. The range is from pius 270 percent to minus 170 percent.

TOPOGRAPMIC SCAIE

Scale T to the righs of F^{-}gives the reoographic coerections to be apolied in using the 2 -hain lace with traiter. See Fig. Ja. The readings are the number of feet difference ievation par 1 chatn horizontal distance. Range is verween pius 180 feet and minus
 only at the zero porme.

HOW TO MEASURE BASAL AREA WITH METRIC SCALE RELASKOP

In the birterlich method, tree whose diemeter is larger then 3^{3} the fised critical engie of the Relaskop is count tree (Fig, 4). The angles with the counting factor 1 and 2 are the ones mos freauenily used. Both engles are illustrated by white stripes most ing the contunuous numbers 1 and 2 respectively (Fig. 8). In show. cation, select eplot center, proiect the chosen engle (strio) of the cele to esch aree af DBH that cen be seen from the pip) of the count the number of rress greater in diameter then point, and used. If a stem is obscured by intervening irees, it the engle to move to one side but maintaning the seme tistance fremest tree. no view it. The number of trees counted dimence from the basal ares lactor equals the besal ares in times the angie's heciare in the olot The effer of the slope of there maters per metrestry in parustod. The effect of the slove of the rerrain is suroreivenesi and the scils comes to rest an a particulor tres's DBH
To the right of strip 1 , the same width is divided inte 4 bers (two dark end two light ones). Added to strip 1, they give an ongle with the basol ares factor 4 , which is olso used frequently. Trees which seem to be of the same width in diemeter as the ongle usad. hove to be checked by measuring. In order to ta must give on tree diameter multiplied by the Plot radius factor to the srem. (Examples Basal Ares Angle factor 4 theying olet omner redive focior $1: 25$; tree with measured DBH 36 cm ; the gitical redius is $36 \times 25=900 \mathrm{~cm}$; rape meagurement gives al divical of 697 cm . Tree has to be counted)
Basal ares may be determined af any desired haight. Measursments at different height give valuable information about the thepe-iscror of e Darticular stend. Using a colored 4 meter stait. us easy to find the height where the diameter is of the serne width as the angle used. (This point is called "Deckpunkr7. This froff. for example. is from 1.3 m bive, from $3.0-3.5 \mathrm{~m}$ white. and rom $3,5-4.0 \mathrm{~m}$ red. If the "Deckpunkt" falls into the blue section. the suem has to be counted up to eheight of 2,5 merers. but nas at © herght of 3.0 meters.

INSTRUCTIONS FOR METRIC SCALE RELASKOP

Use of Angle Gauge - The eve of the observer mast be directly over the piot center. The angle gauge should be extended stralght, and the cross arm sighted at DBH on the tree: Four possible angle gauge readings are illustrated below:

Record this Tree

Borderline
Tree
(check with tape)

Borderline Tree
(check with tape)

Do not Record This Tree

Use of the Spiegel-Relaskop (American Scale) - The instrument is positioned over the sample plot center and the measuring edge is aimed so as to 'cut' the tree at DBH. To take a reading, the user depresses the brake release button and the scale rotates to the angle which the instrument is tilted. Releasing this button brings the scale to a stop. The curvature of the scale automatically compensates for any slope in terrain.

18 'bars' are represented on the scale. From the ' 0 ' edge to ' 10 ' equals 6 bars, ' 10 ' to 'a' equals 6 bars and 'a' to 'b' equals 6 bars d see diagram). Three Basal Area Factors (5, 10 and 20) are already imposed on the bottom of the scale and the instrument is adaptable for other BAF's using the following formula: BAF $=0.277$ X (Number of bars) ${ }^{2}$

Thus:	$\frac{\text { BAF }}{10}$	$\frac{\text { Number of Bars }}{5.01}$
20	8.49	
	40	12.01
	80	16.99

The edge marked ' O ' is used as the common side for all BAF's and is . positioned so that it lines up with the left side of the tree bole at DBH. Trees greater in diameter than the projected angle are 'in' or tallyable. Since the BAF's being used do not exactly correspond to an even number of bars, the observer must use caution and check the limiting distance of all questionable trees with a tape. The diagram above represents the scale viewed through the Spiegel-Relaskop.

Trees with oblong, eqg shaped or irreqular boles should always be checked with a tape whenever questionable. The irregular shape of these boles does not give a true image of tree diameter.

The limiting distance to all questionable trees must be checked with a tape. Hold the tape at DBH at the "center of the tree". perpendicular to a line from the sample plot center to the tree.

Sample plot center

Determine the limiting distance and compare it to the horizontal or slope distance from the sample plot center to the center of the tree by one of the following methods:

Direct horizontal distance measurement - Measure the horizontal distance from point A to point B as fllustrated below, and compare to tree's tabular limiting distance (Table 2, page M9).

Appendix 7. Variable radius plot limiting horizontal distances (Dilworth and Bell, 1982 and 1984).

Horizontal limiting distance from plot center to the center of the bole at the point of diameter measurement. The distance in feet indicates the maximum distance at which at tree of a given diameter would be considered an "in" tree.

Metric scale BAF $21 / 4$ or American scale equivalent of 22.05
Dist. Dist.
Dia. Feet Dia. Feet

3.0	5.6	12.0	22.2
3.5	6.5	12.5	23.1
4.0	7.4	13.0	24.1
4.5	8.3	13.5	25.0
5.0	9.3	14.0	25.9
5.5	10.2	14.5	26.8
6.0	11.1	15.0	27.8
6.5	12.0	15.5	28.7
7.0	13.0	16.0	29.6
7.5	13.9	16.5	30.5
8.0	14.8	17.0	31.5
8.5	15.7	17.5	32.4
9.0	16.7	18.0	33.3
9.5	17.6	18.5	34.2
10.0	18.5	19.0	35.2
10.5	19.4	19.5	36.1
11.5	21.3	20.0	37.0

Plot Radius Factor $=1.85$
Limiting Distance $=$ PRF x Dia.
For plot radius factors of other BAF's see Appendix F.

```
Appendix 8. Useful conversions.
Conversions
1 square mile = 640 acres
1 acre = 43,560 square feet
1 hectare = 2.471 acres
l acre = 0.405 hectares
1 meter = 3.28 feet
1 square meter = 10.76 square feet
foot = 0.305 meters
1 square foot = . 093 square meters
1 inch = 2.54 centimeters
1 centimeter = 0.394
10 square chains = 1 acre
1 mile = 80 chains
1 chain = 66 feet
```

	plot acre
1 acre	117.8 ft
$1 / 10$	37.2 ft
$1 / 50$	16.7 ft
$1 / 100$	11.8 ft
$1 / 250$	7.5 ft
$1 / 442$	5.6 ft
$1 / 500$	5.3 ft

* Limiting distance for a 3 inch DBH at a American BAF of 22.05 .

Appendix 8 cont.
Approxinate conversions between the BAF's of Metric and Metric wide scale Relaskops and an approximate American scale equivalent.

*Plot Radius Factor: For a given critical angle, the plot radius factor is the distance per unit of tree diameter from the sampling point to a point at which the tree would be a borderline tree. The plot radius factor is determined once for every BAF.

The limiting distance (the plot radius factor times the diameter) is the maximum distance at which a tree of a given diameter is counted "in".

Eg.: The limiting distance for a 3" diameter tree when the BAF is metric scale $21 / 4$ (or 22.05 American scale equivalent) is:
$3.0 \times 1.85=5.55 \mathrm{ft} .$, or 1.7 meters
For limiting distances of other diameters, refer to Appendix B.

Appendix 9. Key characters for major tree species (USDA and Ak DNR, 1983)

094 white spruce (Picea glauca)

$\left.\begin{array}{ll}\text { leaves: } \quad \begin{array}{l}\text { 4-angled, sharp-pointed, stiff needles, whitish } \\ \\ \text { lines, short stalks, grow singly on all sides of }\end{array} \\ \text { twig. }\end{array} \quad \begin{array}{l}\text { slender, hairless, orange-brown, becone rough from } \\ \text { peglike stalks of leaves, pungent odor when crushed. }\end{array}\right\}$

095 black spruce (Picea mariana)

leaves: short stalked, 4-angled needles, stiff, pointed, purplish hue, grow singly on all sides of twig.
twigs: slender, hairy, purplish hue, become brown and rough.
bark: thin, grey to black scales with brown beneath, inner bark yellowish with brown spots.
cones: short stalked, pendant, 15-31 mm., dull grey to black, clustered in tree top, scales rigid, brittle, rounded, and slightly toothed.
habitat: cold, wet, flats, muskegs, north slopes, lake margins.

Appendix 9 cont.

373

paper birch (Betula papyrifera)
leaves: slender stalked, ovate, pointed at tip, rounded at base, coarsely and double toothed, dark green and hairless above, light yellow-green and may be slightly hairy below.
twigs: slender, hairless, red-brown, small, whitish dots, raised, half-round leaf scars.
bark: smooth, white to coppery brown, separates into thin, papery layers, inner bark orange.
fruit: conelike, 25-50 mm., slender stalked, pendant.
habitat: interior, rolling benchlands to 800 feet elevation.

741 balsam poplar (Betula balsamifera)

leaves: finely hairy, slender stalked, ovate to broadly lance-shaped, long pointed at apex, rounded at base, many small rounded teeth, nearly hairless, shiny dark green above, light green and brown below.
twigs: red-brown and hairy when young, becoming grey with raised leaf scars.
bark: light to dark grey, smooth becoming rough, thick, and deeply furrowed.
habitat: interior river valleys and flood plains, found to 3,500 feet elevation.

746 quaking aspen (Populus tremuloides)

leaves: slender, flattened stalks, nearly round, shortpointed at apex, rounded at base, many small rounded teeth, hairless, shiny green above, paler beneath.
twigs: slender, reddish, and slightly hairy when young, becoming grey with raised leaf scars.
bark: whitish to greenish-grey, smooth, thin, curved scars and black knots, furrowed at base on older trees.
habitat: south slopes, well-drained benches, creek bottoms up to 3,000 feet elevation.

Died within past 5 years S	Species	Dead more than 5 years
Some foliage remaining Spr	Spruce	No foliage.
30% or more of twigs remain ((wh \& bl)	Less than 50% branches
50% or more of branches remain		remaining.
Little sloughing of bark		Large limbs falling. Less than 30% of twigs remaining. Considerable bark sloughing.
50% or more of bark still	Populus	No foliage.
attached to bole in some degree.	Sp.	Bark fallen completely free of bole, or less than 50\% attached in any degree.
A few persistent leaves	Birch	No foliage.
remaining.		Less than 50% of
50% or more of branchlets		secondary branches
remaining.		remaining.
Occasional secondary		Bark shows abnormal
branches falling.		curling.

Appendix 11. DBH Taking Suggestions

Why "Diameter at Breast Height"?

There are a number of practical and expeditious reasons why diameter is measured at breast height (4.5 feet above ground on the high or uphill side of the tree).

- A person of average height can comfortably measure the tree in a normal standing position without having to stoop over or pack along a stepladder.
- The tree bole is often quite asymmetrical at ground level, stump height, and until it reaches breast height. By 4.5 feet, the bole is usually quite symmetrical. The pith is more likely to be located in the center at breast height, rather than off-center as is often the case at stump, particularly in "pistol-butt" trees.
- Rot at stump height (from fire damage, root injuries, etc., which permit pathogens to enter) very often does not extend to breast height. Therefore, it is often possible in such trees to obtain age at breast height when it cannot be obtained at stump height.
- These considerations support the reasoning for obtaining age and growth by increment boring at breast height. It would be difficult, or at least inconvenient, to get an increment boring at stump height.
- When diameter, growth, and age are all measured at the same place (breast height), a correlation between these factors can be statistically established.

Asymmetrical Conditions at Stump Height which are not usually present at Breast Height:

Appendix 11. cont.

USE OF A DIAMETER TAPE

The TADE wist ex ar bert anouss To THE LEAN OF THE TREE.

DON'T MACE TAPE IT AN ADMORML


```
Appendix 11. cont.
```

DBH of trees with Normal or Average Boles at 4.5 feet above ground:

Diameter of Trees with Bole Abnormalities at Breast Height (4.5 feet above around)

Measure diameter as close as possbile to the standard 4.5 feet above ground. For practical reasons, at a height no higher than 6 feet above ground: and preferably, no lower than 3 feet above ground. Try to get the best possible diameter for the tree.

TREE GITH VOID, FIRE SCAR, RUST SCAR, EIC., IT DBE.

Round out with D-tape to where nomal DBE should be.

IRES WITE BUTT SHEII, BUTTRESS, BOTILENECK, ETC. - MEASURE WEERE BOLE ASSUTES MORYNL TAPER

ROTE 'ABNOPMAL DBR' IN "RENARKS" COLEAN

```
    Appendix 11. cont.
Measuring DBH in Various Situations:
```


Down Trees are 'in' or 'out' of plot radius based upon where the DBH now lies, not upon where the tree once stood.

Appendix 11 . cont.
Leaning trees will be considered as tally trees if they are within the limiting distance at breast height. Measure diameter 1.3 meters from ground level along the lean of the tree.

If the tree forks at or above 1.3 meters the open crotch of the fork is at or above 1.3 m.), consider the tree as one tree and measure the DBH below the swell as near 1.3 meters as possible. If the tree forks below 1.3 meters consider it two trees. Measure the diameter as near to 1 meter above the fork as possible. Record the height of measurement in remarks. In all cases, place a nail 5 cm . below the point of measurement.

TOTAL HEIGHT (ALL POINTS)
On measured points, first estimate, then measure total height to the last decimeter on all growth sample and site trees. Height on trees should be estimated to the nearest decimeter. On estimated points, record Item 6-19, estimated height, do not record measured height.

On trees that fork above DBH, measure length along the longest section.

Appendix 11. cont.

Tally Rules for Forked Trees, centinued.
Forked Trees in Stand Population Statistics
Forked trees should be regarded as a separate population. They should not be used as Site Trees or Growth Sample Trees unless they are charateristic of the general stand population or unless the forking is a natural genetic function of a species to be featured in management. Height should be recorded for each tree because heights computed from prognosis would not be realistic for these trees or forks.
A. For trees which fork above 4.5 feet above ground.

This tree forks above 4.5 feet.

This tree forks below 4.5, but the forks cannot be measured individually.

1. Measure $D B H$ at 4.5 feet or as close as practical.
2. Record it as one tree. It may be a GST or a Tree Class 1 but not a Site Tree, unless this is a tree typical of those to be featured in management for this stand.
3. Record height of the tallest fork.
4. Record forked tree Damage Code 98.

Tally Rules for Forked Trees, continued.
B. For trees which fork below 4.5 feet above ground.

1 Determine where DBH will be measured for each fork. Fork diameters should be measured as close as practical to 4.5 feet above ground.
2. Determine whether the fork is 'in' or 'out' of the plot radius.
3. Tally the 'in' plot forks. Record each fork as an individual tree. It may be a GST or a Tree Class l, but not a Site Tree unless this is a tree typical of those to be featured in management for this stand.
t. Record height for each fork.

The ensuing steps should be followed to produce accurate tree height data when measuring tree height with a clinometer.

1. When using the clinometer check which scale you are using - they are labeled and can be seen by sighting the top or bottom of the scale. On the English unit instruments, the right scale is normally topographic and the left scale is percent however this varies from instrument to instrument. On the metric instrument the $1 / 20$ scale is on the left and the $1 / 15$ scale is on the right.
2. Always take tree height messurements from a horizontal distance 1 to $1 \mathrm{l} / 2$ times the height of the tree being measured.
3. When using the percent scale, it is recommended that the distance at which tree height is measured is a multiple of 10 ($10,20,30$, etc.). This allows easier calculations for tree height. When using the metric clinometer heights are determined directly at distances of 15 or 20 meters, and by halving the $1 / 20$ scale readings at a distance of 10 meters.
4. Whenever possible, take tree height measurements standing on a
 a plane above the base of the tree.
5. If the tree is leaning, stand perpendicular to the lean of the tree and then measure tree height.
6. For trees with broken tops, measure or estimate the height of the standing portion and add on the measured or estimated height of the missing top. Be sure to code this broken top as damage. Note in remarks the actual height of the standing portion and that the total height is estimated.
7. The estimator will shout lower and upper clinometer readings to the recorier who will shout them back to make sure he heard them correctiy.
8. The recorier and estimator will do the calculation necessary to determine total tree height. They will then compare their calculations by calling out their calculated tree heights to each other.
9. The formula for determining tree height with the PERCENT SCALE of a clinometer is:
$\mathrm{UR}=$ upper reading (tree top)
$L R=$ lower reading (tree base)
$D=$ horizontal distance from the tree

(UR-iR) * $\frac{D}{100}=$ tree height \begin{tabular}{l}
(The metric clinometer is

$59 \quad$| simply UR-LR at the correct |
| :--- |
| distance of 15 or 20 meters) |

\end{tabular}

Appendix 12. cont.

1.9 TCTAL HEIGHM (CONT.)
to illustrate:
$V R=+34$
$L R=-291$
D = 50 meters

$$
\begin{aligned}
& (U R-L R) * \frac{D}{100}=\text { tree height } \\
& 34-(-29) * \frac{50}{100}=31.5 \text { meters total heigit }
\end{aligned}
$$

IThe lower reading may be a positive or a negative number depending on whether you are looking up or iown at the base of the tree. If you are looking up at the base of the tree, the reading will be positive and sinould be subtracted from UR. If you are looking dow, the reading will be negative and should be adied to UR.

Taking tree height measurements standing on a piane above the base of the tree. The lower reading will be negative because you ary looking down at tine base of the tree. The two readirgs must be adied to obtain total tree ieight.

If you are standing on a plane that is far enougi below the base of the tree, the lower reading will be positive. It is not desirable to determine tree heignt with readings that have the same sign. The two rumbers must be suhtracted to obtain total height.

Taking tree height measurements standing on a plane approrimately even with the base of the tree.
height measurement illustiadions

 This gives true height of tree.

Exanple:
Measured helght $B E^{\prime}=120^{\circ}$ Horizontal distance $A B^{\prime}=40^{\circ}$ Corrected tree height $=126$

FORKED TREES
By definition, a tree is typically a large moody perennial with a single well-defined stem (bole). Trees with forks in the stem of species which normally have a single stem are referred to as "forked trees" in Region 6.

The difference between a fork and a branch:

- A branch assumes lateral growth.
- A fork assumes vertical growth.

Forks are extensions from the main stem which, in time, assume a main stem growth pattern (vertical) and often become merchantable stem or bole wood products.

Forks are tallied because they have the potential to become products. Branches do not normally have the potential to become "products."

TALLYING FORXED TREES
Is it a fork or a branch?

For trees of commercial species which normally have a single well-defined stem: When the top is damaged, the lateral branches often compete for top dominance. When this happens, the branch growth becomes vertical. One or more leaders may result. In time, one or more of these branches may become forks. During the transition phase, it could be difficult to classify this as branch or fork growth.

Appendix 13. Damage Codes
DAMAGE/CAUSE OF DEATH (CON:.)

15 Gall-forming insects
Signs are abnormal swellings or galls on twigs and small branches or leaves. On spruces, the growing tips may be greatly swollen into spiny structures resembling small pineapples, which at a casual glance may be mistaken for cones.

20 Disease, Unidentified
The specific case of the disease cannot be identified.
21 Rust
Code only if the cankers deform the bole, cause open wounds, or threaten to girdle the tree.

22 Rot
Use this code for trees which are still marketable. Use for sapwood staining fungus beiore conks appear.

25* Severe rot
Record severe rot damage if conks are present or the tree is too defective to be marketable. Conks are the fruiting bodies of wood rotting fungi. They may occur on the limbs or bole of a tree; or on the ground near the base of the tree indicating root rot. All conks indicate serious damage.

26 Witches Broom
All witches broom should be coded whether of rust, mistletoe or insect origin. This information is for flying squirrel habitat study by Robert Maurey of INF.

Serious fire scars have killed the inner bark more than half way around the tree. Fire damage which has killed the upper third of the crown is also serious. However, the lower part of the crown may be killed without seriously damaging the tree.
$40 \quad$ Animal Caused
Use only when the type of animal causing damage is unknown.

DAMAGE/CAUSE OF DEATH (CONT.)

 Appendix 13. cont.Domestic animal
Domestic animal damage is usually confined to seedlings and saplings. Damage is serious when trees become so deformed that it is unlikely they will develop into marketable products.

Porcupine
Porcupines eat the inner bark of trees. This type of damage is usually seen on the upper stems of trees where the porcupines climb to nibble on the tender, succulent, (delicious) young bark. Damage is serious when the inner bark is killed more than halfway around the tree (giriling). This will kill the top and deform the tree.

43 Rabbit
Rabhit damage usually occurs near the base of seedlings or at the point of deepest snow. Rabbits eat the bark of trees when food is scarce and can girdle a tree by eating the inner bark around the stem.

44 Beaver
This demage code is used only for damage or death caused by gnawing. Trees killed by flooding are coded 55.

45 Big game
Big gane damage occurs when trees are browsed, trampled, clawed or rubbed by antlers. Damage is serious when the tree is so deformed that it is unlikely it will develop into a marketable product.

46 Man

Man-caused damage other than logging damage. (See damage code 80). This includes damage from recreation (trampling, soil compaction, etc.), mining etc., where the tree has not been cut but is damaged in some other way (bulldozing etc.).

Weathe: damage
Use only when the specific weather damage agent cannot be determined.

Appendix 13. cont.
'DAMAGE/CAUSE OF DEATH (CONT.)
51 Wind
Blowdowns and broken tops are serious wind damáe. (Blowdown should be recorded as mortality or dead in tree history.) Trees with broken tops are of ten weakened by rot so check for rot indicators.

52 Lightning
Iightning can shatter the wood or create an open wound through which infection can enter. Scars caused by lightning tend to spiral around the tree.

53 Snow
Damage occurs as breakage due to heavy loads of snow or bending (usually seediings or saplings). On steep side slopes only the base of trees may be bent. Bent over trees, however, seldom recover and damage is serious. Breakage is serious if main stem is broken or if broken branches have left large wounds in the bole.

54 Frost cracks
Frost cracks are generally vertical and occur most often near base of the tree. (Lightning cracks are spiral and ertend from top to bottom.) Frost cracks are formed by the outside of the tree cooling or warming faster than the inside. They often hesl over but can be serious because they provide avenues for infection as well as initial wood damage.

55 Flooding
Damage caused by natural flood or by water baciced up behind a beaver dam.

56 Earth movement
Damage caused by slides or earthquakes.
60* Suppression
Suppression is caused by shading or nutrient competition (black spruce) in overstocked conditions. Suppressed trees are characterized by extremely short or noneristant internodes; twisted, snarled stems; short, flat crowns forming "umbrella shaped" trees; or, an extreme sparseness of foliage. This cole should be used for scruffy looking black spruce with no comercial value.

Appendix 13. cont.
DAMAGE/CAUSE OF DEATH (CONT.)

```
70 . Unknown
    71 Leaning tree (more than 150)
        Tree leaning more than }1\mp@subsup{5}{}{\circ}\mathrm{ from the
        vertical.
    72 Forked
    73 Broken top
    74 Dead top
    75* Uprooted
    76 Bole split
        Caused by other than frost action or
        lightzing.
    77 Sweep - Crook
    78 Abrasion
        Use code 80 for trees damaged by logging
    79 Unhealtiy follage
        Code only if the condition appears to
        threaten survival of the tree.
80 Logging damage
        This includes trees scarred or broken
        as well as trees actually cut and left.
        Cull or offsite tree
        Tree has rough appearance and is not
        capable of producing a }3.75\mathrm{ meter
        (l2-ft.)log now or prospectively. This
        code should used primarily for trees
        found outside thalr range.' For rough
        black spruce, use code 60.
    91 Layered seedling
```

=ees with this code will be classed as tree class rough (30)
rotten (40).

DAMAPDendix 13. cont.
PARASITIC DISEASES OF THE
MAJOR INTERIOR ALASKA TREE SPECIES

Tree	Disease	Location	Visible	Entrance
Spruce		Porticators		

Appendix 13. cont.

-	Disease	Location	Visible Indicators	Entrance Port
$=$	$\begin{aligned} & \text { Armillaria } \\ & \text { (Hellea } \\ & \text { room or shoe- } \\ & \text { string root } \\ & \text { rot). } \end{aligned}$	Confined to butt portion of tree.	Toadstools, honey-yellow to brown in color, at base of tree coming up from infected roots.	Rhizomorphs originating infected trees, pen- etrate un- broken bark of healthy tree and infect them
\therefore n	$\begin{aligned} & \text { Fomes } \\ & \text { ignarius } \end{aligned}$	Any location in rain bole of tree.	Hoof-shaped conk, gray-ish-black above, brown below.	Branch stubs wounds or fire scars.
	$\begin{aligned} & \frac{\text { Poria }}{\text { obinaua }} \\ & \text { (heart or } \\ & \text { saprot). } \end{aligned}$	Any location जu maí bole of tree.	Black warty rough clinkerlike sterile conk issuing from canker wound, or knot.	Knots, wounds, and cankers caused by fungus.
	$\frac{\text { Fomes }}{\text { applanatus }}$	Confined to root or buff portion of dead or live trees.	```Shelf like conk gray-black above, white below.```	Fire scars basal wounds.
=onwood	$\frac{\text { Fomes }}{\text { innarius }}$	Any location in main bole of tree.	Hoof-shaped gray-black above, brown below. .	Branch stubs wounds or fire scars
	$\frac{\text { Pholiota }}{\text { adiposa }}$	Confined to butt portion of tree.	Mushroom at base of tree.	Fire scars butt seams or wounds.
	$\begin{aligned} & \frac{\text { Fomes }}{\text { applanatus }} \\ & \text { (Shelf fingus } \\ & \text { or artist's. } \\ & \text { conk). } \end{aligned}$	Confined to root or butt portion of dead or live trees.	Shelf-like conk: gray to grayish-black above, fresh white below issuing from wounds.	Firs scars, basal wounds.

Afpendix 13. cont.

GUIDES FOR IDENTIFICATION OF WEATHER DAMAGE
 (Code 80-88)

Wind (Code 81). Wind damage usually occurs as blowdowns, where trees are uprooted and blown over. This may occur in residual stands after logging. It may also occur as a result of widespread windstorm or due to a phenonema of jetstream touchdown, which sometimes hits areas of 4-20 acres, creating a real havoc in which trees are broken up as well as blown down (rare). Tops may be broken out of trees, but often where this happens it is due to weakness from rot.

Snow (Code 82). Snow damage occurs as breakage due to heavy loads of snow which break off limbs, or bend over the trees in the case of seedlings and saplings. Such bent over trees seldom recover, and the damage is serious.

Frost Crack (Code 82). Frost cracks occur usually during extremely Tow temperatures, especially when there is a sudden drop in temperature. The inside of the tree is warmer than the outside. The outside shrinks faster causing a split to occur. These cracks provide auenues for infotion as mell as dumage to the mind, tut often frust cracks will close and heal over, and the tree may remain sound. Frost cracks tend to run up and down on the same side of the tree.

Frost Damage (Code 83). Frost damage to foliage usually occurs when a warm spell is followed by a cold snap. The foliage appears biighted, turns red, "red belting" and frost damage is known mostly by its occurrence in a given area at a given time. Generally only the needle tips are tinged. It is serious if $2 / 3$ or more of the foliage is affected beyond recovery.

Drought (Code 86). Moisture deficiency.

Lightning (Code 88). Lightning can sometimes kill the tree as well as shattering the wood, creating an open wound through which infection can enter, retarding growth, etc. Lightning scarred trees almost always have some kind of defect. Lightning scars tend to spiral around the tree.

Other Natural Phenomenon. Earthquake, avalanche, slides, flood.
Appendix 14. Photograph Labeling
RESOURCE MANAGEMENT SLIDE CATALGG SYSTEM
Gerieral
Rescurce Mariagement Activities 51
Vegetation 52
Mammals 53
Birds 54
Amphibiaris 55
Resource Management Projects
FI REPRO 100
Mechanized Trail Inventory 101
Non-mechanized Trail Inveritory 102
Road Inventory 103
Campsite Irventory 104
Caribou Exclosures 105
1984 Waste Site Irventory 106
Airstrip Inventory 107
Forest Resource Inventory 108
Grazing Lease Inventary 107
Hazardous Waste Sampling \& Irventory 115
Research Frojects
ATV Impact Study 501
Bison Range Study 502

Appendix 14. cont.
Slide Label Format
Examp es

TO TAKE AN INCREMENT CORE, FOLLOW THESE INSTRUCTIONS, STEP-BY-STEP. . .

1. Remove the borer bit and extractor from inside the handle. Place the extractor in a pocket of your cruiser vest for convenience and protection of the extractor.
2.

Assemble the handle and borer bit by:
La a. pushing the locking latch away from the hand
 with your thumb,
b. inserting the square end of the borer bit into the handle,

c. returning the locking latch completely around the borer bit "collar". \qquad -an. You're now ready to start boring;
however, we suggest you apply beeswax to the threads and shank before you do. (See below).
Align the borer bit and the handle so that the bit will penetrate through or towards the center of the tree and at right angles to the tree. In any other alignment, the annual growth rings seen in the extracted core will bee ma.
distorted and could . result in erroneous growth rate analysis.
Place the borer bit threads against the tree (Fig. 1), preferably in a bark fissure where the bark is thinnest. Hold : the threads in place with one hand. With your other hand push forward on the handle and simultaneously turn it to the right until the bit threads penetrate the wood enough to hold the bit firmly in place.

5 Then place both hands, palms open, on the ends of the - handle and turn the handle to the right until the bit reaches: the desired depth. (Fig. 2) With the bit at the desired depth insert the full length of the extractor, concave side up like this "' (Fig. 3) Then the the handle one-half turn to the left to break the core from the tree and also to turn the extractor concave side down ike Pull the extractor from the borer bit. (Fig. 4) The core will be resting in the change! and held in place by the small "teeth" at the tip of the extractor. Before exarnining the core sample, promptly remove the borer bit from the tree, clean it (See "Clean with WD-40' below). and place it and the extractor
 back in the handle.
CARE AND MAINTENANCE OF INCREMENT BORERS
Here are a few suggestions Forestry Suppliers, Inc. feels will be helpful in maintaining the efficiency and extending the life of increment borers. We welcome any additional suggestions.

: LUBRICATE WITH BEESWAX

Forestry Suppliers, Inc. provides a block of beeswax with every increment borer sold. Penetration and removal of the borer bit will be easier if beeswax is liberally applied to the threads and shank before each boring.

CLEAN WITH WD-40

WD. 40 is an excellent cleaner and rust preventative for an increment borer. It will also prevent sap acid-etching of the borer. Spray it on and inside the bit and on the extractor at the end of each working day. Wipe clean.

Obtain your core samples as rapidly as possible. It's best to remove the bit from the tree even before examining the core sample. This will reduce the possibility of the bit becoming stuck or locked in the tree.

\therefore AVOID COMPRESSION : TENSION WOOD

Never bore into suspected compression or tension wood. To explain: a tree leaning towards the North will have compression wood on the North side. If you bore into compression wood, the bit could be locked into the tree by the force of the "compressed" wood. H you bore into the South side. you are boring into "tension" wood, where the ring width may not be representative. We recommend boring on the East or West side or, if possible. select another tree.

The Pacific Northwest station also uses the 10 -point field plot to obtain volume data
L.R. Grosenbaugh ${ }^{1}$ suggests the following procedures for permanent sample points.

1. A field plot that contains a cluster of 2.5 sample points is used. Measure approximately 100.500 field plots per ownership.
2. The bearing and distance to each "in" tree from the point center is recorded.
3. At the time of remeasurement, work only with the previous "in" trees plus any trees that are now "in" trees that were below breast height at the time of the previous measurement. This is based on the fact that each "in" tree represents the same number of trees throughout the life of the sample point Trend data are determined from these observations.
4. After several remeasurement periods, it will be necessary to include all trees at each sample point that have grown enough to become "in" trees. This will constitute a new base and then proceed as outlined in item 3 above.

OFFICE PROCEDURES

BASAL AREA DETERMINATION

The average tree count per point times the basal area factor gives the average basal area per acre outside bark. For example: Twenty points are taken on a "forty" with a total tree count on the plots of 97 . The wedge-prism factor is 25
Average tree count $=\frac{97}{20}=4.850$ (take to three decimal places)
$4.850 \times 25 .=121.25$ square feet (basal area per acre outside bark)

The 121.25 square feet represents the basal area per acre at the vertical level at which the tree count observations were made (i.e., DBH or 16 feet). If the trees were observed at the top of the first 16 -foot log, the stem area per acre at DBH can be determined by dividing the stem area per acre inside bark (i.b.) at 16 feet by form class squared. For example:

Stem area per acre (o.b.) at $16^{\prime}=121.25 \mathrm{sq} . \mathrm{ft}$. Bark Thickness Ratio Squares (Table IX) 812
Stem area per acre (i.b.) at $16^{\prime}=121.25 \times .812$
$=98.455 \mathrm{sq} . \mathrm{ft}$.
Form class at $16^{\prime \prime} .70$
Basal area per acre (o.b.) at

$$
\mathrm{DBH}=\frac{98.455}{(.70)^{2}}
$$

Table Ix.- Moen squared bark thicknest rative for top of 16 -foot logs. $\mathrm{I}^{\prime} /$

Speries	ET Ratio Squared		
	Oreaon	$\begin{gathered} \text { Western } \\ \text { Washingtion } \end{gathered}$	Alaska
Ponderose pine Western larch	$\begin{aligned} & .820 \\ & .810 \end{aligned}$,	
Sugar pine	. 780		
Concolor fir	. 805	,	
Incense cedar	. 699		
$\begin{aligned} & 1133-(12 \\ & (25-50 \text { yoars) } \\ & \text { (Over } 50 \text { yeara) } \end{aligned}$	$\frac{\sqrt{85}}{.812}=.922$		
Hestern mealock	. 891	.885	. ${ }^{6} 6$
Vestern red cedar	.903	. 895	. 88
sitka spruce	. 925	. 937	. 0
Looge pole plom		. 899	
Wite pine		. 933	
noble Rod Alder		.902	
Red Aldider cesir			. 90

(V) Rellos sre merely guides since variation is found from county to

To illustrate this relationship between basal or stem area and form class, the following example is provided.
Form class $=.70$
$\begin{array}{lll}\text { DBH } & =40^{\prime \prime} & \text { DBH basal area }=8.7266 \\ \text { Dib at } 16^{\prime} & =28^{\prime \prime} & \text { Dib } 16^{\prime} \text { basal area }=4.2761\end{array}$
$\frac{4.2761}{X}=8.7266 \quad X=\frac{4.2761}{8.7266}=.49=F C^{2}$
If separate plot data were kept by species, windfalls, snags, or size classes, the data for each group will be handled in the same manner indicated in the above example.

VOLUME DETERMINATION

$$
=200.93 \mathrm{sq} . \mathrm{ft} .
$$

Gross Volume. Gross volume for each species, or other tree classifications such as snags or windfalls, is determined as follows:

1. Determine V-BARs for all volume-sample trees re corded in the field.
2. Compute the average V-BAR per tree.
3. Compute the number of square feet of stem area per acre as previously explained.
4. When tree counts are made outside bark and the volume table is based on d.i.b., multiply the stem area o.b. by the mean squared bark thickness (BTR) ${ }^{2}$, as illustrated in Table IX to obtain the area inside bark. The BTR represents the ratio between the basal areas of wood and wood plus bark at the point of measurement (i.e., 16 feet).
5. The gross volume per acre is computed by multiplying the stem area per acre from Step 4 times the aver. age V-BAR from Step 2.

Net volume. The net volume per acre is computed the same as described above for gross volume, except that the $V-B A R$ is adiusted for defect and breakace. If the defect and breakage is computed individually by trees, then each V-BAR will have to be adjusted. However, if the
deduction is to be made on a stand basis, the sum of the V -BARs can be reduced percentage-wise.

Volume by log grade. Volume by log grade is determined by applying the appropriate percentages of each \log grade to each V-BAA and then computing in the eame manner as for gross volume.

The following formulas combine the above five steps, except for grade considerations:

If all plots are volume plots-

Volume per acre
$=\left(\right.$ Sum V-BARs) (tot. tree count) $($ BAF $)(\text { BTR })^{2}$
(number of plots)(tot. tree count)
This formula can be simplified to-
Volume per acre $=\frac{(\text { Sum V-BARs })(B A F)(B T R)^{2}}{\text { number of plots }}$

$$
=\frac{(3,038)(25)(.812)}{20}=3,083 \text { Dec. } \mathrm{C}
$$

If the volume control data were taken on a portion of the plots, the volume per acre determined by the above equation would be multiplied by a factor determined by dividing the tree count on all plots by the tree count on the volume plots.

Assume in the above example that an additional 20 tree count plots were taken giving a total of 40 plots of which 20 were measured.
$\frac{\text { Tree count on all plots }}{\text { Tree count on V-BAR plots }}=\frac{98}{50}=1.96$
Volume per acre $=\frac{(3,038)(25)(.812)}{40} \times 1.96=3,022$ Dec. C
Computation Guide for a Variable-Plot Cruise Using a Desk Calculator

Assumptions:

1. Diameter inside bark on V-BAR trees; and tree count taken at top of first 16 -foot log.

2. Log length is 32^{\prime}.
3. Composite V-BAR Table IV is used to determine the ratio of board feet in the tree to square feet of stem areap at top of first 16 foot log.
Procedure:
A. V-BAR points or plots
4. Work with each species separately according to outline below
5. Construct a computation table as follows:
6. Determine the proper V-BAR from the V-BAR table for each tree tallied on the volume points. This is the gross V-BAR.
7. Subtract the defect and breakage ${ }^{1}$ percentage from each gross V-BAR. This is the net V-BAR.
8. Distribute each net V-BAR among the different log grades that are in the tree. This is done by using the same percent volume table that was used for making defect deductions in the field. For example: the gross V-BAR of a $26^{\prime \prime} 3 \mathrm{log}$ tree is $447 \mathrm{bd} . \mathrm{ft} / \mathrm{sq} . \mathrm{ft}$. A three log tree has 50 percent of volume in 1 st log, 33 percent in the 2 nd , and 17 percent in the 3 rd. If the first \log is a $3 P$ then $.5 \times 447$ or 223 is recorded in the $3 P$ column. If the 2 nd \log is 2 S , then

[^0] field.

148 is recorded in the $2 S$ column. This leaves $76 \mathrm{bd} . \mathrm{ft} . / \mathrm{sq} . \mathrm{ft}$. for the top \log whatever its grade
6. Add up the gross V-BAR column in the above table.
7. Divide by the total number of trees tallied on the V-BAR points. This is the average gross volume per sq. ft . of stem area inside bark at the top of the first $16 \cdot$ foot log. It is usually referred to as the "'gross V-BAR.'
B. Stem basal area per acre.

1. Determine the total number of trees recorded on all points. This will include V-BAR and count points.
2. Divide the number of trees by the number of points.
3. Result: Average number of count trees per plot.
4. Multiply (B3) by the basal area factor.
5. Result: Stem basal area per acre outside bark. The prism cannot "see" inside the bark to get the measurement corresponding to your estimate on V-BAR points.
6. Correct stem basal area estimate for inside bark dimensions. Multiply by bark ratio squared. The bark ratio had been determined in the field or an average used.
7. Result: Stem basal area per acre inside bark.
C. Volume per acre.
8. Multiply stem basal area per acre inside bark.
(From B7 above by the average gross V-BAR in bd. ft. per sq. ft. i.b. (from A7 above). This is the gross volume per acre in board feet.
9. Determine the net volume per acre.
(a) Divide total net V-BAR (from table in item A2) by totai gross V ' $A S$. (also from table in item A2).
(b) Multiply this ratio times the gross volume per

acre (from item C1) which gives the net volume per acre in board feet.
D. Determine the log grade percent on a net volume basis.
Determine what percent of the total net volume is in each log grade. The total net V-BAR in each log grade is divided by the total net V-BAR (of all log grades) and multiplied by 100

SAMPLE PROBLEM A. ${ }^{1}$

The problem below follows the same order as the pre ceding steps.

The sample size is smaller than normal so that the cal culations can be followed more readily by the reader.

Figure 17 shows how the data were recorded in the field. Note that half points were taken.

The assumptions already listed for this problem apply. All sample trees are Douglas:fir.

Procedure:
Construct a computation table as followed, from the data shown on the field summary sheet (Figure 17) following steps 3 through 6.

Step 7. Average gross $V \cdot B A R=\frac{11,064}{23.5}=470.8$

[^1]```
 The relascope as such wes invented for one particular measurament -
estimating the hasal arpa per ha. This was Professor fitterlich's mathematical discovery.
Recall that the basal area of a tree is its sectacnal area at 1.30 m above ground level. The basal arpa per ha is the sum of the besnl nreas of all the trees on one ha.
The bsamal area per ha is in itself a ceasure of the density of the stand. It is also factor to be used in one method of estamating the volume of stminds. as in Section 10.
The use of the relascope for thia purpose is very siaple. Standing at one point, the observer aakes a maeep of the surrounding trees. He compares the breast height diameter of each tree with, let us say, band 1. If a tree appears to be bigger than band 1 , it is counted. The number of trees counted is the basal area in mep per has.
If band 2 is used, the number counted has to be multiplied by 2 , and if band 4 is used, by 4.
In theory, et least, other bands may be used:-
- with one narrom band, multiply by \(1 / 16\)
- with two narrow bende.
by 1/4
-with three narrow bands. : by \(9 / 16\)
- with band 1 plus 1 narrow band. by \(25 / 16\)
- with band 1 plus 2 narrow bande. by 9/4
- with band 1 plus 3 narrow bande. by 49/16
```

 simole arithmutas: terma. Supoose all the tree: nive tre game dian -

 30 m. Those nhich afpes: smajler than tand 1 nill tef fursher away. Those which appear bifiser will be within this distance. We.can say inat if we count all the trees which appear bigher than band 1 , we have $c$ unted all those within a circle of 30 m radius.

Suppose we count 13 such trees.
Therr total tasal area 15 :-
$\left(13 \times \pi / 4 \times 0.60^{2}\right) \mathrm{m}^{2}$
The area of the circle 2s:-

$$
\left(\pi \times 30^{2}\right) \mathrm{m}^{2}
$$

$=\left(\pi \times 30^{2} \div 10000\right)$ ha
The basal area per ha is the basal area of the 13 trees divided by the area of the circle i.E.:-

$$
\left(\frac{13 \times \pi / 4 \times 0.60^{2}}{\pi \times 30^{2}+10000}\right) m^{2} \text { per ha }
$$

$=13 \mathrm{~m}^{2}$ per ha
This fi., ure of 13 is the same as the number of trees counted.
The sam: calculation can be repeated for all the different 312 s of trees, and $i: 1$ all cases the basal area per ha will be found to be the same as the rumber counted.

In practice, the trees will be of many different sizes. Each size can be consiucred separately. The total estamate will be the sum of the estimates for rill the different sizes. I.e. in an ordinary relascope sweep, the t-:il basal area per ha will be the same as the total number counted.

Similar calculations lead to the multiplying factors given for the different bands. In working these out, note that the ratio of distance : object for band 2 is 50/ $\sqrt{2}$ : 1.

A striking feature is that the estimate is not based on a plot of any given size. Small trees near the observer are counted and trees further away are counted if they are bigger. Hence expressions such as "plotless cruisine". We speak generally of sampling points rather than of plots.

Purther developments of the basic idea depend on this feature, that the chance of $x$ tree being counted increases in proportion to 1 ts diameter. Another way of putting it is that we automatically get a correctly weighted samile, fiving more importance to bigger tress, and inciuding relatively few small ones.

The early relascopes were very simple. Indeed, the thumb at arm's length can be usted anstead of "band 1 ". "band $2 "$, eic.., and the correct multiplacation factor calculated from length of arm and width of thumt.

The Splecel Felaskop, however, 19 the only one constructed to give an automatic ecrrection for slofe. It is therefore the only practical. accurate type of relascope for usit in mountainous country and, in spite of its hifh cost, it is widely usid for this reason. In addition, its ingenious ipt of scales fives it iubsidiary advantagen ovir simples instruments.

To obtain the automatic slope correction, it eust always be used with the brake freed.

The chorce of band should be such that the count gives about 20 30 trees. Counts of less than 20 trees are said to be particularly unreliable. Suppose band 1 is tried, and gives 12 trees. This result should be rejected and another count made with three narrow bands. It nill not necessarily give a result very close to 21 trees!

Trees which are obscured by intervening trees must ve observed by stepping to one side, keeping the correct distance, and then stepping back again to contanue the sweep. Care must be taken that only one tree is viewed at a time. A slight movement of the head to one side will immediately show if a "tree" is really the left side of one and the right side of another.

Por borderline cases, first check that the observation is really being directed exactly to breast height. An assistant should have a 1.30 m stick. If there is still doubt, count the tree as a half, i.e., using band 1 , count it as $\frac{1}{2} \mathrm{~m}^{2}$ per ha. If a tripod $1 s$ used, there will be very few such cascs.

Note. Por large important surveys, Professor Bitterlich recommends deciding doubtful trees by measuring diameter and distance from observer. E. G. When using band 1 , if the distance is less than 50 times the diameter, the tree is counted. A tape may be prepared, marked with the limating dianeter corresponding to appropriate distances.

Metric scale BAF $21 / 4$ or American scale BAF equivalent of 22.05

Mid pt. Trees Mid pt. Trees Diam. in. per Acre Diam. in. per Acre


| 3 | 499.08 | 14 | 20.63 |
| :--- | :--- | :--- | :--- |

$4 \quad 252.58$
161.66

15
16
17
18
19
20
21
22
$23-7.64$
23
17.97
112.33
82.49
63.16
49.91
40.43
33.41
28.07
23.92
15.79
13.99
12.48
11.20
10.11
9.17
8.35
7.64

13
23.92

* Stand table factor indicates the number of tress per acre each "in" tree represents. Stand table factor times tree count per point in a diameter class equals number of trees per acre in that diameter class.

Stand Table Factor $=$ BAF divided by the basal area of the mid-point value of the diameter class.

For basal area in square feet from given diameters of 0.1 to 60.0 inches, refer to Dilworth and Bell, 1984; p. 107 or Dilworth and Bell, 1984; p. 438.

For additional stand table factors for American scale BAF's, refer to Dilworth and Bell, 1982; p. 267.

## REFERENCES

Beck, K. A., M. B. Cook and B. Connery. 1987. An inventory of forest resources. Wrangell-St. Elias National Park and Preserve. Glennallen, Alaska. 100 pp .

Dilworth, J. R., and J. F. Bell. 1982. Variable probability sampling. O.S.U. Book Stores Inc., Corvallis, Ore. 130 pp.

Dilworth, J. R., and J. F. Bell. 1984. Log scaling and timber cruising. O.S.U. Book Stores Inc., Corvallis, Ore. 468 pp.
Finlayson, William. no date. The relascope. Bitterlich's Spiegel Relaskop with metric and wide scale. Salzburg. Feinmechanische optische betriebsgesellschaft Mbh.

Freese, Frank. 1986 Elementary forest sampling. Agriculture Handbook No. 232. O.S.U. Book Stores, Inc., Corvallis, Ore. 87 pp .

Gregory, R.A. and P.M. Haack. 1964. Equasions and tables for estimating cubic-foot volume of interior ALaska tree species. North. Forest Exp. Sta. U.S. Forest Serv. Res. Note NOR-6, 21 pp .

Haack, P. M., Jr. 1963. Volume tables for trees of interior Alaska. U.S. Forest Service Research Note NOR-5. Northern Forest Experiment Station, Juneau, Alaska.

Hulten, E. 1968. Flora of Alaska and neighboring territories. Stanford University Press, Stanford, California. 1008 pp.

Hush, B., C. I. Miller and T. W. Beers. 1972. Forest mensuration. The Ronald Press Co., New York, 409 pp.

United States Department of Agriculture and Alaska Dept. of Natural Resources, 1983. Field inventory procedures for the Alaska statewide vegetation and soils inventory project, East Tanana and Yukon Canada. Publication \#3018Q and \#3019Q. 182 pp .

Viereck, L. A., C. T. Dyrness and A. R. Batten. 1986. The 1986 revision of the Alaska vegetation classification. Fairbanks, Alaska. 112 pp .
Zar, J. H. 1974. Biostatistical analysis. Prentice-Hall, Inc. Englewood Cliffs, N. J. 620 pp.


[^0]:    ${ }^{1}$ When breakage is determined for the individual tree in the

[^1]:    The basic data an
    subsequent problems presented in problem will be used in all subsequent problems presented in this book

