

NPS Preliminary Assessment Report

Wrangell-St. Elias National Park and Preserve (WRST)

Kennecott Mill Site EDL# 5AKR3347

Prepared by Charles Hand, Amec Foster Wheeler Environment & Infrastructure, Inc. 3/29/2018

Adopted by WRST on July 8, 2019 as a working draft document for field review and amendment through December 2020, in coordination with the Contaminated Site Interim Strategy and The Comprehensive Safety Plan

Revision Log:

Revision #	Revision Date	Revision Description
0	3/29/2018	Final deliverable by Charles Hand, Amec Foser Wheeler

Contaminated Sites Program Environmental Compliance and Response Branch

Signatories:

Table of Contents

List o	of Abb	reviations and Acronyms	iv
1. I	ntrodu	uction	.1
1.1		RCLA and NPS Authority	
2. 8	Site De	escription, Operational History, and Waste Characteristics	2
2.1		e Description	
2.2	. Op	erational History	3
2.3	. Wa	aste Characteristics	4
3. E		ure Pathways and Environmental Hazard Assessment1	
3.1	. Gro	pundwater1	
3	3.1.1.	Local Geologic and Hydrogeologic Setting1	17
ŝ	3.1.2.	Groundwater Use	18
-	3.1.3.	Potential Hazardous Substance Release1	-
3.2	. Su	rface Water1	
3	3.2.1.	Local Hydrologic Setting	19
3	3.2.2.	Drinking Water Intakes	
3	3.2.3.	Local Fisheries	?1
3	3.2.4.	Sensitive Environments	
3	3.2.5.	Potential Hazardous Substance Release	?1
3.3	. So	il2	22
3	3.3.1.	Potential Receptors	22
3	3.3.2.	Sensitive Environments2	
1	3.3.3.	Potential Hazardous Substance Release2	23
3.4	. Air		
3	3.4.1.	Potential Receptors	23
3	3.4.2.	Sensitive Environments	
3	3.4.3.	Potential Hazardous Substance Release2	24
4. (Conclu	isions and Recommendations2	26
5. F	Refere	nces3	3

Figures

Tables

Appendices

Appendix A – Previous Reports
Appendix B – Photographic Log
Appendix C – Summary Data from Previous Reports

List of Abbreviations and Acronyms

$\mu g/ft^2$	micrograms per square foot
μg/L	micrograms per liter
ACM	asbestos-containing material
ADEC	Alaska Department of Environmental Conservation
Amec Foster Wheeler	Amec Foster Wheeler Environment & Infrastructure, Inc.
AST	aboveground storage tank
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CSM	conceptual site model
ESV	ecological screening value
EPA	U.S. Environmental Protection Agency
GIS	geographic information system
Kennecott NHL	Kennecott National Historic Landmark
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NPL	National Priorities List
NPS	National Park Service
PE	Professional Engineer
RCRA	Resource Conservation and Recovery Act
RSLs	regional screening levels
TCLP	toxicity characteristic leaching procedure
XRF	x-ray fluorescence
WRST	Wrangell-St. Elias National Park and Preserve

1. Introduction

This Preliminary Assessment was performed by Amec Foster Wheeler Environment and Infrastructure, Inc. (Amec Foster Wheeler), for the Kennecott Mine National Historic Landmark (referred to as the site or Kennecott NHL), located in Wrangell-St. Elias National Park and Preserve (WRST), which is managed by the National Park Service (NPS). The park is located in Eastern Alaska, bordering Canada. The Environmental and Disposal Liabilities site number is 5AKR3347. The site location is shown on Figure 1. The current NPS-designated site contact information can be found in the Statement of Services for the Kennecott Mill Site Preliminary Assessment dated May 8, 2017 (NPS, 2017a). The Kennecott Mill and mines were named after the Kennicott Glacier and valley below the site, although the spelling of the Kennecott Mill is different from the spelling for the Kennicott Glacier and local geographical features.

This Preliminary Assessment is organized as follows:

- Section 1 provides an overview of the regulatory framework for the Preliminary Assessment.
- Section 2 summarizes the site operational history and current uses of the site. A summary of waste characteristics can be found in Section 2.3.
- Section 3 summarizes the exposure pathways for contamination at the site: groundwater, surface water, soil, and air.
- Section 4 summarizes conclusions and recommendations based on the information presented in the Preliminary Assessment.
- Section 5 presents a list of references cited in the Preliminary Assessment.

This Preliminary Assessment was developed by first reviewing historical reports and documentation made available by the NPS, including historical preliminary site assessments and site characterizations, the Phase I Environmental Site Assessment performed by NPS prior to acquisition of the site in 1996, and subsequent environmental investigations conducted by NPS to assess the extent of environmental contamination and site hazards. On August 22, 2017, Charles Hand, PE, of Amec Foster Wheeler conducted a site reconnaissance, which consisted of a site walk to observe site features and interviews with the following knowledgeable staff:

- Michael Loso, Geologist, WRST;
- Wayne Challoner, former Facility Manager, WRST;
- Greg Biddle, Cultural Resources Management Specialist, WRST;
- Dave Williams, Maintenance Worker, Kennecott NHL, WRST;
- Diane Thorn, Maintenance Worker, Kennecott NHL, WRST;
- Matthew Smith, Acting Maintenance Worker Supervisor, Kennecott NHL, WRST; and
- Stephen Harper, Acting Kennecott NHL Unit Manager, South District Ranger, WRST

1.1. CERCLA and NPS Authority

The NPS is authorized under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 United States Code Section 9601 *et seq.*, to respond as the lead agency to a release or

a threatened release of hazardous substances and/or a release or threatened release of any pollutant or contaminant that may present an imminent and substantial danger to public health or the environment on NPS land.

CERCLA's implementing regulations, codified in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 Code of Federal Regulations Part 300, establish the framework for responding to releases and threatened releases of hazardous substances. The NCP prescribes two processes for responding to releases: removal actions and remedial actions. Under either process, the initial step is to perform a Preliminary Assessment. (See NCP Sections 300.410 and 300.420.)

The purpose of this Preliminary Assessment is to investigate suspected releases of heavy metals from ore, tailings, ore processing wastes, and deposits from lead- and arsenic-based paint. Fuel and asbestos contamination is also suspected. Contamination is associated with historical copper ore mining and ore processing activities that were conducted at the site. In accordance with the Statement of Services for the Kennecott Mill Site Preliminary Assessment (NPS, 2017a), the Preliminary Assessment is also intended to include a summary of data related to contaminants and explosives, identify data gaps, and provide a comprehensive assessment of the health hazards posed by each substance.

This Preliminary Assessment will support decisions by NPS to determine whether a release or potential release of hazardous substances, pollutants, or contaminants has occurred or could occur and provide the basis for the NPS to determine whether conditions at the site warrant further investigation or meet the NCP criteria for no further action determination (see NCP Sections 300.410 and 300.420). Evaluations are focused on past and present practices and processes related to the storage, use, and disposal of hazardous substances at the site and do not include the surrounding mines, tailings deposits, or tramways where the ore was mined from and transported to the site. Available historical data were used to the extent practicable. Emphasis is placed on activities that routinely or non-routinely may have led to or may lead to releases of hazardous substances.

2. Site Description, Operational History, and Waste Characteristics

This section provides a physical and operational description of the site as well as information regarding locations where waste storage, handling, disposal, and deposition may have occurred.

2.1. Site Description

The site is a historic mill located on McCarthy road, approximately five miles north of McCarthy, Alaska (Figure 1). The site coordinates are 61°29'06.6" N, 142°53'19.4" W. It is located on the northeast corner of the McCarthy B-6 NE, AK United States Geological Survey 7.5-minute quadrangle. The site is located on a valley wall near the confluence of the Root and Kennicott Glaciers, south of the Wrangell Mountains, and west of Bonanza Ridge (Figure 2). Currently the site is owned by the NPS and is a popular tourism destination, where people come to visit the historic mines and buildings. The site is accessible by car via McCarthy Road and is a National Historic Landmark that is open to the public.

Figure 3 shows a layout of all the site buildings and features owned by the NPS. Surface water drainage routes are evident on Figure 2. The site is a visitor use area in Wrangell-St. Elias National Park and Preserve, and visitors have access to many of the old buildings. Visitors are warned to avoid contact with

the mine tailings, soil, and other mining debris. Signage is used to discourage visitors from entering historic buildings that are unsafe or conducting other hazardous activities, including unguided tours through the mill building, the machine shop, and the leach plant.

The area surrounding the site is mostly owned by the NPS, with private property interspersed. Buildings not outlined on Figure 3 are privately owned and were not evaluated as part of this Preliminary Assessment. The privately owned buildings are generally used as vacation residences; however, as of 1995, one permanent resident was living in Cottage 24 on the site, and a family of five was living approximately 1 mile south of the site, along the road to McCarthy. At the time of the site walk, approximately 65 people worked and 20 people lived within 0.25 mile of the site during the summer months. Winter resident populations varied from 5 to 8 in Kennecott. The number of residents varies both seasonally and from year to year. The Kennicott Glacier Lodge is a privately owned facility located south of the site along the road to McCarthy that employs approximately 15 people during the summer months, and these employees live at the Kennecott NHL during the summer months.

Site accessibility and land use were described in the Kennicott Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A):

"... today circulation patterns in the Mill Site generally mimic the historic routes, with the older roads and trails still in use. Several new roads have been established in the southern part of the townsite while others in the National Creek drainage have been abandoned or destroyed by flood or bank failure. All roads have gravel surfaces; much of the surface material is mill tails."

The NPS office in Anchorage, Alaska, provided Amec Foster Wheeler with geographic information system (GIS) data sets in July 2017. The data sets provided were for Wrangell-St. Elias National Park and Preserve and included data collected for the Natural Resource Condition Assessment. Amec Foster Wheeler reviewed the GIS data set provided by NPS and performed a visual analysis to see if any sensitive environments or threatened/endangered species occurred in the site area, and none was found in the GIS data provided. Because the site contains several buildings and features that are cultural resources and is a unit of the National Park System, the site is considered a sensitive environment. Wetland data was obtained from the U.S. Fish & Wildlife Service National Wetlands Inventory. That data was also visually reviewed, and no wetlands were found within the site area.

2.2. Operational History

The Kennecott Mines and the Kennecott Mill were developed and used by the Kennecott Copper Corporation between 1906 and 1938 as a copper mine and copper milling town. The mill building received and concentrated ore mined from the nearby Bonanza, Jumbo, Glacier, and Erie Mines. The site consisted of a gravity concentrator and an ammonia leaching and floating process. A power plant, machine shops, repair shops, housing, administrative offices, and material stores were located around the mill to support copper ore processing operations. A tramway transported material from the mines to the mill, and a railroad was constructed to transport the concentrated ore from the mill to Cordova, Alaska. From Cordova, the ore was transported via steamship line to the American Smelting and Refining Company, a smelter located in Tacoma, Washington. The mines and mill closed in 1938, and the facilities were abandoned. Between 1911 and 1938, the mine produced 4,626,000 tons of ore. A summary of the

operational history of the mine, as reported in the 1990 Kay and Miller University of Alaska Hazardous Waste Audit (Document 2, Appendix A), can be seen in Table 1.

The current and past use of the adjacent properties is best described in the Kennicott Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A):

"Historically, the adjacent properties were also associated with Kennecott Copper Corporation's mining operations. The 19 patented mining claims associated with the Mother Lode Coalition Mines are located in the McCarthy Creek drainage directly across the divide from the Bonanza Mine (Figure 4). The Mother Lode operation was established independently of Kennecott [Copper Corporation], but 51 percent of the company was acquired by Kennecott in 1919 and eventually integrated into the larger operations. The 19 patented claims are owned independently of the Kennecott properties subsequently deeded to the Consolidated Wrangell Mining Company and the Great Kennicott Land Company. Land use on the Mother Lode properties has been exclusively related to mining: there were upper and lower camps connected by an aerial tramway and a road connecting to the railway at McCarthy. The ore from the Mother Lode that was shipped before the acquisition of the company by Kennecott was all high-grade and did not require concentrating; hence there was no concentrator built on the property. Eventually, an underground connection was established with the Bonanza and Jumbo *Mines, and supporting operations on the Mother Lode side were abandoned. More* recently, principally in the late 1960s and 1970s, mineral explorations were conducted in the area using the Mother Lode mill site claims on McCarthy Creek as a base of operations. Since then, recreational uses of the area have predominated."

The site primarily consists of historical buildings that were used to support copper ore processing operations. Historical buildings contained lead- and arsenic-based paint and asbestos for insulation. The area surrounding the mill was filled using tailings from the milling operations. A local power plant, which used a fuel believed to be a heavy oil similar to Bunker C, was used for heating the buildings and producing electrical power. It is unknown how the fuel was transported to the site. Aboveground storage tanks (ASTs) were used to store fuel, and utilidors were used to transport fuel to the power plant.

The site is currently accessible for visitors to view the historic mining town and serves as a center for exploring the surrounding park. Visitors can view the mill town on guided and self-guided trips. The expected future use is as a park.

2.3. Waste Characteristics

Table 2 summarizes the site buildings and hazards associated with the buildings, as identified in the hazardous waste audits conducted in 1990 and 1992. Buildings shown in bold were inspected during the Amec Foster Wheeler 2017 site reconnaissance. The 1992 Preliminary Assessment (Document 3, Appendix A) expanded on the findings from the 1990 Hazardous Waste Audit (Document 2, Appendix A); the 1992 Preliminary Assessment identified asbestos, mill tailings, boiler ash, ammonia tanks, oils and grease/oil spills, lead-based paint, ore, and garbage dumps as wastes present at the site. Table 3 summarizes the most recent estimated quantities reported for these hazardous materials found in historical documents.

Several site investigations and limited remedial activities have been conducted at the site. Some of the hazards identified in Table 2 and Table 3 had been mitigated prior to acquisition of the site by the NPS in 1998. After acquiring the site, the NPS began mitigating the hazards identified in the Kennicott Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A); they developed a series of work plans to address existing hazards as identified in the 1996 report as well as in other documents (Documents 4 through 6, Appendix A). Current and future use scenarios have not been thoroughly evaluated in the past studies conducted at the site, resulting in uncertainty and data gaps for assessing human or ecological risks associated with the site. For example, the waste characterizations completed under past studies that were needed for disposal purposes under the Resource Conservation and Recovery Act (RCRA) do not constitute characterization of the nature and extent of contamination under CERCLA. Although toxicity characteristic leaching procedure (TCLP) limits may not have been exceeded in some areas, the TCLP method does not address potential health or ecological risks, and the total metals concentrations present at the site may warrant further study or action.

Table 4 summarizes available reports documenting the historical site investigations and remedial action activities conducted for the site. Table 5 summarizes where information regarding analytical samples can be found in the historical reports.

Asbestos

As described in the Kennicott Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A):

"... the Site was surveyed August 15 through 21, 1991, by Asbestos General for asbestos containing material (ACM). The survey was performed by an EPA/AHERA accredited inspector and a state-certified asbestos worker. They surveyed all open buildings and structures in the mill town (some private buildings were locked and unavailable for survey). ACM was identified and quantified in 23 buildings and utilidors in the mill town (Figure 7). Asbestos General made cleanup recommendations for each site (Asbestos General 1991). Seventy samples of various materials were gathered and analyzed, 11 of which contained asbestos. All of the asbestos found was Chrysotile, and it was primarily located in pipe insulation (thermal system insulation-TSI), fiberboard, and around boiler tanks.

During 1993 and 1994 the Kennecott Corporation hired INTERA Inc. to mitigate the asbestos hazards in the mill town. INTERA Inc. subcontracted the work to Technic Services Inc., and EMCON Alaska provided local assistance and air monitoring services during the removal process (INTERA 1995). ACM was removed from all buildings and accessible utilidors in the mill town, with the following exceptions (INTERA 1995):

- 1) Utilidors with more than two feet of soil cover were not abated.
- 2) The boilers in the power house and leaching plant were not dismantled for ACM removal. Instead, after abatement of exterior ACM, boilers were sealed by injecting with a solid foam and welding a steel plate across fuel injection port.

3) Due to inaccessibility, they were unable to clean below the boilers in the leaching *Plant. Consequently, two feet of tails were deposited on the floor to bury it beneath the tanks.*

All work was conducted according to Alaska Construction Code 8ACCO5.045, and all areas had less than 0.01 fibers/cc [cubic centimeter] before the Site was declared abated, which exceeds OSHA standards for worker safety, and meets EPA standards for clearance in schools. All removed ACM was transported off Site and properly disposed of. Appendix 4 is a compilation of the buildings in which asbestos was found by Asbestos General and in which mitigation activities were carried out by Technic Services.

... Several of the private structures were not mitigated; however, it appears that all buildings and ruins that contained exposed asbestos and that are proposed for NPS acquisition have been mitigated. On our Site visit in July 1995 we examined the sites in the mill town that formerly contained ACM. All appeared to be mitigated. However, the mines were not remediated by INTERA."

No privately owned building were reported as abated. The current U.S. Environmental Protection Agency (EPA) standards for clearance in schools is 0.01 fibers per cubic centimeter of air (40 Code of Federal Regulations 763.91 [5]).

The 2017 site reconnaissance and interviews with NPS maintenance staff show that asbestos continues to be found in crawl spaces and in foundation and walls by NPS workers during active rehabilitation of the site. Asbestos abatement is performed on a small scale by maintenance staff as asbestos is discovered during building rehabilitation. Maintenance staff confirmed that some asbestos may have been placed beneath the false bottom floor in the leach plant or buried beneath tailings during asbestos mitigation in the 1990s, indicating that asbestos-containing material (ACM) may not have been appropriately disposed of. Thus, further investigation into the disposal of ACM removed during mitigation measures conducted in the early 1990s is warranted. In addition, the boilers that were filled with ACM and sealed appear to have some seals that are failing, as observed during the site reconnaissance.

Mill Tailings

The copper sulfide ore mined in the Kennicott area was enclosed in a limestone matrix. When mining and processing the ore, the limestone was removed to the extent possible, and the rest of the limestone that could not be separated was deposited with the mine tailings. The earliest tailings deposits were in the vicinity of the mill building, including the area where the leach plant was later constructed (Figure 4). After construction of the leach plant, tailings were deposited west of the leach plant, as well as in the area south of National Creek. In 1992, America North/EMCON, Inc., collected tailings samples and analyzed them for total metals, sulfide content, and leachable metals (Document 7, Appendix A). Leachable metals were analyzed, and concentrations were all below the RCRA allowable limits (Document 3, Appendix A). TCLP results below allowable limits mean that the mill tailings analyzed are considered non-hazardous for waste disposal purposes. However, these constituents are CERCLA hazardous substances that may pose unacceptable risk to human and ecological receptors if present at sufficiently high concentrations.

As discussed in the 1996 NPS Report (Document 1, Appendix A), total metals concentrations were highest for the samples located in the earliest deposits of tailings located adjacent to the mill building, due

to inefficiencies in copper ore recovery associated with the crushing and sorting process in the mill. Copper ore recovery efficiencies at the mill were improved in 1916 by implementing the ammonia leaching process and in 1926 by adding a flotation separation process. After addition of these processes, the tailings generated were over 95 percent limestone. A detailed morphological study of the tailings was conducted to investigate subsurface geological conditions for depth to bedrock, determine the thickness of tailings, and identify groundwater levels. The apparent depth to bedrock beneath the tailings piles was between 4 and 49 feet, and the apparent maximum thickness of tailings was approximately 12.6 feet (Document 1, Appendix A). The total volume of tailings was estimated to be approximately 600,000 cubic yards (Document 7, Appendix A). The 1996 NPS Report (Document 1, Appendix A) also notes that generation of acid by the tailings is unlikely due to the buffering capacity of the surrounding limestone host rock.

Table 6 summarizes the maximum concentrations of total metals detected in the tailings samples and compares the maximum concentrations to the NPS ecological screening values (ESVs) and EPA regional screening levels (RSLs) for soil. The locations of the tailings samples are shown on Figure 5 of Document 1 in Appendix A; Figure 4 of this report shows an approximate surface footprint of the tailings locations. Figure 4 is based on available information from historical sources; tailings are not solely confined to the areas shown on Figure 4, as they have been widely dispersed by other means, such as through use of tailings as general fill, for road surfacing, or other uses, as mentioned by maintenance staff during the site reconnaissance.

Current NPS ESVs (NPS, 2014) were used for preliminary assessment conceptual screening purposes. Where applicable, EPA RSLs were used based on residential site usage for conservative screening purposes. The ESVs and RSLs have been included as applicable in Tables 6 through 8. As shown in Table 6, several metals, including arsenic, cadmium, lead, and mercury, exceeded both the RSLs and ESVs by at least one order of magnitude. The screening criteria have not been compared to the entire set of available characterization data for the site as part of this Preliminary Assessment. Uncertainties in data usability resulting from analytical and sample collection methods must be resolved prior to rigorous use of the historical data. In general, this Preliminary Assessment compares the screening criteria to the maximum reported historical data. Additional evaluation may be necessary after the data gaps described in Section 4 have been resolved.

During the 2017 site reconnaissance, the maintenance supervisor mentioned that a portion of the bank of National Creek consists of tailings, that ore concentrates may be transported downstream during flood events, and that at one point green tailings could be observed all the way to the surface water ponding locations in National Creek south of the leach plant (surface water ponding location shown in Photos 34 and 62 in Appendix B).

Ore and Ore Concentrates

A 1990 study reported that nearly 3,000,000 pounds of ore had been mined but not fully processed; the majority of the unprocessed ore was reported to be located in and around the mill (Document 2, Appendix A). The Preliminary Assessment Report (Document 3, Appendix A) also reported the quantities of ore and ore concentrates in 1992. No other mention concerning how the ore and ore concentrates were disposed of could be found. During Amec Foster Wheeler's 2017 site reconnaissance, ore concentrates were observed on equipment in the leach plant and on the ground beneath the leach plant timber supports,

as evident by green soil staining. In addition, ore bins inside the mill building contained ore during operations and they may still contain ore residue. Ore has been reported to be present beneath the mill building, but it is uncertain how much ore remains and what potential is present for hazardous substance releases from the remaining ore and ore residue. Ore was visually observed during the site reconnaissance on the west side of the mill building, along the steep slope.

Boiler Ash

An estimated volume of 1,443 cubic feet (49,000 pounds) of boiler ash is located west of the power plant in the approximate location shown on Figure 4 (Document 3, Appendix A). As part of the 1992 America North/EMCON, Inc., investigation, three samples were taken from the boiler ash pile. Two samples were analyzed for total metals and found to have high levels of barium, cadmium, chromium, lead, and silver. All three samples exceeded the RCRA TCLP limit for lead of 5 milligrams per liter (mg/L), indicating that the boiler ash is a RCRA hazardous waste (Document 7, Appendix A).

The boiler ash pile was reported to have been remediated in 1994. Following remedial alternative screening, construction of a fiber-reinforced concrete cap was selected as the remedial approach to prevent infiltration through the boiler ash area. The remedial action consisted of an application of 2–4 feet of tailings to fill in voids in the scrap metal pile and the surrounding moraine; tailings were shaped to form a flat footing around the base of the ash pile to prepare a foundation for concrete. A geotextile fabric was placed over the ash pile and tailings to separate the underlying contaminants from the concrete cap; steel reinforcing mesh was placed on the steepest face of the pile, on top of the geotextile. Polypropylene fiber-reinforced concrete was pumped over the geotextile and spread by hand; a cap thickness between 4 inches (top of pile) and approximately 1 foot (base of pile) was reported. Following placement of the concrete, tailings were embedded into the concrete in order to give the final appearance of a small tailings pile (Document 8, Appendix A).

Based on locations shown in historical reports and the location observed during the site walk, the boiler ash cap was observed during the site walk (refer to Photo 24 of Appendix B). The observed concrete area had visible signs of deterioration, and the integrity of the underlying plastic liner is uncertain.

Ammonia Tanks

Five ASTs that were used as part of the ammonia leaching and floatation process are located in the leach plant. Three were reported to be empty, and two reportedly contain an ammonia solution. America North Inc. sampled the contents of the tanks and determined that the solutions were relatively dilute (0.1 and 0.06 molar), metal concentrations were all below allowable TCLP limits, and the pH was below 12.5 and above 2. Based on these results, the ammonia solution was not considered a hazardous waste (Document 7, Appendix A). The ammonia tanks were treated by adding sodium sulfide to the tanks to precipitate copper sulfide. Approximately 10,500 gallons of treated solution was passed through bag filters to filter total suspended solids; filtered liquid was discharged onto the glacial moraine. The precise disposal locations for the liquids were not reported. The dissolved copper concentration of the discharge was monitored hourly and did not exceed 0.5 mg/L, the threshold concentration specified by the Alaska Department of Environmental Conservation (ADEC) (Document 8, Appendix A). Other metals, including arsenic, were not monitored during discharge of the liquid. These two tanks reportedly had considerable quantities of hard, blue to colorless crystals on the bottom and a thin overlying layer of precipitated copper sulfide sludge. Approximate quantities of sludge were estimated as 2,079 gallons in one tank and

3,528 gallons in the other tank. Samples of the sludge were collected and analyzed using the TCLP; the sludge did not exceed RCRA TCLP allowable limits and was not classified as a hazardous waste. The material is still present in the tanks.

During the 2017 site reconnaissance, green staining was observed on the ammonia leaching tanks and the surrounding wood joists and support beams (Photo 32, Appendix B). Visual observation inside the tanks was not possible due to inaccessibility.

Fuel, Oil, and Grease

Site investigation activities conducted in the summers of 1991and 1992 identified three areas of hydrocarbon-impacted soil at the site: west of the power plant near three ASTs, a stained area on the north side of the mill building, and a reported used-oil disposal pit located next to a generator at the Guide Building (referred to as Cottage 24 by GeoEngineers; Document 9, Appendix A). Figure 4 shows the reported locations and the extent of soil staining described in the historical reports; the extent of soil staining was not reported for the Guide Building area. Table 5 summarizes where information regarding analytical samples can be found in the historical reports. In 2006, GeoEngineers provided a comprehensive summary of previously reported soil sample results for areas impacted by total petroleum hydrocarbons (Document 9, Appendix A). Their report summarized maximum observed soil concentrations from previous reports; that information is included in Table 6 for total petroleum hydrocarbons. Heavy fuel oil used at the site was believed to be Bunker C fuel, but the nature of the fuel oil cannot be confirmed from historical analytical data and reports.

Soil staining was reported within approximately 1 foot of the AST located upgradient of the power plant; this area is contained within a 3-foot-wide berm. An old utilidor connects this AST to the power plant, and occasional oil staining was reported along the length of the accessible utilidor, extending approximately 2 feet on either side. Soils in this area have been reported to be high in organic content and likely to have a high adsorptive capacity for the fuel (Document 3, Appendix A). This tank is located on private land, but was emptied and cleaned since it posed a potential threat to the adjacent property (Document 8, Appendix A). Oil staining was not observed during the 2017 site reconnaissance due to inaccessibility. During the 2017 site reconnaissance, olfactory evidence of oil was noted, and oil pooling was observed in the power plant, as shown on Photo 15 of Appendix B. The oil pooling is located in areas that are included on tours for visitors, representing a potential direct exposure pathway. In addition, old conveyance piping and a storage tank appeared to contain fuel oil residue during the site reconnaissance.

High levels of hydrocarbons have been detected in soils adjacent to the power plant and near three ASTs that appear to be the source of the historical releases. The tanks were used to supply the power plant and probably the locomotives running to Cordova. The total area of the surface staining was estimated to be approximately 79,000 square feet, and the estimated volume of soil contaminated by the oil is at least 1,000 cubic yards (Document 2, Appendix A). Surface oil staining was observed to extend approximately 125 feet downslope of the fuel tanks behind the power plant. A spring and two adjacent pools of oil about 1 foot deep were reported at the base of the slope, with water and oil seeping from the spring (Document 3, Appendix A). As summarized by GeoEngineers (Document 9, Appendix A):

"In 1994, it is also reported that remedial efforts were made to stabilize an area of pooled fuel oil/'Bunker C' by mixing sand and gravel into the pooled oil to make an asphalt cap. In the 1996 NPS Pre-Acquisition ESA, it was observed that the asphalt cap

was cracked and a pool of fresh oil was observed. The pooled oil and seep were still present during a 2005 site visit conducted by Med-Tox Northwest. The continued activity of this seep suggests that the fuel oil/'Bunker C' is still migrating from an upgradient source."

This area was visibly inspected during the 2017 site reconnaissance. Black staining was observed on the slope of the hillside behind the power plant. The oil seep and pooled oil/asphalt cap were inaccessible and not visible. An old wood stave sewer pipe was observed downslope from the power plant and appeared to have black staining in the sewer pipe and around the location where the sewer pipe opens. It is important to note that this area did not have controlled access at the time of the site reconnaissance.

A 50-square-yard stained soil area up the steep slope on the north side of the mill building was reported; America North/EMCON, Inc., collected four soil samples in 1992 that were submitted for analysis of total petroleum hydrocarbons. As stated in the 2006 GeoEngineers report (Document 9, Appendix A):

"Comparison to the current ADEC Method Two cleanup levels would suggest that all four sample locations were reported at concentrations greater than the applicable cleanup levels. The NPS Pre-Acquisition ESA states that due to the historic aspects of this spill location, mitigation of the spill would be controlled through controlling access to the spill by workers and visitors. The March 10, 1995, letter from ADEC 'Kennecott Mine, 1994 Remediation Activities Report, Review' stated that no further action was needed for the spill located at the mill building."

This location was inaccessible during the 2017 site reconnaissance, due to the steep slope and presence of blasting caps.

GeoEngineers described the area adjacent to Cottage 24 (presently designated the Guide Building) that was used as a used oil disposal pit as follows (Document 9, Appendix A):

"The only evidence of previous investigation of the reported used oil disposal pit at Cottage 24 was found in the NPS Pre-Acquisition ESA as a soil sample collected in 1990, adjacent to Building 24. The soil sample was submitted for analysis of polychlorinated biphenyls (PCBs) and TPH. The two analyses exhibited concentrations less than the current ADEC Method Two cleanup levels. We did not find any further discussion regarding this reported used oil disposal pit at Cottage 24."

Oil and grease found on site consisted mainly of lubricating and electrical oils, fuel oils, and lubricating grease. With the exception of the fuel oils and lubricating oil in some of the machinery in the mill, all oil and grease were consolidated in drums during the site assessment for shipment off-site to a facility in Palmer, Alaska, where the oil and grease were processed for re-use as boiler fuel or other purposes (Document 8, Appendix A).

GeoEngineers' 2006 historical document review (Document 9, Appendix A) summarizes the regulatory agency conclusions regarding hydrocarbon-impacted soils at the site:

"The 1996 NPS Pre-Acquisition ESA states that the Environmental Protection Agency (EPA) evaluated the site in regards to the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) National Priorities List (NPL) from 1994

through 1995. Results of the EPA investigation concluded that the site did not warrant any further actions under the Federal Superfund Program. Jurisdiction of the site was transferred from EPA to the Alaska Department of Environmental Conservation (ADEC).

... The March 10, 1995, letter from ADEC (Kennecott Mine, 1994 Remediation Activities Report, Review) addressed the department's comments regarding the site. The department in this letter indicated that no further investigation or cleanup was needed for either the pooled 'Bunker C' located west of the power plant or the spill located at the mill building.

... ADEC listed remaining concerns with the following hydrocarbon impacted areas at the site: the miscellaneous oil spills at the Erie, Bonanza and Glacier mines, the spill north of the mill building and along the utilidor corridor for AST Tank 4' and 'It should be noted that the miscellaneous spills listed as remaining concerns were also listed as "no further action" items due to the type of contamination, apparent low risk to human exposure, access issues and the necessity to maintain the historical integrity of the site. ""

The 1995 Site Inspection Report (Document 10, Appendix A) stated that during a site visit,

"In two roads cut though tailings pile below the leaching and floatation plant, layers of oil were seen as deep as 5 feet. The oil appeared to have migrated downward through the coarser grained tailings and had a strong hydrocarbon smell. Below the leaching and floatation plant, a seep flowed from beneath the tailings pile over bedrock. The seep had stained surrounding rock red."

Lead and Arsenic Paint

Lead-based paint was used as the finish surface on several of the buildings and structures at the site. Based on the available data and analysis of paint samples, it appears that all the original paint used on site buildings has lead levels that exceed regulatory limits for lead in paint. The colors commonly used were red, white, and pale yellow. Lead concentrations measured in chipped paint samples range between 50 and 525,000 milligrams per kilogram (mg/kg). The approximate square footage of lead paint is listed in Table 3 based on the hazardous substance audit performed by Kay and Miller (Document 1, Appendix A). Lead levels were greatest in the white paint (mean 214,760 mg/kg) and lowest in the red (mean 59,716 mg/kg). The NPS collected two samples each of both the red and white paint and had them analyzed for lead using the TCLP. Both of the white and one of the two red paint samples exceeded the RCRA criteria for toxicity characteristic for waste disposal. The paint finish on the surfaces of the buildings has deteriorated, and most surfaces require repainting if the wood is to be preserved. The 1992 America North/EMCON, Inc., report (Document 7, Appendix A) estimated approximately 70,000 square feet of the surface area of the buildings consisted of badly deteriorated peeling paint.

A lead-paint mitigation program was developed for NPS in 1997, which consists of refinishing deteriorating building surfaces as buildings are rehabilitated. Lead-paint investigations were conducted by Hart Crowser in 2002 (Document 11, Appendix A) and Federal Occupational Health in 2003 and 2005 (Documents 12 and 13, Appendix A). Hart Crowser investigated painted surfaces using field-screening

methods with portable field x-ray fluorescence (XRF) spectrum analyzer. Their report (Document 11, Appendix) states:

"While the U.S. Environmental Protection Agency (EPA) considers painted surfaces with lead concentrations above 1.0 mg/cm² [milligrams per square centimeter] as lead-based paints in homes or facilities where children are living or routinely present, this standard may only apply to the West Bunkhouse and the Old Schoolhouse, where children may stay in the future. In the other buildings within the scope of our survey, children will not reside or spend long periods of time; hence, the EPA limits cited above would not apply. The results of our lead in paint measurements are presented in Tables 1 and 5. Paint samples are identified with an L prefix; paint sample locations are presented on Figures 3 through 32, as appropriate."

Table 7 summarizes the lead-based paint surface cover as estimated for the NPS lead-based paint management program (Document 5, Appendix A). Results from the White Environmental 2015 field screening are not included in Table 7 due to uncertainty in reproducibility compared to lab results (Documents 18, Appendix A).

Dust has accumulated in the building on the floors and window sills, and the dust may contain lead from interior paint or lead brought into the building as dirt and debris from the areas surrounding the buildings, either via foot traffic or airborne particulates. Dust present on selected floor surfaces was field-screened for the presence of lead using a portable XRF spectrum analyzer during the 2002 Hart Crowser investigation. Their report (Document 11, Appendix A) stated that:

"Most samples contained lead concentrations greater than 40 μ g/ft² [micrograms per square foot]. While the U.S. Environmental Protection Agency (EPA) considers lead concentrations in dust above 40 μ g/ft² as lead contamination only in homes or facilities where children are living or routinely present, this standard may only apply to the West Bunkhouse and the Old Schoolhouse, where children may stay in the future. In the other buildings within the scope of our survey, children will not reside or spend long periods of time; hence, the EPA limits cited above would not apply. OSHA has an industrial lead in dust standard of 200 μ g/ft². Except for one sample, the lead in dust measurements made by Hart Crowser exceeded 200 μ g/ft²."

Dust sample results from the 2002 Hart Crowser investigation (Document 11, Appendix A) are included in Table 7. Since the number of children visiting and touring the site has increased, the EPA's screening value for children, 40 micrograms per square foot (μ g/ft²) for lead in dust on floors, should be used when assessing potential risks, as it is conservative and covers changes in user groups and site use patterns.

Soils in the vicinity of site buildings have been sampled historically, and analytical results indicate that the soils have elevated lead levels, likely a result of peeling paint becoming incorporated into the surface soil profile. According to the 1996 NPS Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A):

"... soil lead levels were highly variable; values vary between buildings and decrease with distance from building and between field duplicates. Measured values ranged from 465 to 3,040 mg/kg. The sample with the highest lead content of 3,040 mg/kg (BPS06) is

a field duplicate of sample BPS05, which had a lead concentration of 1,340 mg/kg (Table 3). Analysis of soil samples collected by NPS personnel using EPA method 1311 (TCLP) resulted in three out of four samples falling below regulatory levels of 5.0 mg/L for toxicity characteristic. One soil sample, collected from adjacent to the hospital (Figure 6), which is painted white, exceeded the RCRA toxicity characteristic at 5.12 mg/L."

In addition, the report states that:

"The variable levels of total and TCLP lead observed on the Site lead to questions about whether corrective action of lead-impacted soils is necessary, or would be necessary on the entire Site. The OSWER lead guidance, 'Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities' dated July 14, 1994, recommends a screening level of 400 mg/kg in residential soils, above which further action should be considered to achieve risk reduction. The Site is not a residential area, and children are present in the area for only portions of the summer. The industrial screening level for lead in soils is 1,000 mg/kg, above which further action should be considered to achieve risk reduction. In the Federal Register notice of September 11, 1995, 'Guidance on Identification of Lead-based Paint Hazards,' EPA uses the Biokenetic Uptake Model for lead in children to establish 400 mg/kg as a threshold of hazard when children are present. At this concentration and above, EPA recommends exposure reduction activities, including planting ground cover, restricting access through posting signs, and fencing. At concentrations of 2,000 mg/kg, EPA recommends that controls be instituted regardless of whether children are present. Abatement is appropriate whenever lead levels are >5,000 mg/kg. The lead-impacted soils remain on the ADEC list of contaminated sites with ongoing investigation and/or remediation required based upon the current data."

Soil sample results from the 2002 Hart Crowser investigation (Document 11, Appendix A) are included in Table 7. Several soil samples exceed 400 mg/kg and some exceed 2,000 mg/kg.

In 2002, Hart Crowser field-screened soils from selected exterior areas near existing structures for the presence of lead using a portable XRF spectrum analyzer. Their report (Document 11, Appendix A) summarizes the results as follows:

"Many samples contained lead concentrations greater than 1,000 mg/kg. For comparison purposes, ADEC considers total lead concentrations in soil at or above 1,000 mg/kg to exceed soil lead cleanup criteria for non-residential uses (18 AAC 75). According to Footnote 11 to that regulation, lead cleanup levels must be determined on a site-specific basis, based on land use (i.e., residential 400 mg/kg; industrial/commercial 1,000 mg/kg). Cleanup levels are determined through a site-specific risk assessment (18 AAC 75.340)."

Debris piles located throughout the site originated from old mining and mill equipment and from old wood structures that have collapsed or been removed. The wood debris may contain high concentrations of lead-based paint. In 2002, Hart Crowser collected samples from debris piles and analyzed the samples for leachable lead using TCLP. Their report (Document 11, Appendix A) summarizes the results as follows:

"Debris Pile T1 contained a leachable lead concentration of 24.0 mg/L. For comparison purposes, wastes containing leachable lead concentrations above 5.0 mg/L are considered hazardous wastes and are not allowed to be either burned or disposed of in unpermitted landfills. The results of our TCLP measurements are presented in Table 4."

As reported in the Statement of Services for the Kennecott Mill Site Preliminary Assessment (NPS, 2017a), a suspected worker exposure incident in 2015 was reported by NPS and is believed to have been caused by workers moving wood from wood debris piles adjacent to the mill building. According to the Statement of Services, one employee expressed concerns that health effects, such as skin rashes, blisters, metallic taste on lips, swollen lymph nodes, and coughing, occurred after working with soil and wood debris at the mill building. Mercury wipe samples and soil samples were collected and analyzed for the eight RCRA metals, and results were compared to the New Jersey Department of Health and Senior Services (NJ DHHS) guidance due to there not being guidance from ADEC or the Alaska Department of Health and Social Services. Several of the samples exceeded the NJ DHHS guidance.

During the 2017 site reconnaissance, Amec Foster Wheeler visited several buildings that had reportedly been covered with lead-based paint containing high lead levels. Amec Foster Wheeler observed signs of peeling paint, dust accumulation along guided tour pathways, and what appeared to be many buildings covered with old peeling paint that appeared to be consistent with historical description of lead-based paint. Several buildings were observed to have been scraped and painted. Table 2 summarizes buildings that have been reported to have been repainted. Appendix B includes photographs taken during the site reconnaissance showing newly painted surfaces (Photos 4, 9, and 28) and surfaces that contained peeling paint (Photos 23, 56, and 58) at the time of the site reconnaissance.

Considerably fewer historic data are available concerning the presence of arsenic throughout the site. As reported in the 2015 White Environmental Soil Sampling Report (Appendix A, Document 22),

"It is clear that there is an abundance of arsenic throughout Kennecott Mill Town, oftentimes at concentrations that far exceed State of Alaska cleanup levels. As arsenic was a byproduct of the mining process, it is not completely unexpected to find high levels of it in the soils and tailings around Mill Town. What is surprising, however, is the presence of it in gray paint in the Mill Building in concentrations around 17,000 ppm [parts per million], or 1.7%. It was also detected in high levels in many other paint colors around Mill Town, though not at the concentrations as those of the Mill Building.

The samples of wood debris that were collected and analyzed for the wood preservative pentachlorophenol and arsenic showed levels of arsenic around 170 mg/kg. It is not possible to discern whether the presence of arsenic was due to the wood preservative copper chromated arsenate or if it was from arsenic dust that had settled on the wood. Regardless of its origin, workers must take precautions (see Worker Protection section below) when handling painted surfaces, soil, and wood debris in and around buildings in Mill Town, especially the Mill Building."

Table 6 compares the maximum arsenic concentration found in soils at the site to the EPA RSLs – Generic Tables (updated November 2017). Table 8 shows that arsenic has been

measured in surface water at concentrations exceeding the EPA RSL. Further sampling is necessary to better understand the extent of arsenic contamination in soils at the site.

Garbage Dumps

Several garbage dumps have been reported throughout the site. The 1992 ADEC Preliminary Assessment Report for Kennicott Mine Site (Document 3, Appendix A) noted that:

"... there are several dump areas in the Kennicott area. These are shown in the map as D1 through D5. D1 is the domestic dump that is currently being used by Kennicott residence. It consists mainly of empty drums, food cans, glass, wood, paper and plastic. Other contents include a few refrigerators, 5 gallon gas cans, lead and zinc batteries. Dump D1A is mainly food cans, metal and wood scraps. All other dumps contain small amounts of asbestos along with scrap metal and wood and some 55 gallon oil drums (containing about 10 gallons of oily water), old tires and a few lead/acid batteries."

NPS performed additional investigation of the dump sites, and the Kennicott Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A) stated that:

"From water quality analysis of seeps downhill of the dumps, there is no indication that contaminants are leaching and contaminating groundwater or National Creek. Following EMCON's 1992 survey, the following mitigation was completed in the historic dumps:

- All lead acid batteries were removed from the surface of the dumps and the site in 1992 and properly disposed of (EMCON 1995).
- All ACM should have been removed during asbestos mitigation. While there is no record of the dumps being mitigated for ACM's in the INTERA report (1995), the team observed no signs of asbestos in the dumps; therefore, it can be assumed that the mitigation was completed as recommended in the EMCON report (1992).

During our site visit we saw no signs of asbestos or batteries in the dumps. We did observe barrels with oily rags in D3, and found empty cans of Dutch Boy white lead, which although empty, contained caked, dry product residue. Recent garbage was scattered throughout D4 and D3, but concentrated in D1 and in the new dump on the Jumbo plat.

ADEC and EMCON's most pressing concern about the dumps was the ongoing dumping by local residents, principally in the Dl area. This activity ceased during 1995, and Dl and DlA were closed per ADEC guidance (Kirkwood 1995); solid waste was consolidated and buried under gravel and soil and large rocks were placed on top to discourage future dumping. ADEC requested post-closure procedures of annual visual inspection for surface erosion and leachate for five years (which Mr. Kirkwood has agreed to do), but they did not anticipate any problems with the site (Kreiber 1995b). However, there is no indication that barrels with oil or oil/water mixture were transported off-site.

ADEC has no ongoing concerns with the historic dumps on the site, other than to reduce human exposure to potential hazards through reduced access (Kreiber pers. comm.)."

Figure 4 shows the approximate areal coverage of the dump sites at the site, based on figures presented in the Kennicott Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A). During the 2017 site reconnaissance, several dump sites were observed from above the hillside that leads down to the glacial moraines. Dumped material appeared to primarily be historical equipment and materials for the site; however, closer inspection was not performed due to safety concerns with accessing the dump sites; the slope leading to the dumps sites is steep and littered with debris.

Blasting Caps

During the sorting processes conducted in the mill during active milling operations, unexploded blasting caps were removed from the ore. The blasting caps were primarily disposed of along the steep slope north of the mill building. After addition of the leach plant, unexploded blasting caps were also disposed of along the northwestern side of the leach plant. An investigation report for these areas was prepared by Mike Shields, an independent consultant, in 2011 (Document 14, Appendix A). The report summarizes the hazards associated with the blasting caps as follows:

"Blasting caps have been found in two debris scatters at Kennecott and represent a serious hazard to employees and the public. One cap was found in a relatively small scatter (approximately 50' by 50') of burned fuse and other refuse on the north side of the mill downslope from the door to the crushing level. A dozen caps have been found several years ago in a larger dump on the moraine immediately to west of the north end of the leach plant. The caps found so far are from the mining operations and are at least 70 years old. Both areas known to contain blasting caps are currently behind barrier tape and posted with signs warning of the hazard.

The number of caps is an unknown. Some of the caps will be attached to some small pieces of burnt fuse and the area is literally littered with burnt fuse. Some may not be attached to anything. The area of potential discovery covers a rectangular area measuring at least 50 feet by 50 feet. The surface is steeply sloping $(30^{\circ} +/-)$ and partially covered with scrap lumber and other building materials. The scatter has depth as it was built up over time and caps are as likely to be found at some depth as exposed on the surface. Finally, the scatter is not homogeneous. It consists of decaying jute bags, scrap steel, wooden wedges, wire, and discarded work clothing. Siding from the upper mill has fallen over the area. Identifying the caps in the scatter is not a straight forward exercise."

The slope along the northern side of the mill was visually inspected during the 2017 site reconnaissance, and some tape barriers appeared to be in place to deter people from the hazardous area. Tape barriers represent an administrative control; however, engineering controls are necessary to reduce the potential for exposure to these areas. Substantial debris is still scattered throughout the slope along the northern side of the mill (Photos 44 and 46, Appendix B). The location to the west of the leach plant is also covered in debris, as shown in Photos 34 and 36 (Appendix B). Waste blasting caps are considered a RCRA D003 Reactive Waste if removed and disposed of.

3. Exposure Pathways and Environmental Hazard Assessment

This section provides an evaluation of the potentially contaminated media and the associated exposure pathways and sensitive environments that are known and/or suspected at the site. An evaluation of the potential for a hazardous substance release to each medium is also presented.

The exposure pathway evaluation summarized in this section includes input from the interviews conducted as part of the 2017 site reconnaissance conducted by Amec Foster Wheeler. These exposure pathways are shown on Figure 5. Additional information presented in this section summarizes previous work and historical investigations conducted for the site. It is important to note that several potential worker exposure incidents have been reported at the Kennecott mill site, including the 2015 medical incident referenced in the Lead and Arsenic Paint section above. An employee of NPS also reported a November 2015 toxic heavy metals challenge urine test result with elevated lead and mercury levels. The urine test was conducted several months after the potential exposure event. Table 9 presents the known or suspected contaminants present at the mill site and the potential exposure pathways and target organs.

3.1. Groundwater

This section discusses the groundwater associated with the site and the potential pathways for migration of contaminants through the groundwater.

3.1.1. Local Geologic and Hydrogeologic Setting

The site geology is discussed in the 1992 Preliminary Assessment Report for Kennicott Mine Site (Document 3, Appendix A), which noted that "the key geological formations in the Kennicott area are the mid to late Triassic Nikolai Greenstone and the late Triassic Chitistone Limestone. The Chitistone Limestone directly overlies the Nikolai Greenstone and copper mineralization occurs in the limestone near this contact."

The 1995 Site Inspection Report (Document 10, Appendix A) presents a discussion of groundwater conditions at the site, based on reports from historical investigations:

"Groundwater has not been well-characterized in the area due to the difficulty of distinguishing groundwater from surface water along the exposed bedrock and beneath the glacier. The greenstone and limestone units are not considered productive aquifers, and the glacial moraine aquifer bordering the Kennicott Glacier is subject to high levels of dilution from glacial meltwater.

Groundwater on Bonanza Ridge would be expected to flow along the bedrock layer and feed into the creeks draining the ridge or into the mix of surface water and glacial meltwater beneath the glacier. The majority of this mix is assumed to feed the Kennicott River. The spring which creates Clear Creek in McCarthy would also likely be fed, in part, by this mix."

The Kennicott and Root Glaciers have receded substantially since 1995; the recession has left behind a moraine field. It is likely that the shallow groundwater/surface water now flows into National Creek and drains into the Kennicott River near the town of McCarthy. The Kennicott River is still fed by glacial meltwater and runoff that moves through the site from Bonanza Ridge. Figure 3 shows the topography and drainage courses of the Kennecott NHL.

3.1.2. Groundwater Use

At least 12 water supply wells are present in McCarthy, east of the Kennicott River and north of McCarthy Creek. The well nearest the site (ID 31843) is owned by the Kennicott Glacier Lodge and was installed in 2001. The well is upgradient from the site and is EPA classified as a Transient Non-Community well (formerly Class B). This well provides drinking water to lodge employees and guests. The Kennicott Glacier Lodge serves seasonal employees and tourists with 45 guest rooms. According to park personnel, at least 12 additional water supply wells are located within 4 miles of the site; however, only two of them could be identified using the Alaska Department of Natural Resources Mining, Land, & Water's Well Log Tracking system.¹ Figure 2 shows the wells that were identified using the Well Log Tracking system and the topography of the region. Two wells are privately owned and are located in the town of McCarthy (well IDs 29224 and 41659), downgradient of the site (Figure 2). Well ID 41659 provides potable water to a restaurant called The Roadside Potatohead, for use by employees and restaurant guests. Well ID 29224 is a privately owned well in McCarthy and is designated for domestic use.

According to NPS personnel, the NPS is pursuing funding to develop wells within the site in 2021 with the intention of providing drinking water to employees and the public. The NPS attempted to develop a well just south of the Mill Building, north of National Creek, in the past. Water was not found, and the well was abandoned.

3.1.3. Potential Hazardous Substance Release

The release of hazardous substances to groundwater from the site has not been documented, because groundwater has not been well characterized for the area. Groundwater flow paths and routes of groundwater flow through the areas downgradient of the site may have changed due to the receding Kennicott and Root Glaciers since site characterization information was collected in the 1990s. Historical records and observations have indicated that groundwater may be a potential contaminant migration pathway for seeps on the downgradient side of the site that were visibly impacted by fuel releases. Historical seep sample locations are shown on Figure 4. Seeps downstream of the leach plant may flow through mine tailings, ore concentrates, and ACM beneath the leach plant. Historical sample results have indicated that these seeps may be affected by hazardous substances at the site (Table 8); the majority of historical average seep sample results from previous site investigations have exceeded the NPS ESV screening criteria for arsenic, copper, mercury, and lead (Documents 2, 7, and 10, Appendix A).

A potential migration pathway is associated with leaching from the boiler ash piles. Although the ash piles were capped, infiltration of water through any cracks in the cap could result in release of contaminants into the groundwater. Cracks in the cap were observed during the 2017 site walk, and the effectiveness of the liner beneath the concrete cap is unknown. The degraded cap may present a potential pathway for release of hazardous substances from the ash. However, no seeps data is available from locations that are directly downgradient of the pile, so a potential migration pathway cannot be assessed at this time based on available information. Infiltration through fuel spill areas may present a complete pathway to groundwater, but limited analytical data for TPH are available for only one seep downgradient of a fuel spill location; the one seep sample had TPH below the RSLs for ingestion of tap water.

^{1. &}lt;u>https://dnr.alaska.gov/welts/#show-welts-intro-template</u>.

Kennecott Mill Site, Wrangell-St. Elias National Park and Preserve 3/29/2018

Lead originating from lead-based paint has a potential migration pathway to groundwater. Lead has been found at elevated levels surrounding many of the buildings. Runoff in these areas of elevated lead creates a potential migration pathway to the groundwater. Table 8 shows that seeps directly downgradient of buildings originally painted with lead-based paint exceed the NPS ESV for wildlife exposure to lead in surface water. However, it is uncertain whether these elevated lead levels are associated with lead-based paint or other known contaminants upgradient of the seeps.

Table 5 summarizes where information regarding analytical samples can be found in the historical reports. Figure 5 shows potential exposure pathways for hazardous substances present in site groundwater.

3.2. Surface Water

This section discusses the surface water associated with the site and the potential pathways for migration of contaminants into and through the surface water.

3.2.1. Local Hydrologic Setting

Figures 2 and 3 show the topography and surface water drainage courses for the site. Surface water bodies in the site vicinity have primarily been formed by glacial meltwater, groundwater discharges, and runoff. In certain areas, these components are difficult to distinguish, such as in the moraine field downgradient from the site. Runoff drains westerly from Bonanza Ridge toward the receding moraine field of the Kennicott Glacier; a series of creeks, including National, Bonanza, Jumbo, and Amazon creeks, facilitate the runoff. These creeks flow into the Kennicott Glacier valley and infiltrate the ground surface. These creeks flow southerly beneath the Kennicott Glacier moraine field and emerge as surface water that feeds into the Kennicott River.

National Creek runs through the center of the site and west to the glacial moraine deposit area. National Creek travels as shallow surface water along the southeastern edge of the glacial moraine deposit field, and is released into the Kennicott River near the town of McCarthy. During the 2017 site reconnaissance, seepage was observed from the tailings pile immediately to the south of the leach plant to National Creek.

In addition to the Kennicott River, several surface water bodies occur in the moraine field, including a group of springs and creeks collectively referred to as Clear Creek. As a result of the glacial moraine deposits in this area, the various surface water bodies may be hydraulically connected. McCarthy Creek, which originates from runoff along the ridge east of Bonanza Ridge, joins the Kennicott River approximately 1.5 miles south of McCarthy.

As described in the 1995 Site Inspection Report (Document 10, Appendix A), the 15-mile downstream stream distance for this site begins where the seepage from the tailings pile flows into National Creek, and includes:

- An approximately 0.5-mile length of National Creek prior to entering the Kennicott Glacier moraine field;
- A 3.5-mile length of approximate flow path between the Kennicott Glacier to a surface water lake prior to flowing into the Kennicott River;
- 5 miles along the Kennicott River until it flows into the Nizina River; and
- 6 miles along the Nizina River.

Clear Creek and McCarthy Creek, although not specifically identified within the 15-mile downstream distance from the site, may be hydraulically connected to the Kennicott River near McCarthy. A hydraulic connection may also occur between McCarthy Creek and the other surface water bodies near the moraine field (Document 10, Appendix A).

No known wetlands are associated with the site. The site is considered a sensitive environment, as it is a national park. No reported endangered species are associated with the surface waters in the vicinity of the site. During the 2017 site reconnaissance, National Creek was observed draining into what appeared to be a lake prior to reaching the Kennicott River. The lake is approximately 4,000 feet long and 1,000 feet wide at the widest location observed. Lakes or other areas of water ponding within the moraine field were not observed being used for recreation activities, but NPS staff have indicated that the lake is used for recreational purposes. As indicated by NPS staff, the lake is regularly used by recreational boaters for primarily canoes, kayaks, and pack rafts. Both private and commercially guided tours occur on the lake. In the winter, ice is also harvested from the lake; ice harvesting from this lake is a common and long-time practice for the area.

Guided and unguided tours occur in the vicinity of the lake, and, according to NPS staff, there have been proposals to construct a hiking trail between Kennecott and the town of McCarthy along the glacier edge, which would bring hikers close to this lake. There have also been proposals for a campground to be constructed near the glacier toe. The Kennicott River downstream of the lake offers tourist destinations and activities, such as rafting tours.

3.2.2. Drinking Water Intakes

The 1995 Site Inspection Report (Document 10, Appendix A) did not identify any drinking water intakes from the stream along the 15-mile flow path downstream of the site. Several potential drinking water intakes occur downstream of the site, based on registered drinking water wells, drinking water wells downstream of the site reported by NPS staff, and observations of residents and visitors using water form National Creek and surface water downstream from the site. The drinking water intake for the NPS is on top of the waterfall that drops into the valley that runs through the site. The NPS drinking water source serves seasonal NPS employees and a few employees that may stay throughout the year. The intake for the city of McCarthy is in Clear Creek, which may be connected hydraulically to the Kennicott River, approximately 4 miles from the site.

The Pre-Acquisition Environmental Site Assessment stated that there were no drinking water intakes in the lower portion of National Creek or any wells downgradient and that consequently there are no potential human receptors (Document 1, Appendix A). Two private wells are located in the town of McCarthy downgradient of the Mill Site, representing a potential exposure pathway. During the 2017 site reconnaissance, a person was observed filling a plastic tote with water from National Creek at a location downstream of the hospital and immediately upstream of the bridge that crosses National Creek, downstream of the waste deposit areas shown on Figure 4. In addition, it has been reported by NPS staff that summer drinking water sources are not useable during winter periods; therefore, during the winter, water for use by NPS personnel is obtained by dipping plastic buckets in National Creek upstream of the bridge and downstream of the historic structures located near National Creek. This represents a direct exposure pathway from potentially contaminated water.

Water and sediment samples in the upper reaches of the Kennicott River show no signs of contamination, and the waters of Clear Creek meet drinking water standards as reported in historical reports.

3.2.3. Local Fisheries

The migration of fish into National Creek is unlikely due to obstruction by the moraine field (Document 10, Appendix A). No fisheries harvest data are reported by the Alaska Department of Fish and Game for the Kennicott and Nizina Rivers. According to the 1995 Site Inspection Report (Document 10, Appendix A):

"...the Kennicott and Nizina rivers may support small coho salmon fisheries for fish spawning in McCarthy Creek. In addition to coho salmon, these rivers are migration routes for sockeye and king salmon. Migratory fish enter the basin at the mouth of the Copper River near Cordova, and may migrate to the Kennicott River by swimming up the Copper, Chitina, and Nizina Rivers."

No fishing was observed in the Kennicott River or the Nizina River en route to the site during the 2017 site reconnaissance. Site personnel did not know of any fishing in the area. Available information does not suggest that fisheries have been affected by the site.

3.2.4. Sensitive Environments

The site is located within Wrangell-St. Elias National Park and Preserve, which is considered to be a sensitive environment and major recreational area. The NPS owns the site; therefore, the site and all the surrounding national park lands are considered to be sensitive environments. No known wetlands or endangered species are associated with the contaminated surface water located on the site.

3.2.5. Potential Hazardous Substance Release

Based on the topography of the site and historical reports of information and extents of contamination, the migration route for contaminants through the surface water is assumed to be either via groundwater flow or infiltration (from the tailings and beneath the leach plant for inorganics, and from the fuel spill locations identified on Figure 4). Surface water and seep samples collected from the site were discussed in the Kennicott Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A), and the results are shown on Table 8, including background surface sample concentrations from a location in National Creek upgradient from the site (Location BG on Figure 4). Table 8 shows that concentrations of inorganics were elevated above upstream levels and also exceeded the preliminary NPS ESVs at several locations downgradient/downstream from the tailings piles and the leach plant for arsenic, cadmium, copper, mercury, lead, and zinc. Surface water samples collected from National Creek downstream from the site (Location NC2 and NC3 on Figure 4) were elevated over upstream levels, and locations downstream of the tailings pile west of the west bunkhouse were elevated above ESVs for arsenic, cadmium, copper, mercury, lead, and zinc.

Data suggest that surface water has received hazardous substance releases from the site. The downstream extent of the potential releases is unknown based on available data, although it was reported that inorganics were not elevated in Kennicott River water and sediment samples. At the seep adjacent to the power plant (the only reported seep where water is flowing over an oil spill area), total petroleum hydrocarbons were 16.8 mg/L, and total petroleum hydrocarbons as diesel was 6.9 mg/L (Document 1, Appendix A). These values exceed the EPA's regional screening levels for residential ingestion of tap

water and the Alaska Department of Environmental Conservation's migration to groundwater cleanup level of 1.5 mg/L (18 Alaska Administrative Code 75, Table C).

Table 5 summarizes where information regarding analytical samples can be found in the historical reports. Figure 5 shows the potential surface water exposure pathways for hazardous substances at the site. Complete and potentially complete pathways exist for park service workers, site visitors, site residents, and McCarthy Residents.

3.3. Soil

Potential hazardous substances of concern for release to the soil are those associated with mill tailings, ore concentrate, boiler ash, oil spills, lead paint, and dump sites.

3.3.1. Potential Receptors

The site is remote, and few permanent residences live in the vicinity. Workers in this area are primarily NPS staff and potentially contractors supporting site rehabilitation activities. The property is fully accessible to the public and attractive for tourists due to the historical nature of the site, the presence of the Kennicott Glacier Lodge, and abundant outdoor recreational activities. A few NPS workers live at the site year-round, and a few other residents live at the site in private cottages. Seasonal workers at Kennicott Lodge also occupy buildings at the site. At the time of the site walk, it was reported that approximately 65 people work and 20 people live within 0.25 mile of the site in the summer months. Winter resident populations in this area were reported to vary from 5 to 8 in Kennecott. The number of residents varies both seasonally and from year to year. McCarthy has a population of approximately 30 people, although it has been reported by NPS staff that more than 100 people may reside in McCarthy during the summer months. No known schools or daycare facilities are located within 200 feet of the areas of known contamination. Although the NPS does not keep accurate count of visitors to Kennecott, it estimates that 73,000 to 87,000 people visit the park each year (NPS, 2017b).

Due to the remoteness and seasonal population variation at the site, it is difficult to estimate the surrounding residential population that would come into contact with contaminated soil. However, based on the site visit, permanent population was estimated as follows:

- Approximately 20 residents 0 to ¹/₄ mile away during the summer months;
- Approximately 10 residents ¹/₂ to 1 mile away during the summer months; and
- Approximately 100 residents 3 to 4 miles away during the summer months.

The entire site is considered to be a cultural resource and is being preserved as such. There have been frequent sightings of brown bears in the site vicinity. Moose have also been observed. Other small rodents, such as ground squirrels, were observed during the 2017 site reconnaissance.

3.3.2. Sensitive Environments

The site is located within Wrangell-St. Elias National Park and Preserve, which is considered to be a sensitive environment and a major recreational area. The NPS has acquired the site; therefore, the site and all the surrounding national park lands are considered to be sensitive environments. No known wetlands or endangered species are associated with the contaminated soil located on the site.

3.3.3. Potential Hazardous Substance Release

Surface staining for fuels has been documented in several site characterization reports. Three primary fuel-stained areas have been identified for the site, as described in Section 2.3. These three areas consist of the location of the AST on the northern end of the site and the associated utilidor that conveyed fuel to the power plant, the area to the west of the power plant, and the area adjacent to the mill building on the north side (Figure 4). In addition, several buildings at the site are built on areas filled with tailings. Ore concentrates have been observed near the mill building and beneath the leach plant. A coal ash pile was documented on the southwest corner of the power plant (Document 3, Appendix A).

Table 5 summarizes where information regarding analytical samples can be found in the historical reports. Table 6 summarizes the reported maximum concentrations of metals from tailings samples and fuel-stained soil samples. Maximum analytical results from site soil samples are presented in Table 6 and are compared to EPA RSLs, NPS ESVs, and ADEC Direct Contact Human Health Risk Screening Levels. As shown in Table 6, analytical results for all metals except chromium exceed one or more screening criteria, including RSLs and ESVs. Table 7 summarizes lead concentrations in surface soil samples in the vicinity of the site buildings. Figure 4 shows the approximate extent and locations of affected areas based on the historical reports reviewed and referenced in this Preliminary Assessment. Analytical results for lead in surface soil samples collected in the vicinity of the West Bunkhouse were as high as 4,880 mg/kg, which is well above the highest screening criterion of 400 mg/kg.

3.4. Air

The contaminants of concern exposed to the air are primarily particulate dust associated with the mine tailings, ore concentrate, and lead paint.

3.4.1. Potential Receptors

As reported in the 1995 Site Inspection Report (Document 10, Appendix A), "...particulate migration from sources (e.g. tailings pile) is a potential source of exposure. The potential sources are not covered and could be spread to downwind areas. Based on site observations, the predominant wind direction was assumed to be down the valley towards McCarthy."

Due to the remote location, the number of receptors that could be affected by migration of contaminants via air is likely similar to the values presented in Section 3.3.1. Residences are located in the immediate vicinity of the mill building and leach plant, including a residence across the road from the maintenance building. The Kennicott Glacier Lodge is located approximately 1,200 feet from the mill and leach plant at a down-valley location that is assumed to be downwind of the mill building and the leach plant. There are seasonal variations in the number of visitors and residents located downwind of the site who may be exposed to downwind transport of dust or fine particulates from upgradient sources, which include tailings and lead-based paint on buildings and in soil.

3.4.2. Sensitive Environments

The site is located within Wrangell-St. Elias National Park and Preserve, which is considered to be a sensitive environment and major recreational area. The NPS has acquired the site; therefore, the site and all the surrounding national park lands are considered to be sensitive environments.

3.4.3. Potential Hazardous Substance Release

Potential sources for airborne hazardous substances include several uncovered tailings waste piles distributed across the site and lead and possibly arsenic paint that may have been deposited on soils in the vicinity of the buildings or that may still be peeling from buildings. Additional potential sources include several oil spill areas (areas of stained soil) and dump sites.

Previous soil sampling data are summarized in the 1995 EPA Site Inspection Report (Document 10, Appendix A) as follows:

"... the top foot of soil at two locations south and downwind of the main mill town, near Cottage 29A and near the dairy, were sampled at three intervals (0-1, 1-6, and 6-12 inches). The purpose of the sampling was to assess transport, mainly by wind, of tailings and contaminated soil to areas that were considered to be at a sufficient distance (roughly ¼ mile) from actual mining activities. Concentrations near the surface were compared to concentrations at depth in order to identify any trends that suggest surface deposition of particles from mill town sources. Analytical results are summarized in Table 4-9. Sample results for inorganic analyses performed on all downwind soil samples are presented in Appendix D. Data Validation Reports. Sample locations were presented in Figure 3-1.

At the station near the dairy (SS010), six metals were elevated in the top 1 inch of soil from the two locations, including arsenic, barium, copper, lead, mercury, and zinc. All six of the metals exhibited a gradient with elevated concentrations at the surface attenuating to lower concentrations at 6 to 12 inches.

At the station near the Cottage 29A (SS011), the same metals elevated near the dairy were also elevated at the surface interval, with the exception of arsenic. However, in this case the 12-inch interval was higher than at least one of the overlying intervals for arsenic, barium, copper, and lead."

The 1995 Site Inspection Report (Document 10, Appendix A) summarizes previous air monitoring that has been conducted:

"Seven dust samples and one blank sample (to assess contamination of the glass wool sampling material) were collected at five locations in the mill town, at the McCarthy airport and at Ma Johnson's hotel in McCarthy. The samples were collected of a 10square-centimeter surface area. Table 4-8 lists samples in a general north to south progression. This arrangement roughly corresponds to an upwind to downwind arrangement. Concentrations are expressed in $\mu g/cm^2$ [micrograms per square centimeter]. Sample results for priority pollutant metals analyses performed on all wipe samples are presented in Appendix D, Data Validation Reports. Sample locations were presented in Figure 3-1.

Of the priority pollutant metals (excluding mercury) analyzed, arsenic, cadmium, copper, lead and silver were detected in at least one wipe sample (see Table 4-8). All other metals were either not detected or were found at concentrations less than 5 times the concentration detected in the blank sample (DU008; the 5-fold margin was used to

ensure that concentrations detected represented site conditions rather than residual metals on the glass wool used to sample dust).

No strong trends were indicated by analytical results for cadmium, silver and lead. Levels of copper and arsenic gradually increased in the first three north-to-south wipe samples, with low concentrations in Cottage 39B (Station DU004) and 13F (station DU005) and maximum concentrations in the refrigeration plant (Building 48; Station DU003)"

As reported in the 1995 Site Inspection Report (Document 10, Appendix A),

"... soil samples collected from areas projected to be downwind of sources and mining activities may also indicate areas of observed contamination. Although the transport mechanism is presently undetermined, arsenic, barium, copper, lead, mercury, and zinc were detected in both source samples and in downwind area soil samples. The concentrations of arsenic and copper in the downwind area soil samples are lower than those detected in the boiler ash pile and oil spill area.

Of the six inorganics listed above, arsenic, copper and mercury were also detected in downwind area soil samples at concentrations below those found in the tailings pile samples. This suggests the potential for migration of mine tailings, although the transport mechanism is unknown."

The 1995 Site Inspection Report (Document 10, Appendix A) also discusses the potential transport of hazardous substances through the air:

"Particle-size analysis was performed on surface tailings samples collected near Cottage 24 (Station SS007) and at the western edge of the pile (Station SS008). The analysis was intended to characterize the size of the tailings particulate and determine whether suspendable and transportable particles were present. Although considerable discussion of the cut-off point for suspendable soil size exists, as a group, particles less than 100 μ m [micrometers] in diameter encompass suspendable and transportable particles. Within this group, particles between 30 μ m and 100 μ m would be expected to settle within a few hundred feet from the source, while those less than 30 μ m would be expected to be transported a considerable distance downwind (EPA, 1988).

Table 4-10 summarizes the results of the particle size analysis. Based on particle size results, 86 to 96 percent of the surface tailings particulate were greater than 1 mm in size. This corroborates field observations which identified the tailings as coarse, gravelly material. Only 1.6 to 4.0 percent of the surface tailings were less than 75 μ m and would be expected to be suspendable and transportable. A fraction of this amount would be expected to be less than 30 μ m, and transportable a larger distance.

Estimates of suspendable and transportable particle size are generalizations only. Actual estimates would depend on site-specific weather patterns such as wind speed, wind direction and presence of ice or snow over the tailings pile. It can be assumed, however, that a small fraction of the tailings pile particulate is small enough to become windborne, as was observed when the tailings was disturbed during the site visit.

Results for particle size analyses performed on two tailings samples are presented in Appendix D, Data Validation Reports. Sample locations were presented in Figure 3-1."

The 1995 EPA Site Investigation Report also states that (Document 10, Appendix A):

"the metals detected at elevated concentrations in downwind soil samples – arsenic, barium, copper, lead, mercury, and zinc – were also detected at similar concentrations in the samples collected from the tailings pile, with the exception of barium. The occurrence of these metals in areas projected to be downwind of mining activities suggests the potential for particulate migration from the tailings pile. However, results from particle size analyses on the tailings pile sample indicate that only a small fraction (1.6 to 4 percent) of the tailings would be amenable to air migration."

The above quotes from the 1995 EPA Site Investigation Report indicate that some detailed air exposure assessments were conducted previously. This report also indicates that air transport of hazardous substances is dependent upon both source location and particle size. Vehicular traffic and foot traffic have likely increased since the 1995 Site Investigation report due to the increased number of site visitors. This traffic likely reduces surface particle size and increases the likelihood for transport of dust and hazardous substances from the upper layer of tailings, especially during the summer months when the ground is dry and the park has more visitors. Based on the historical data presented for air and the increased vehicular and foot traffic at the site, there is a pathway from soil to air exposure for hazardous substances at the site. This potential exposure pathway is either complete or potentially complete for all park service workers, site visitors, and site residents, and is shown on Figure 5.

Wipe samples have also been collected historically but were not used in this Preliminary Assessment. Wipe samples are useful for determining the areal extent of contamination on nonporous surfaces but there are significant problems with using wipes on porous surfaces, and results may not be precise or accurate in those circumstances. While wipe samples can be directly compared with EPA/HUD standards for surface contamination by lead in child-occupied facilities and housing, those levels were set at values that were not predictive of actual risk of blood lead elevation, not an absence of risk. Because actual dose from exposure to surface loading of contaminants depends on many factors that have substantial uncertainty in actual ranges and appropriate defaults, there is no widely-adopted methodology to determine the presence or absence of risk from ingestion and inhalation of any contaminant from surface loadings. Bulk dust composition is a much more widely-used parameter to estimate potential risks for dermal and ingestion pathways, and for inhalation exposure in the absence of actual airborne concentration data.

4. Conclusions and Recommendations

The Kennecott Mines and the Kennecott Mill were developed and operated between 1906 and 1938 as a copper mine and copper milling town. The mill building and later the leach plant received and concentrated ore mined from the nearby mines. A power plant, machine shops, repair shops, housing, administrative offices, and material stores were located around the mill to support copper ore processing operations. The mines and milling facilities have been shut down since 1938. Today, the site primarily consists of historical buildings that were used to support copper ore processing operations. These historical buildings contained lead- and arsenic-based paint as well as asbestos for insulation. The site was

also constructed over areas filled with tailings from the milling operations. A local power plant used heavy fuel to generate heat and power. ASTs were used to store fuel, and utilidors were used to transfer fuel from the tanks to the power plant. The site is currently accessible to visitors to view the historic mining town and serves as a center for exploring the surrounding park. Visitors can view the mill town on guided and self-guided trips.

A conceptual site model (CSM) is provided as Figure 5. The CSM should be reviewed in conjunction with Figure 4 to assess the likely hazardous substance sources, exposure routes, and potential receptors. This section summarizes likely exposure pathways by hazardous substance and receptors based on the information provided in Section 2.3 and Section 3.

Asbestos

Asbestos was abated in the majority of the buildings and structures at the site. ACM was removed from all accessible buildings and most of the utilidors in the mill town, except for the boilers in the power plant and leach plant, and below the boilers in the leach plant where two feet of tailings were deposited beneath the floor to bury ACM beneath the tanks.

The site reconnaissance and interviews conducted in 2017 with NPS maintenance staff revealed that asbestos continues to be found by NPS workers in crawl spaces, foundations, and walls during active rehabilitation of the site. The likely exposure pathways for ACM include inhalation of fibers during construction and rehabilitation of buildings and potential migration of ACM from the leach plant to surface water in National Creek. The boilers inside the power plant that were used to encapsulate ACM appear to have seals that are failing and need further investigation and potential mitigation. As described in Section 2.3, ACM may also be located beneath the false floor in the leach plant. The method of the 1993 abatement project needs to be further investigated based on reports of inadequate abatement by NPS staff. Analytical samples for asbestos from runoff and the risk of release of ACM to National Creek have not been investigated, based on available information.

Mill Tailings and Ore

The earliest mill tailings deposits were in the vicinity of the mill building, including beneath the leach plant. After construction of the leach plant, tailings were deposited west of the leach plant building. Tailings were also deposited south of National Creek during later periods of facility operation. Tailings samples were collected in 1991 and 1992 by America North/EMCON, Inc., and analyzed for total metals. Concentrations were highest for the samples collected from the earliest tailings deposits located adjacent to the mill building, likely due to inefficiencies during early copper ore recovery operations. Unrefined ore was observed in small quantities near the mill building during the 2017 site reconnaissance. Ore concentrates were observed in the leach plant and beneath the leach plant foundation.

Surface deposits of tailings or ore present a potential dust/inhalation and ingestion hazard, as the tailings and ore deposits have not been stabilized and may be broken up by foot and/or vehicle traffic to form small particulates that could become respirable. The potential for exposure is higher in the summer months when the site has more visitors and the ground is dry. Thus, airborne dust represents either a complete or a potentially complete exposure pathway for park service workers, site visitors, and site residents. An investigation of the amount of dust generated and transported from the tailings deposits is

recommended because the site has become more popular over the years, with significantly more foot and vehicular traffic since the previous investigations in the 1990s.

There is also potential for transport to surface water due to runoff and erosion of the tailings and ore deposits. Surface water samples collected downstream of potential runoff locations showed concentrations elevated above background concentrations for National Creek, as shown on Table 8 and reported in the 1992 Preliminary Assessment (Document 3, Appendix A).

The deeper tailings deposits that are reported to have higher metals concentrations may be in contact with groundwater. Hazardous substances leaching from these deposits may be transported by groundwater to surface water, based on the locations of observed seeps (Figure 4), analytical results of seeps and surface water samples collected from National Creek (Table 8), and the reported groundwater and surface water flow pathways described in historical reports. Historical characterization samples summarized in the Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A) indicate surface water samples from National Creek collected immediately downgradient of the tailings piles located behind the west bunkhouse (Location NC2 on Figure 4) had the highest surface water concentrations, with an average result of 69.0 micrograms per liter (μ g/L) arsenic, 1,367 μ g/L copper, and 22.3 μ g/L lead for the three samples collected (Table 8). These concentrations are orders of magnitude higher than the NPS ESVs (NPS, 2014). Sample location NC3, downstream of the maximum surface water sample location, had an average reported value of 2.1 µg/L for arsenic, based on six samples collected and averaged (Document 1, Appendix A). Surface water and seep samples from National Creek indicate that metals are significantly elevated over upstream concentrations and, in some cases, are well above screening levels, indicating release and a potentially complete exposure pathway for dissolved and/or suspended heavy metals transport from the site.

Boiler Ash

The capped boiler ash pile is located near the power plant, at the approximate location shown on Figure 4. Samples were collected directly from the boiler ash pile for waste characterization prior to capping the pile. The boiler ash was characterized as a hazardous waste. No samples have been collected from soils downslope of the pile or from downgradient groundwater to characterize potential releases. The cap was visually inspected during the 2017 site reconnaissance and was observed to be cracked and deteriorating. The competence of the cap liner is unknown. However, there are no reported seeps immediately downgradient of the boiler ash pile, so the potential migration pathway to groundwater/surface water cannot be fully assessed at this time. The cap was covered in tailings so a complete pathway for soil ingestion/inhalation is unlikely. The boiler ash pile is a potential source for the release of hazardous constituents to soil and groundwater outside the pile.

Ammonia Tanks

The sludge remaining inside the emptied ammonia tanks is contained, and a complete exposure pathway is not expected at the time of this assessment. The two emptied tanks reportedly had considerable quantities of hard blue to colorless crystals on the bottom and a thin overlying layer of precipitated copper sulfide sludge. As the tanks deteriorate, a complete exposure pathway could develop for the waste materials inside the tanks.

Fuel, Oil and Grease

Site investigations identified three areas of hydrocarbon-impacted soil at the site: near the three ASTs west of the power plant, a stained area on the north side of the mill building, the AST and utilidor on the north side of the site, and a reported used-oil disposal pit located next to a generator at the present-day Guide Building. Figure 4 shows the reported locations and the approximate extent of soil staining based on the historical reports.

During the 2017 site reconnaissance, stained soil was observed behind the power plant, downslope from the AST on the northeast side of the site, and along the utilidor that runs between the power plant and the AST. High levels of hydrocarbons have been detected in soils adjacent to the power plant and near the three ASTs that appear to be the source of the historical releases. Surface oil staining was observed to extend approximately 125 feet downslope of the ASTs behind the power plant. Hydrocarbon-contaminated soil on the surface may pose a hazard for ingestion or inhalation if particulates become airborne. A spring was noted at the base of the slope with water and oil seeping from the subsurface (Document 7, Appendix A), indicating a complete pathway between soil contaminants and surface water. Oil pooling was observed near the power plant in areas that are included on tours for visitors, representing a direct exposure pathway. In addition, old conveyance piping and a storage tank appeared to contain fuel oil residue. It is currently unknown whether a complete pathway to groundwater and surface water in National Creek exists.

Lead and Arsenic Paint

Lead- and arsenic-based paint was used as the finish surface on several of the buildings and structures at the site. Dust has accumulated in the buildings on the floors and window sills, and may contain lead from interior paint or lead that is brought into the building as dirt and debris from the areas surrounding the buildings, either from foot traffic or airborne dust. Lead measurements in dust collected from several site buildings have exceeded the Occupational Safety and Health Administration industrial lead in dust standard of 200 micrograms per square foot. The paint finish on the surfaces of most of the buildings has deteriorated, and lead has been deposited on the soil surface adjacent to the buildings. Soils in the vicinity of buildings at the site have been sampled, and analytical results indicate that the soils have elevated lead levels; the soil sample with the highest lead content was 4,880 mg/kg (Table 6); well above the EPA guidance screening level of 400 mg/kg for lead in residential soils (EPA, 1996). This value is also well above the NPS ecological screening value for wildlife exposure to soil of 0.94 mg/kg. Debris piles located throughout the site from old mining and mill equipment and from old wood structures that have collapsed or been removed may also be coated in peeling lead paint.

During the 2017 site reconnaissance, several buildings were visited and many of the building contained what appeared to be lead-based painted surfaces (based on historical reports) with signs of peeling paint and dust accumulation along guided tour pathways. Several buildings were observed to have been scraped and painted.

Peeling lead paint poses a potential health hazard associated with dermal contact, inhalation, and ingestion of dust and particulate lead. Elevated lead in soil adjacent to buildings may pose an ingestion and inhalation hazard. Runoff from areas with elevated lead in soil may transport the lead from the surface soil to surface water and potentially into National Creek; results from soil samples collected adjacent to National Creek in the vicinity of the hospital and the National Creek Bunkhouse were among

the highest results reported, at over 4,000 mg/kg lead (Table 7). Lead may be ingested from National Creek downstream of the site buildings by both human and ecological receptors.

Arsenic has been measured in surface water and soil samples at levels exceeding the NPS ecological screening levels for wildlife exposure to surface water. The extent of arsenic contamination in soil, groundwater, and surface water at the site is unknown and the transport pathways for arsenic releases have not been investigated.

Garbage Dumps

Several garbage dumps have been reported at the site. The Pre-Acquisition Environmental Site Assessment (Document 1, Appendix A) stated that *"From water quality analysis of seeps downhill of the dumps, there is no indication that contaminants are leaching and contaminating groundwater or National Creek. "* This statement is hard to assess based on the lack of recent information downgradient of dump sites located south of National Creek. The primary exposure pathway from the garbage dumps would likely be leaching of contaminants from waste that makes their way into groundwater/surface water.

Blasting Caps

Unexploded blasting caps removed from the ore processed in the mill were primarily disposed of along the steep slope north of the mill building and in the vicinity of the northwestern side of the leach plant. The primary hazard associated with the unexploded blasting caps is from physical hazards associated with setting off a blasting cap in proximity to workers or tourists. The chemical(s) used to manufacture the explosive could not be determined through visual observation. During the time of mine operations, fuse blasting caps were known to be composed of mercury fulminate, potassium chlorate, tetryl, lead azide, and lead styphnate (Document 14 Appendix A). Further analysis is needed to determine whether the aforementioned chemicals are present in the caps located at the mill site. Blasting caps are considered a RCRA D003 hazardous waste due to reactivity.

Historical Characterization Data

Historical sampling data have been collected in several studies performed from 1990 to 2015. Table 5 summarizes where information regarding analytical samples can be found in the historical reports, including sample locations, analytical methods, sampling methods, and detection limits, where available. Appendix C includes copies of specific relevant data tables and sample location figures from these historical reports. This Preliminary Assessment compares historical data to screening levels to assess the general status of the site concerning potential releases of hazardous substances to the environment and the potential need for future action to mitigate potential risks and protect receptors, both ecological and human. Historical data have not been reviewed in detail to assess the analytical methods and quality control. It has been assumed that the data presented in historical reports are useable for comparison to screening values.

Data Gaps

Several data gaps have been identified based on review of available historical information and from the 2017 site reconnaissance. A list of data gaps identified by this review follows:

- Site Characterization
 - Characterization of site hydrology and hydrogeology
 - Potential for transport of contaminants through groundwater/surface water and an indepth analysis of groundwater flow paths which may have changed since previous investigations
 - Potential for future changes to site hydrology due to the ongoing glacial recession
 - The extent to which increased vehicular and foot traffic has affected the airborne transport of contaminants
 - Dust/air migration pathway, including correlations between wipe samples and respirable fractions of dust
 - The extent to which contaminants are being released in National Creek, and specific locations where contaminants are leaching
- Asbestos
 - The presence of ACM remaining from the 1993 abatement event and an in-depth evaluation of abatement practices
 - The quantity of ACM located underneath historic buildings, such as the leach plant
 - The potential for transport of ACM through runoff and potential release into National Creek
- Mill Tailings
 - Delineation of the extent of tailings, affected soil, and affected groundwater in the vicinity of the tailings
 - Updated historical tailings maps to include areas that have been filled through more recent construction and site development activities
 - The location and quantity of tailings beneath historic buildings
 - The potential for transport of metals from mill tailings, including particulates and dissolved transport
 - The potential for exposure to metals from dust in buildings and downwind of the site
- Ore Concentrates
 - The potential for transport of ore/ore concentrate deposits present at the site, including the locations of ore concentrates
 - The location of the large quantity of ore concentrates described in the 1990 Waste Audit
- Boiler Ash
 - The integrity of the boiler ash cap and liner system
 - The potential for transport of heavy metals from the capped boiler ash area
- Ammonia Tanks
 - The discharge location of the wastewater that was discharged on the glacial moraine field from the leach plant flotation tanks

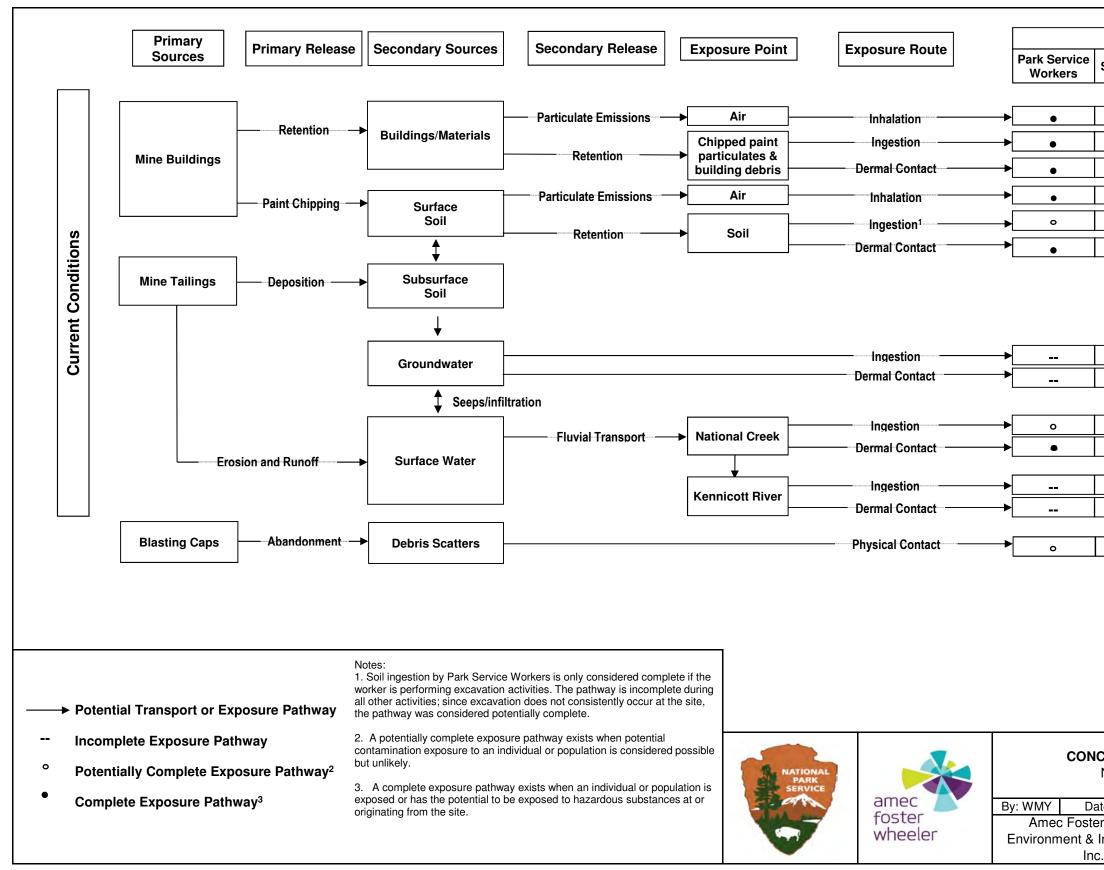
- Samples for additional potentially concentrated heavy metals and metalloids, such as cadmium, arsenic, and zinc, that may have been released to the moraine field
- Fuel, Oil, and Grease
 - The extent of fuel contamination in soil, groundwater, and surface water downgradient from the AST on the north side of the site, including the utilidor to the power plant and the spill area behind the power plant
 - Potential impacts to human and ecological receptors
 - Mapping of sources and deposits of hydrocarbons, including presence in power plant utilidors, piping, and tanks
- Lead/Arsenic Paint
 - A comprehensive delineation of lead-affected surface soils and potential routes of exposure associated with lead paint contamination
 - Further examination concerning the source of arsenic contamination of surface and groundwater
 - The full extent of the presence of arsenic in paints remaining on site buildings
- Garbage Dumps
 - Waste audit to determine if any ACM, lead acid batteries, old lead/arsenic-painted debris, or other wastes are present at the site and that may leach into the moraine field
- Blasting Caps
 - Further investigation concerning the presence of contaminants in the blasting caps at the site that may be leaching

It should also be noted that the data, assumptions, and conclusions presented in historical documents have been developed over a long period of time and under varying site conditions. The largest change in site conditions has been the receding of the Kennicott Glacier, which may have affected surface and subsurface flow pathways, and the increases in foot and vehicle traffic that have occurred at the site since previous studies were completed. The reduction of contaminants located at the mill site due to rehabilitating buildings (for example, repainting of building exteriors) is not reflected in historical data collected from surface soil samples or in some cases surface water samples.

Conclusions and Recommendations

The site has been designated a historical cultural resource. Any future efforts to address potential sources of contamination and the potential exposure pathways for contaminants must be compatible with the end use of the site as a cultural resource enjoyed by tourists. A comprehensive summary of historical data is included in this Preliminary Assessment. Further analysis is required after data gaps are resolved to refine the appropriate exposure pathways and screening levels for various site user groups. Figure 5 presents a preliminary conceptual site model to document the known and/or suspected potential exposure pathways. Figure 5 and Tables 6, 7, and 8, provide enough information to warrant further action to protect potential downgradient receptors from hazardous substance releases from the site.

Data presented in this report were collected primarily in the 1990s under site conditions that are different from current site conditions. Changed conditions include hydrological and hydrogeological changes due to the receding glacier and flood events, and site uses resulting from increased tourism. As a result of



these changes, much of the data in this PA provides only a preliminary overview of the potential for hazardous substance releases; the data need to be expanded to address these changed conditions and to address potential future changes.

It is recommended that a complete remedial investigation and a feasibility study be performed for the site. The process would include development of a Remedial Investigation Work Plan to resolve the data gaps noted in this Preliminary Assessment. After additional site investigation is completed, the remedial investigation would compile existing and new data into a useable and informative format, including comprehensive data summary figures to fully assess potential site risks. The remedial investigation would also more carefully evaluate current and future site user groups and support decision making for site-specific cleanup levels that would be used in the feasibility study to identify and evaluate feasible remediation technologies and alternatives to protect potential human and ecological receptors. The feasibility study would use information presented in the remedial investigation to identify a feasible, site-specific remedy that would both comprehensively address site risks and be compatible with the planned site uses. The feasibility study would identify and describe active remedial measures that can be implemented at the site, such as capping portions of the site and mitigating leachate sources that are high in metals. Remedial measures may also include institutional controls that could alter site uses.

5. References

- National Park Service (NPS). 2014. NPS Protocol for the Selection and Use of Ecological Screening Values for Non-Radiological Analytes. Revision 1. January 13.
- NPS. 2017a. Statement of Services: Kennecott Mill Site Preliminary Assessment, Wrangell–St. Elias National Park and Preserve. May 8.
- NPS. 2017b. Wrangell–St. Elias National Park and Preserve Park Statistics. Available at: https://www.nps.gov/wrst/learn/management/statistics.htm.
- United States Environmental Protection Agency (EPA). 1994. Memorandum: OSWER Directive: Revised Interim Soil Lead Guidance for CERLA Sites and RCRA Correction Action Facilities. EPA OSWER Directive #9355.4-12. August.

Receptors Site Visitors Site Residents McCarthy Residents • • •										
Site Visitors Site Residents McCarthy Residents ● ● ● 0 ● 0 ● 0 ● 0 ● 0 ● 0 ● 0 ● 0 ● 0 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0										
		Site Visitore Site McCarthy								
	т									
		•	•							
• 0 • • • • • • • • • • •		•	0							
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •		•	0							
• • • • • • • • • • • • • • • • • • • • •	I	•	0							
• • • •	J									
• • • •	Ţ	•	•							
	T									
• • • • • •	İ									
• • • • • •	-			,]						
• • • • • •	T	•	•							
O	T	•	•							
O	1	-								
	J			0						
0 0 	Ī			0						
0 0				J						
		0	0							
		0	0							
	_									
	J			RECEDTORS						
	4									
		Kenn	ecott Mill Site							
NPS Preliminary Site Assessment Kennecott Mill Site			Pro	ject No. 32106H0	37					
NPS Preliminary Site Assessment Kennecott Mill SiteDate: 3/18/2018Project No. 32106H037										
Kennecott Mill SiteDate: 3/18/2018Project No. 32106H037ter WheelerImage: State S			,	Figure 5						
NPS Preliminary Site Assessment Kennecott Mill Site Date: 3/18/2018 Project No. 32106H037 ter Wheeler Figure 5	10	D.								

HISTORIC USE OF KENNECOTT MILL SITE

Wrangell-St. Elias National Park and Preserve Kennecott Mill Site

Year	Event Description						
1899	Nikolai Native Copper lode staked by Chittyna Company.						
1099	Mother Lode claim staked by Clarence Warner and "Tarantula Jack" Smith.						
1900	Bonanza Mine area staked by Warner and Smith on July 22.						
1905	Alaska Copper and Coal Company wins ownership battle and is reformed as the						
1905	Kennecott Mines Company.						
	Kennecott Mines Company spends \$25 million to construct mine buildings and works.						
1906–1911	A 196-mile railroad carried ore from Kennecott to Cordova, and a steamship line						
	shipped ore from Cordova to the American Smelting and Refining Company smelter in						
4000	Tacoma, Washington.						
1909	Bonanza tramway built.						
1911	Railroad completed.						
1915	Kennecott Mines Company reorganized into KCC. Jumbo ore body discovered. The						
	16,000-foot-long Jumbo tramway built.						
1916	Ammonia leaching plant becomes operational. The 350-foot-long Erie tramway built.						
1917	High grade ore struck in Mother Lode Mine.						
1917	Mill and leaching plant enlarged (completed in 1918). Glacier Mine tramway built. KCC buys Mother Lode Mine.						
1913	Flotation plant operational. Ore production peaks.						
1923	Last year of full production.						
1932	Mines temporarily close.						
1935	Mines reopen.						
1938	Mines closed in October. Railroad abandoned in November.						
1938–1941	Site evaluated for preservation as the Kennecott National Monument. No action taken.						
1000 1041	KCC contracted Ray Trotuchau to demolish all buildings. The roof of the concentrator,						
1954	two superintendent's houses, and staff house destroyed. The contractor defaults and						
	no further work is done.						
1001	Consolidated Wrangell Corporation, now owner of the surface rights, attempt some						
1964	surface mining of ore residues.						
1974	The USGS studies the geology of the Bonanza and Mother Lode Mines, both						
1974	underground and on the surface.						
1976–1977	Site re-evaluated. Kennecott nominated to the National Register of Historic Places.						
1980	The Historic American Engineering Record branch of the National Park Service						
1000	inventories and records the buildings and mill.						
1986	Kennecott designated a National Historic Landmark as the best remaining example of						
1000	an early 20th-century copper mine.						
1987	Site owners (Great Kennicott Glacier Land Company and Consolidated Wrangell						
	Mining Company) offer the site to the National Park Service.						
1000	The National Park Service acquires the Kennecott National Historic Landmark,						
1998	including 2,839 acres and several structures and begins rehabilitation of the historic						
	mill town.						
Present	The National Park continues to rehabilitate the mill town. The park is a popular tourist						
	destination.						

Abbreviations: KCC = Kennecott Copper Corporation USGS = United States Geological Survey

GENERAL HAZARDS AND MITIGATION SUMMARY FOR BUILDINGS

Building Name ¹	General Hazards	Mitigation Summary	Photo Identification ²
Sleeping Cabana 1		None	None
Sleeping Cabana 2		None	None
Sleeping Cabana 3		None	None
Sleeping Cabana 4		None	None
Electrical Generator Building		None	None
Dairy Barn	Lead Paint	Interior and exterior painted in 2010	None
Support Building/Sleeping Cabins		None	None
Old School Outhouse		None	None
Old School House (Shaw)	Lead Paint	Interior and exterior painted in 2003	None
Recreation Hall	Asbestos Lead Paint	Interior and exterior painted in 2003 Asbestos abated in 1993	None
Firehose House	Asbestos	Asbestos abated in 1993	None
School House	Lead Paint	Interior and exterior painted in 2004	None
West Bunkhouse	Asbestos Lead Paint	Asbestos abated in 1993	56–59
Refrigeration Plant	Asbestos Lead Paint	Interior and exterior painted in 2006 Asbestos abated in 1993	54 and 55
Kennecott Generator Shed		None	None
South Tailings Hoist House	Asbestos	Asbestos abated in 1993	None
Kennecott Visitor Center	Lead Paint	Interior and exterior painted in 2006	None
Leach Plant	Asbestos Lead Paint	Exterior painted in 2012 and 2013 Asbestos abated in 1993 and 1994	28–36
North Tailings Hoist House		None	None
Machine Shop	Asbestos Lead Paint Boiler Ash	Exterior painted in 2012 Ash buried and capped in 1994	22–27
Machine Shop Shed		None	None

GENERAL HAZARDS AND MITIGATION SUMMARY FOR BUILDINGS

Wrangell-St. Elias National Park and Preserve Kennecott Mill Site

Building Name ¹	General Hazards	Mitigation Summary	Photo Identification ²
Power Plant	Asbestos Asbestos in boilers Hydrocarbon Impacted Soil Hydrocarbon pooling Lead Paint	Asbestos was abated in 1994 The boilers were sealed in 1994 Exterior painted in 2014	3–18
Kirkwoods Cottage 29C	Asbestos	Asbestos abated in 1993	1 and 2
Silk Stocking Cottage 32D	Asbestos	Asbestos abated in 1993	None
Silk Stocking Cottage 32C	Asbestos	Asbestos abated in 1993	None
Railroad Depot/Station House	Lead Paint Asbestos	Interior and exterior painted in 2002 Asbestos abated in 1993	None
National Creek Bunkhouse	Asbestos Lead Paint	Asbestos abated in 1993	51 and 52
Assay Office	Lead Paint	Asbestos abated in 1993	52
East Bunkhouse	Asbestos	Exterior painted in 2016 Asbestos abated in 1993	None
Hospital	Asbestos	Asbestos abated in 1993	49, 50 and 52
General Managers Office	Asbestos Lead Paint	Interior and exterior painted in 2006 Asbestos abated in 1993	None
Tramway Turnhouse		None	37
Mill Building	Asbestos Lead Paint	Asbestos abated in 1993	37–48
Transformer House	Asbestos	None	19–21

Notes:

1. Bold indicates building was visited during the 2017 site reconnaissance.

2. Photos can be found in Appendix B.

ESTIMATED WASTE QUANTITIES

Wrangell-St. Elias National Park and Preserve Kennecott Mill Site

Type of Waste	Comment	Estimated Amount	Source of Data
Asbestos	Chrysotile-thermal insulation asbestos-containing material	28,728 pounds prior to abatement in 1993, current extent unknown	NPS, 1996 (Doc 1, App A)
Tailings	Leachable metals levels reported below RCRA MCLs	330,000 cubic yards	ADEC, 1992 (Doc 3, App A)
Boiler Ash	Leachable levels of lead reported above TCLP limits; Boiler Ash pile is capped	49,062 pounds	ADEC, 1992 (Doc 3, App A) NPS, 1996 (Doc 1, App A)
Ammonia tanks	Tanks reported to have been emptied, ammonia crystals remain at bottom of tanks	5,607 gallons of sludge	EMCON Alaska, Inc., 1995 (Doc 8, App A)
Oil and Grease Oil Spills	Oil reported to have been removed from tanks; soil staining remains	79,000 sf west of Power Plant; 450 sf north of Mill Building; Unknown amount near utilidor	GeoEngineers, 2006 (Doc 9, App A)
Paint-lead based	Red and white paints contained lead; grey paint contains arsenic	~98,000 sf total lead paint cover; 52,000 sf peeling paint	NPS, 1997 (Doc 5, App A)
Ore and ore concentrates	Reported to be nonhazardous; location where ore was disposed of is unknown	2,905,769 pounds	ADEC, 1992 (Doc 3, App A)
Blasting Caps	Located in dumps north of mill building and west of leach plant	Extent unknown	Shields, 2015 (Doc 21, App A)
Garbage dumps	Dumping continues	Volume unknown 21,800 sy	NPS, 1996 (Doc 1, App A)

Abbreviations:

MCLs = maximum contaminant levels RCRA = Resource Conservation and Recovery Act sf = square feet sy= square yards TCLP = toxicity characteristic leaching procedure

SUMMARY OF HISTORICAL DOCUMENTS

Investigation Dates	Author and Publication Date	Report Type/Title	Regulatory Agency	Scope of Document	Appendix A Document No.
1987–1990	Kay and Miller, 1990	Site Characterization: Kennecott – A Hazardous Waste Audit	ADEC	Waste audit for all hazardous waste. Looked at asbestos, oil and grease, ore concentrations, building paints, mine tailings, garbage dumps, power plant ash, oil leakage and water quality.	2
1991–1992	America North/EMCON, Inc., 1992	Site Characterization: Kennecott Mine Site Investigation Final Report	ADEC	Site investigation for potentially hazardous substances. Identified the following potentially hazardous substances: Asbestos, garbage dumps, water quality, tailings, oil spills, oil and grease, boiler ash, paint, ammonia tanks, ore concentrates and miscellaneous potentially hazardous substances.	7
1992	ADEC, 1992	Site Characterization: Preliminary Assessment Report for Kennecott Mine Site	ADEC/EPA	Preliminary assessment conducted by ADEC that summarized the reports of Kay and Miller (1990) and America North/EMCON, Inc. (1992). Identified the following areas of concern: Old mill building safety hazards, asbestos, boiler ash piles, ammonia solutions, oil spills, mine tailings and explosives.	3
1992–1994	EMCON Alaska, Inc., 1995	Remediation Activities: 1994 Remediation Activities Report, Kennecott Mine, Kennecott, Alaska	ADEC	Summary of remediation activities between 1992 and 1994. These activities consisted of packaging and removal of small quantities of hazardous substances located in the buildings, removal of friable asbestos-containing materials from all buildings capping of ash piles, treating and draining of two ammonia tanks, cleaning of two above ground fuel tanks, oil spill containment, and oil and grease drum removal.	8
1994–1995 Roy F. Weston, Inspection		Site Characterization: Site Inspection Report, Kennecott Mine, Kennecott, Alaska	EPA	CERCLA site investigation that characterized potential source areas, determined contamination effects on surface water bodies, evaluated the potential for source migration via the air pathway and evaluated the potential for contaminants to impact human receptors.	10
1995–1996	NPS, 1996	Site Characterization: Kennicott Pre-Acquisition Environmental Site Assessment	USDOI	Summarized previous reports of site characterization and remediation activities. Focused on tailings, fuel releases, transformers, lubricant oils and greases, lead based paint, asbestos and solid waste. Weighed the benefits of the acquisition relative to the total cost of acquisition.	1

SUMMARY OF HISTORICAL DOCUMENTS

Investigation Dates	Author and Publication Date	Report Type/Title	Regulatory Agency	Scope of Document	Appendix A Document No.
1997	NPS, 1997	Statement of Work: Statement of Work and Schedule Actions to be taken by the National Park Service at the Kennecott National Historic Landmark, Mitigation of Hazardous Material Issues	USDOI	Statement of services addressing necessary actions to mitigate the hazards identified in the 1996 NPS Kennecott Pre- Acquisition Environmental Site Assessment. Outlined work needed to mitigate fuel releases, transformers, oils and greases, lead based paint, asbestos and solid waste.	4
1997	NPS, 1997	Remediation Activities: Kennecott National Historic Landmark: Integrated Emergency Stabilization and Lead-Based Management Program	USDOI	Action plan for mitigating the hazards associated with lead based paints identified in the 1996 Kennecott Pre-Acquisition Environmental Site Assessment. Plan outlines the removal of lead based paint from the buildings.	5
1999	NPS, 1999	NPS, 1999 NPS, 1999 Material Issues Work Plan		Action plan for mitigating the seven hazards identified in the 1996 Kennecott Pre-Acquisition Environmental Site Assessment. Identifies lead based paint in soils, fuel releases and asbestos as hazards that require immediate attention.	6
2001–2002	-2002 Hart Crowser, 2002 Site Characterization: Limited Hazardous Materials Survey		USDOI	Hazardous materials survey of collected samples from paint, dust in buildings, soil surrounding buildings and some debris piles. Collected samples in several of the buildings and provided recommendations concerning remediation.	11
2003	US Public Health Service, Federal Occupational Health, 2003	Site Characterization: Lead and Arsenic Employee Exposure Assessment	FOH	Survey of lead and arsenic levels in soil, dust and debris for mine buildings. Make recommendations for employee health and safety plan.	12

SUMMARY OF HISTORICAL DOCUMENTS

Investigation Dates	Author and Publication Date	Report Type/Title	Regulatory Agency	Scope of Document	Appendix A Document No.
2003		Site Management Plan: Lead and Asbestos	OSHA	Identifies site activities that involve potential exposure to lead and asbestos. Utilizes data from 2002 Hart Crowser survey.	15
2005	Occupational	Occupational Site Characterization - Lead		Survey of lead and asbestos in several buildings at the site. Compared measured values with State of Alaska's contaminated site cleanup level.	13
2006	2006	Site Characterization: Summary and Recommendations for Kennecott Mine Historical Hydrocarbon Releases	USDOI	Analysis of hydrocarbon release data from 1992 America North/EMCON, Inc. report and 1996 Kennecott Pre-Acquisition Environmental Site Assessment. Provided recommendations for additional site research.	9
2010	SGS North America, Inc., 2010Site Characterization: Laboratory Analysis Report for Lead and AsbestosShields, 2011Site Characterization: Blasting Caps		USDOI	Measurement of lead and cadmium in dust in the east bunkhouse.	16
2011			USDOI	Survey of blasting caps present in the debris piles on the site. Identifies chemicals used in fuse blasting caps and potential hazards.	14
2013	Shields, 2013	Site Characterization: Blasting Caps Diagram	USDOI	Identifies approximate extent of blasting caps in vicinity of the mill building.	17
2015	, =	Site Management Plan: Hazardous Materials Management Plan	USDOI	Update of 2003 Hart Crowser site management plan.	18
2015	SH Alaska, 2015	Site Characterization: Report of Records and Data Preview	USDOI	Report in response to worker exposure incident and reports of symptoms similar to those caused by metals exposure. Analysis of heavy metals in air measured in areas where site employees work.	19

SUMMARY OF HISTORICAL DOCUMENTS

Wrangell-St. Elias National Park and Preserve Kennecott Mill Site

Investigation Dates	- ublication		Regulatory Agency	Scope of Document	Appendix A Document No.
2015	NPS, 2015	Site Characterization: Timeline for Lead Paint Mitigation and Asbestos Abatement	USDOI	Summary table of buildings and hazards (lead and/or asbestos) addressed. Covers some additional hazards like blasting caps in 2013 and power plant hydrocarbon area.	20
2015	Shields, 2015	Site Characterization and Remediation Activities: Blasting Caps	USDOI	Identify fuse and caps throughout debris slopes. Some of the found products were removed.	21
2015	Site Characterization: Soil White, 2015 Sampling Supplemental Services		USDOI	Measured concentrations of heavy metals and compared to the Alaska cleanup levels using XRF field screening methods. Provided recommendations for further analysis	22

Abbreviations:

ADEC = Alaska Department of Environmental Conservation

CERCLA = Comprehensive Environmental Response, Compensation, and Liability Act

EPA = Environmental Protection Agency

FOH = Federal Occupational Health

NPS = National Park Service

OSHA = Occupational Safety and Health Administration

USDOI = United States Department of the Interior

SUMMARY OF LOCATION OF HISTORICAL DATA

Author and Publication Date	Report Objectives	Sample Location Figures in Report	Sample Tables in Reports	Media Sampled	Location of Data In Appendix C
Kay and Miller, 1990	Site Characterization - Hazardous Waste Audit	Locations summarized in NPS 1996 report	Tables 2–10	Surface water, mine tailings, paint, asbestos, oil and grease, soil hydrocarbon, miscellaneous substances, paint, asbestos, groundwater	Appendix C-1
America North/EMCON, Inc., 1992	Site Characterization - Investigation Final Report	5, 6a, 6b, 13, 14, 15	Tables 1–38	Fuel oil, paint, soil, grease, fire brick, ammonia solution, tailings	Appendix C-2 (Unable to locate Figure 5)
Weston, 1995	Site Characterization - Inspection Report	Figures 3-1, 3-2	Tables 3-1, 3-2, 4-1, 4-2, 4-4, 4-5, 4-6, 4- 7, 4-8, 4-9	Soil, sediment, surface water, dust	Appendix C-3
NPS, 1996	Site Characterization - Preacquisition Environmental Site Assessment	Figures 5, 6, 7, 8	Tables 2–5	Tailings, paint, paint impacted soils, water, sediment	Appendix C-4
Hart Crowser, 2002	Site Characterization - Hazardous Building Materials Survey	Figures 2–32	Tables 1–6	Paint, dust and soil for lead and asbestos	Appendix C-5 (Figures not included)
US Public Health Service, Federal Occupational Health, 2003	Site Characterization - Lead and Arsenic Employee Exposure Assessment	Figure 1	Tables 1–4	Soil, dust and debris	Appendix C-6
Federal Occupational Health, 2005	Site Characterization - Lead and Asbestos in Soil Survey	Appendix D	Table 1a, 3, 4, 5	Debris, dust, soil	Appendix C-7 (Unable to locate Appendix D)

SUMMARY OF LOCATION OF HISTORICAL DATA

Author and Publication Date	Report Objectives	Sample Location Figures in Report	Sample Tables in Reports	Media Sampled	Location of Data In Appendix C
SGS Laboratory, 2010	Site Characterization - Laboratory Analysis Report for Lead and Asbestos	NA	NA	Dust	Appendix C-8
Shields, 2013		2013 Mill Blasting Cap Diagram	NA	NA	Appendix C-9
SH Alaska, 2015	Site Characterization - Report of Records and Data Preview	Sampling Data Table	NA	Air (lead, arsenic, mercury, asbestos)	Appendix C-10
White, 2015	Site Characterication - Soil Sampling Supplemental Services		Tables 1–4	Soil (metals)	Appendix C-11

SUMMARY OF HISTORICAL MAXIMUM SOIL DATA¹

Wrangell-St. Elias National Park and Preserve Kennecott Mill Site

	Maximum Constituent Results		Regional Screening Level ²	NPS Screening Level ³	ADEC Direct Contact Human Health Risk Screening Level ⁴		n Results le Metals	TCLP Hazardous Waste Limit ⁵
Metal	EPA Method	Result (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	EPA Method	Result (mg/L)	(mg/L)
Arsenic	7060	3,500	0.39	0.25	25	1312	ND	5.0
Barium	6010	162	15,000	17.2	20,300	1312	0.3	100
Cadmium	6010	282	7.1	0.27	79	1312	ND	1.0
Chromium	6010	19	230	28	304	1312	ND	5.0
Lead	6010	4,880	400	0.94	NA	1312	ND	5.0
Mercury	6010	51.8	1.1	0.013	30	1312	ND	0.2
Selenium	6010	3	390	0.331	510	1312	ND	1.0
Silver	6010	118	390	2.6	510	1312	ND	5.0
TPH - Power Plant	418.1	110,000	520	No ESV	No Screening Level	NA	NA	NA
TPH - Mill Building	418.1	100,000	520	No ESV	No Screening Level	NA	NA	NA
TPH - Utilidor	418.1	320,000	520	No ESV	No Screening Level	NA	NA	NA

Notes:

1. Bold values indicate RSL exceedances

2. RSL from EPA for residential ingestion of soil.

3. Screening level is NPS ecological screening value for wildlife exposure to soil.

4. ADEC Division of Spill Prevention and Response Contaminated Sites Program, Cumulative Risk Guidance.

5. Toxicity characteristic from 40 Code of Federal Regulations 261.24.

Abbreviations:

ADEC = Alaska Department of Environmental Conservation

EPA = U.S. Environmental Protection Agency

ESV = ecological screening value

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

NA = not applicable ND = not detected NPS = National Park Service TCLP = toxicity characteristic leaching procedure TPH = total petroleum hydrocarbons

LEAD CONCENTRATION MEASUREMENTS

Wrangell-St. Elias National Park and Preserve Kennecott Mill Site

	1997 Lead Pair	nt Estimations ¹	2002 Hazardous I	Materials Survey ²
	Total Cover	Peeling	I ead in Dust Samples	Lead in Soil Samples ⁴
Location	(square feet)	(square feet)	(µg/ft ²)	(mg/kg)
Old School House (Shaw)			436–1,583	123–152
Recreation Hall	1,400	616	1,448–2,762	87–109
Firehose House				
School House	2,160	1,015	5,344–9,824	3,400
West Bunkhouse	8,138	2,997	2,139–17,920	4,480–4,880
Refrigeration Plant			1,420–1,550	6,218
Kennecott Visitor Center (Store and Warehouse)	3,920	2,320	Basement: 810 First floor: 1,283–5,773	1,500–2,989
Leach Plant	18,288	11,298	777	243–1,450
Machine Shop	4,536	1,242	1,188–1,495	101–224
Power Plant	9,360	1,502		
Railroad Depot/Station House	720	302	914	398
National Creek Bunkhouse	4,128	2,974	6,950–8,070	116
Assay Office	800	320	NM	NM
General Managers Office	3,916	1,955	Floor 1: 3,827 Floor 2: 6,118	2,200
Mill Building	41,661	26,037	131–1,298	
Totals:	99,027	52,578		

Notes:

1. NPS (1997b)

2. Hart Croswer (2002)

3. The EPA screening value for lead in dust is 40 μ g/ft².

4. The NPS ESV screening value for wildlife exposure to soil for lead is 0.94 mg/kg.

Abbreviations:

 μ g/ft² = micrograms per square foot

ESV = ecological screening value

mg/kg = milligrams per kilogram

NM = not measured

Amec Foster Wheeler Page 1 of 1

SEEP AND SURFACE WATER SAMPLING RESULTS¹

Wrangell-St. Elias National Park and Preserve Kennecott Mill Site

Location ²	Figure ID	Number of Samples	Arsenic	Cadmium	Chromium	Copper	Mercury	Lead	Zinc
Screening Level ³			3.1	0.07	None	0.23	0.026	0.92	30
Regional Screening Levels ⁴			50 ⁵	9.2	4.4	80	6	15 ⁶	600
Background Location	BG	10	0.7	0.1	< 5	0.9	0.1	1.4	9
Seeps downgradient of power plant	SP1	3	13.0	0.5	2.7	157.7	0.1	63.7	493.3
Seep at south end of leach plant	SP2	3	177.3	2.1	< 5	4,253.3	0.7	5.7	<500
Seep downgradient of leach plant	SP3	1	7.2	< 0.5	< 5	65.3	0	<.5	<500
National Creek, west of assay office, prior to entering tailings	NC1	4	1.4	< 0.5	< 5	21.3	< 0.2	0	2
National Creek, west of west bunkhouse directly downstream of tailings	NC2	3	69.0	3.3	< 5	1,366.7	1.0	22.3	2,366.7
National Creek, west of Kennecott Glacier Lodge, above historic glacier influent	NC3	6	2.1	< 0.5	< 5	38.3	0.1	1.4	9

All concentrations are in parts per billion (ppb).

Notes:

1. Bold values exceed NPS ESV for wildlife exposure to surface water.

2. Specific locations are shown on Figure 4. Sampling data is from NPS (1996).

3. Screening value is the NPS ESV for wildlife exposure to surface water.

4. Regional Screening Levels from EPA for residential ingestion of tapwater.

5. EPA does not have a screening level; this screening value is recommended by the California Regional

Weter Queity 600 and a generating level as there is no consensus reference dose cancer slope factor.

However, they recommend 15 parts per billion, which is the EPA Action Level in water.

Abbreviations:

EPA = U.S. Environmental Protection Agency

ESV = ecological screening value

NPS = National Park Service

ppb = parts per billion

HEALTH EFFECTS FOR CHEMICAL HAZARDS IDENTIFIED AT KENNECOTT MILL SITE

CAS	Chemical	Exposure Route	Health Hazards
<u>1332-21-4</u>	Asbestos (fibers/cc)	Inhalation, Ingestion, Eye/Skin Contact	<i>RISE;</i> Asbestosis (chronic exposure): dyspnea (breathing difficulty), interstitial fibrosis, restricted pulmonary function, finger clubbing; eye irritation; potential occupational carcinogen
<u>7439-92-1</u>	Lead (inorganic) (mg/m3)	Inhalation, Ingestion, Eye/Skin Contact	<i>RISE;</i> Lassitude (weakness, exhaustion), insomnia; facial pallor; anorexia, weight loss, malnutrition; constipation, abdominal pain, colic; anemia; gingival lead line; tremor; paralysis wrist, ankles; encephalopathy; kidney disease; irritation eyes; hypotension
<u>7664-41-7</u>	Ammonia (ppm)	Inhalation, Ingestion, Eye/Skin Contact	<i>RISE;</i> Irritation eyes, nose, throat; dyspnea (breathing difficulty), wheezing, chest pain; pulmonary edema; pink frothy sputum; skin burns, vesiculation; liquid: frostbite
<u>7440-38-2</u>	Arsenic inorganic (mg/m3)	Inhalation, Ingestion, Absorbtion, Eye/Skin Contact	<i>RISE;</i> Ulceration of nasal septum, dermatitis, gastrointestinal disturbances, peripheral neuropathy, respiratory irritation, hyperpigmentation of skin [potential occupational carcinogen]
<u>7440-39-3</u>	Barium - soluble (mg/m3)	Inhalation, Ingestion, Eye/Skin Contact	RISE ; Eye, mucous memebrane, and skin irritation
<u>7727-43-7</u>	Barium sulfate (mg/m3)	Inhalation, Eye/Skin Contact	RISE; Eye, nose, and upper respiratory irritation; pneumoconiosis
<u>7440-43-9</u>	Cadmium (mg/m3)	Inhalation, Ingestion	<i>RI</i> ; Pulmonary edema, dyspnea (breathing difficulty), cough, chest tightness, substernal (occurring beneath the sternum) pain; headache; chills, muscle aches; nausea, vomiting, diarrhea; anosmia (loss of the sense of smell), emphysema, proteinuria, mild anemia [potential occupational carcinogen]
<u>Varies</u>	Chromium(II) compounds (mg/m3)	Inhaltion, Ingestion, Eye/Skin Contact	RISE; Irritation eyes; sensitization dermatitis
<u>Varies</u>	Chromium(III) compounds (mg/m3)	Inhaltion, Ingestion, Eye/Skin Contact	RISE; Irritation eyes; sensitization dermatitis
<u>7439-97-6</u>	Mercury (inorganic) (mg/m3)	Inhaltion, Ingestion, Eye/Skin Contact	<i>RISE</i> ; SKIN; Irritation eyes, skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss; proteinuria
<u>7782-49-2</u>	Selenium compounds (mg/m3)	Inhaltion, Ingestion, Eye/Skin Contact	<i>RISE</i> ; Irritation eyes, skin, nose, throat; visual disturbance; headache; chills, fever; dyspnea (breathing difficulty), bronchitis; metallic taste, garlic breath, gastrointestinal disturbance; dermatitis; eye, skin burns; in animals: anemia; liver necrosis, cirrhosis; kidney, spleen damage
7440-22-4	Silver, metal and soluble compounds (mg/m3)	Inhaltion, Ingestion, Eye/Skin Contact	<i>RISE</i> ; Blue-gray eyes, nasal septum, throat, skin; irritation, ulceration skin; gastrointestinal disturbance
<u>1314-13-2</u>	Zinc (zinc oxide total dust) (mg/m3)	Inhalation	/; Metal fume fever: chills, muscle ache, nausea, fever, dry throat, cough; lassitude (weakness, exhaustion); metallic taste; headache; blurred vision; low back pain; vomiting; malaise (vague feeling of discomfort); chest tightness; dyspnea (breathing difficulty), rales, decreased pulmonary function

HEALTH EFFECTS FOR CHEMICAL HAZARDS IDENTIFIED AT KENNECOTT MILL SITE

Wrangell-St. Elias National Park and Preserve Kennecott Mill Site

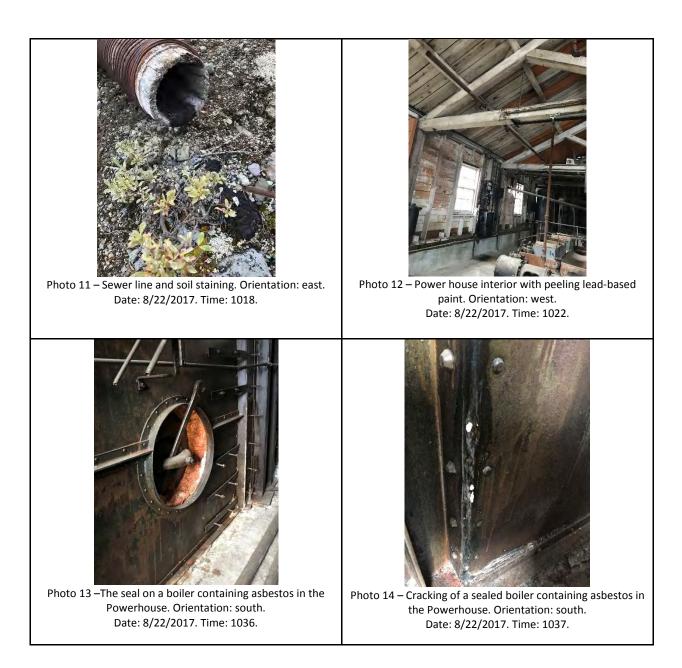
CAS	Chemical	Exposure Route	Health Hazards
<u>65996-93-2</u>	Coal Tar Pitch Volatiles (Polycyclic Aromatic Hydrocarbons, PAH) (mg/m3)	Inhalation, Eye/Skin Contact	RSE; Dermatitis, bronchitis, [potential occupational carcinogen]
<u>8006-61-9</u>	Gasoline (ppm)	Inhalation, Absorbtion, Ingestion, Eye/Skin Contact	<i>RISE</i> ; Irritation eyes, skin, mucous membrane; dermatitis; headache, lassitude (weakness, exhaustion), blurred vision, dizziness, slurred speech, confusion, convulsions; chemical pneumonitis (aspiration liquid); possible liver, kidney damage; [potential occupational carcinogen]
<u>8012-95-1</u>	Oil (mineral) mist, particulate (Bunker C)	Inhalation, Absorbtion, Ingestion, Eye/Skin Contact	RISE; Irritation eyes, skin, respiratory system
<u>111-65-9</u>	Octane	Inhalation, Ingestion, Eye/Skin Contact	<i>RISE</i> ; Irritation eyes, nose; drowsiness; dermatitis; chemical pneumonia (if liquid aspirated); in animals: narcosis
<u>8008-20-6</u>	Kerosene (mg/m3)	Inhalation, Ingestion, Eye/Skin Contact	<i>RISE</i> ; SKIN; Irritation eyes, skin, nose, throat; burning sensation in chest; headache, nausea, lassitude (weakness, exhaustion), restlessness, incoordination, confusion, drowsiness; vomiting, diarrhea; dermatitis; chemical pneumonitis (aspiration liquid)
<u>7783-06-4</u>	Hydrogen sulfide (ppm)	Inhalation, Eye/Skin Contact	<i>RISE</i> ; Irritation eyes, respiratory system; apnea, coma, convulsions; conjunctivitis, eye pain, lacrimation (discharge of tears), photophobia (abnormal visual intolerance to light), corneal vesiculation; dizziness, headache, lassitude (weakness, exhaustion), irritability, insomnia; gastrointestinal disturbance; liquid: frostbite

Abbreviations

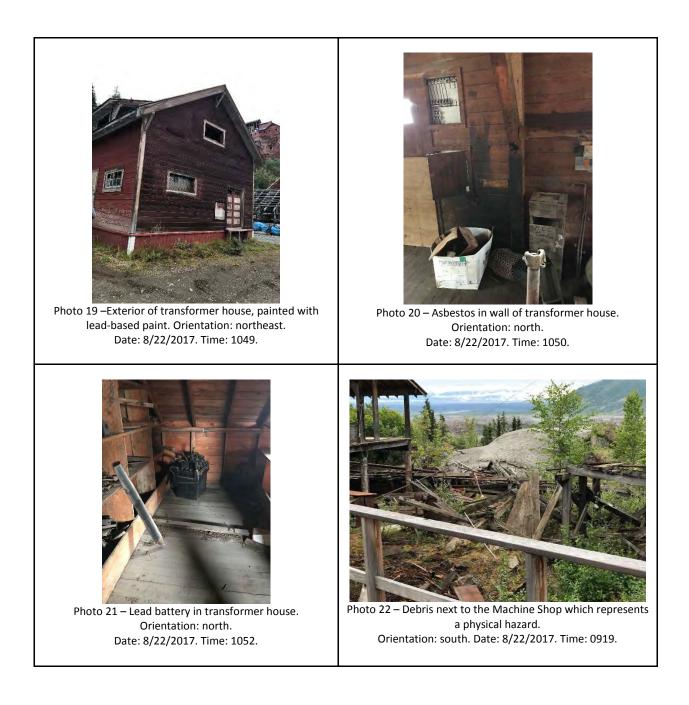
R	Respiratory
I	Irritant
S	Skin Hazard
E	Eye Hazard
SKIN	Recommends need for Personal Protective Equipment
сс	cubic centimeters
ppm	parts per million
mg/m ³	milligrams per cubic meter

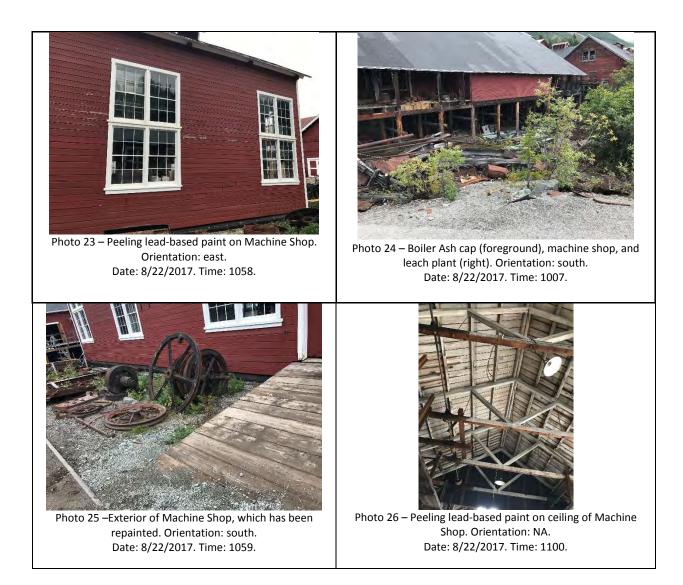
Appendices

Appendix A – Previous Reports


Files provided separately on DVD.

Appendix B – Photographic Log





Contaminated Sites Program Environmental Compliance and Response Branch

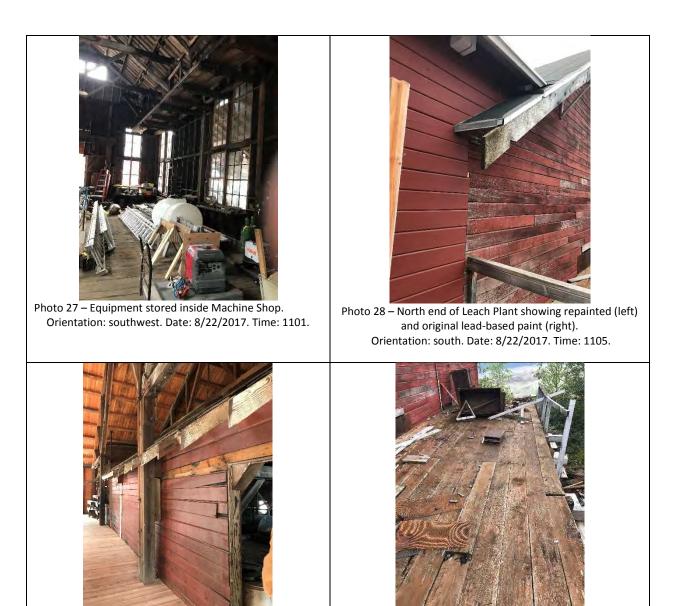


Photo 29 – Leach Plant interior with new ceiling and original lead-based paint. Orientation: southeast. Date: 8/22/2017. Time: 1105.

Photo 30 – Western end of the Leach Plant. Note the lack of railing (right) representing a physical hazard. Orientation: west. Date: 8/22/2017. Time: 1007.

Photo 31 – Interior of Leach Plant showing old ammonia tanks. Orientation: south. Date: 8/22/2017. Time: 1118.

Photo 32 – Ammonia tanks in Leach Plant. Note green staining on ceiling beams. Orientation: northwest. Date: 8/22/2017. Time: 1122.

Photo 33 – Exterior of Leach Plant. The collapsing structure is a physical hazard. The wall contains original lead-based paint. Orientation: south. Date: 8/22/2017. Time: 1125.

Photo 34 – Debris by west end of Leach Plant (foreground) and unknown surface water feature (background) downgradient of the Mill Site. Orientation: south. Date: 8/22/2017. Time: 11218.

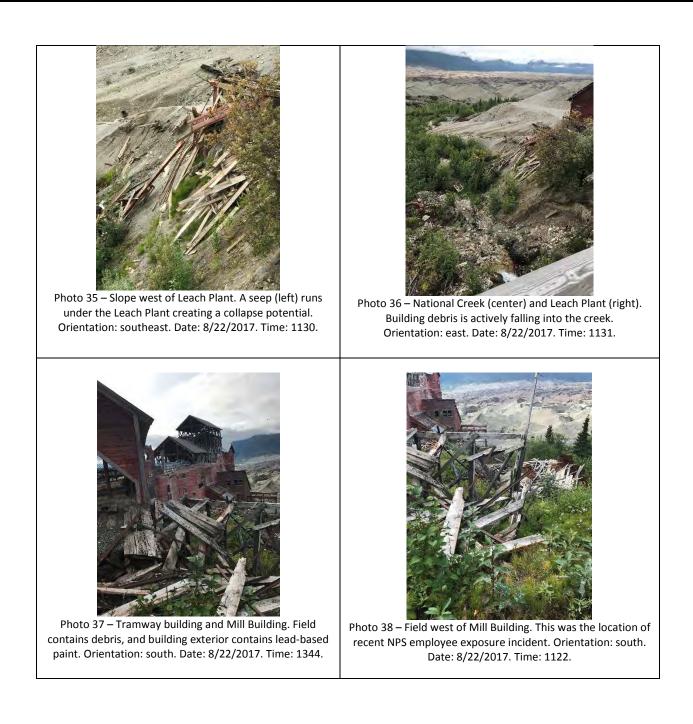


Photo 39 – Debris west of Mill Building that caused recent NPS employee exposure incident. Orientation: south. Date: 8/22/2017. Time: 1345.

Photo 40 – South side of Mill Building. The debris and collapse potential are physical hazards. Orientation: northwest. Date: 8/22/2017. Time: 1345.

Photo 41 – Start of guided tours in the Mill Building. The room has had historically high lead concentrations.
 Orientation: southwest. Date: 8/22/2017. Time: 1350.

Photo 42 – Collapsing deck of the Mill building, which represents a physical hazard. Orientation: south. Date: 8/22/2017. Time: 1352.

Photo 43 – Collapsing deck of the Mill Building, representing a physical hazard. Orientation: south. Date: 8/22/2017. Time: 1354.

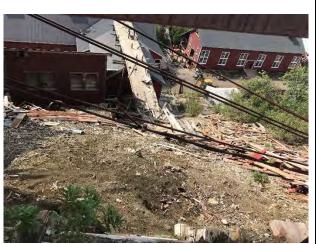


Photo 44 – Debris by the Mill Building. Blasting caps, representing an explosive hazard, have been found in the debris. Orientation: west. Date: 8/22/2017. Time: 1429.

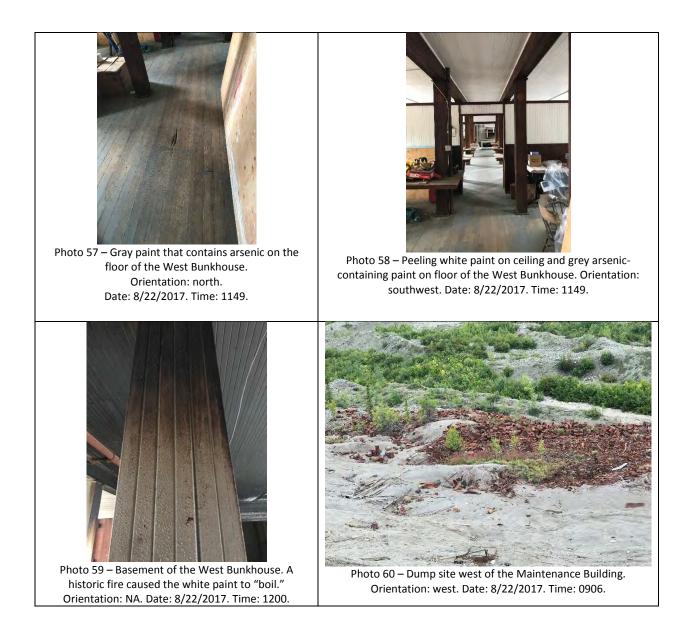


Photo 45 – North side of Mill Building. Note the original lead-based paint. Orientation: south. Date: 8/22/2017. Time: 1433.

Photo 46 – Debris field west of the Mill Building which contains blasting caps. Orientation: northeast. Date: 8/22/2017. Time: 1447.

Appendix C – Summary Data from Previous Reports

Kennecott Mill Site, Wrangell-St. Elias National Park and Preserve March 29, 2017

Appendix C-1 – Data from Kay, Simon and Robert E. Miller. 1990. Kennicott – A Hazardous Waste Audit.

		Amounts	in % volu	Ime	1				
Sample #	Location	Type of asl	hantons			-			
	A A CAR TO THE ACCOUNTS			Anthophyllite	Taamalila	One of de the			
		Ginysome	Anosite	Annophymie	Actinolite	Crocidolite			Other non-fibro
1987 survey			1		Actinonite		Asbestos	material	material
1	Powerhouse; boiler insulation	40 to 60	nd	nd	nd	nd			- lands
2	Powerhouse; pipe insulation	20 10 30	nd	nd	nd	nd	-	nd	plaster
3	Behind powerhouse; pipe insulation	20 to 30	nd	nd	nd	nd		5 to 10% min-	plaster plaster
								eral wool	
	Recreation Hall; projector booth	80 to 90	l nd	nd	nd	nd		nd	plaster
5	Bunkhouse (bldg #5 or 7?); basement water tank?		nd	nd	nd	nd		nd	plaster
0	Assay Office	5 to 10	30 to 50	nd	nd	nd		30 to 40%	nd
This survey:								cellulose	
14	Mill; utilidor insulation	50	nd				5		45
15	Firehouse; utilidor insulation	45	nd				nd		45 55
28	Store; plpe insulation	45	nd				nd	3% cellulose	52
30	Powerhouse; firebrick	nd	nd				nd	2% glass	98
30	Powerhouse; mortar from firebrick	nd	nd				nd	nd	100
51	Hospital; fiberboard on walls	nd	nd				nd	99% cellulose	1
lotes: nd=not	detected. The two surveys are not exactly compar- up anthophyllite, tremolite and other forms of asbe	able - the pr	esent surve	IY					
gro	p manophymic, namonic and other forms of asor	stos under	omer aspe	SIOS".					
	All samples contain asbestos except sample #	51							
									- m - 1 - c-

2

•

Location	Form	Sample #	Volume-cu.ft	Weight-It
Mill town utilidors	Pipe insulation	14*, 15*, 1990	252	3402
General Manager's	Pipe insulation		3	41
House, bldg#1				1.1.1.1.1
Mill, bldg#3	Pipe insulation		13	176
Bunkhouse, bldg#5	Tank Insulation	5°, 1987 survey?	1	14
	Pipe insulation		1	14
Bunkhouse, bldg#7	Tank Insulation		2	27
	Pipe Insulation		17	230
Assay Office, bidg#8	Fireproofing	6*, 1987 survey	2	27
Powerhouse, bldg#9	Pipe Insulation	2*,1987; 29, 1990	306	4131
	Boller insulation	1°, 1987 survey	681	9194
Hospital, bkg#14	Pipe insulation		1	14
Leáching Plant, bldg	Pipe insulation		15	203
# 15	Evaporator insulation		720	9720
Recreation Hall, bldg	Wall fireproofing	4°, 1987 survey	2	27
#18				
Store, bldg#19	Pipe insulation	28*, 1990 survey	27	365
West Bunkhouse,	Pipe & Tank insulation		28	378
bidg #20		Log and Sec 9		
Cottage, bldg#29c	Stove Insulation		Minimal volume: 0.07	1
M/c Shop, bldg#36	Pipe insulation		29	392
Oil House, bldg#38;	Spare pipe insulation	3*, 1987 survey	41	554
Spare insulation store	Asbestos bricks		24	324
	Asbestos/plaster sacks		8	108
Bonanza Mine, tram	Cupboard lining		estimated 1	14
terminus				
TOTALS:			2128	28728
* Asterisk Indicates that	t a sample was analyze	d		
Note: measurement rour	nded to nearest 1.0 cu.ft.	or 1.0 lb.		

TABLE 4. OIL AN	D GREA	SE ANALYSES - OIL BURNING SPECIFICATIONS						S	
			Concentrations - ppm:						
Location	Sample number	Type of oil or grease	As	Cd	Cr	Pb	Total halogens	PCBs	Flash point deg. F
Power House	31	Fuel oll/water mix	1.4	<0.5	<1.0	9.9	119	<1.0	>160
Fuel tank	32	Fuel oil	<0.5	<0.5	1.2	9.7	<100	<1.0	>160
MIII	33	Grease/water mix	2.1	<0.5	<1.0	2.1	<100	<1.0	>160
Fuel tank	35	Fuel oil	0.8	<0.5	<1.0	9.7	<100	<1.0	>160
MIII	36	Transformer oil	<0,5	<0.5	<1.0	<1.0	<100	<1.0	>160
мш	37	Black grease	11.7	<0.5	<1.0	4.5	<100	<1.0	>160
MIII	38	Yellow grease	2.4	<0.5	<1.0	8.6	<100	<1.0	>160
Mill, James table	40	Sump oll	<0.5	<0.5	<1.0	<1.0	<100	<1.0	>160
Leaching Plant	42	Switchgear oil	<0.5	<0.5	<1.0	<1.0	<100	<1.0	>160
Transformer House	48	Transformer oil	<0.5	<0.5	<1.0	<1.0	<100	<1.0	>160
Junction Station	50	Transformer oil	<0.5	<0.5	<1.0	<1.0	<100	<1.0	>160
RCRA used oll	ton friel	l Handha -	<5	<2		<100	<1000	<50	>100

-

-7

....

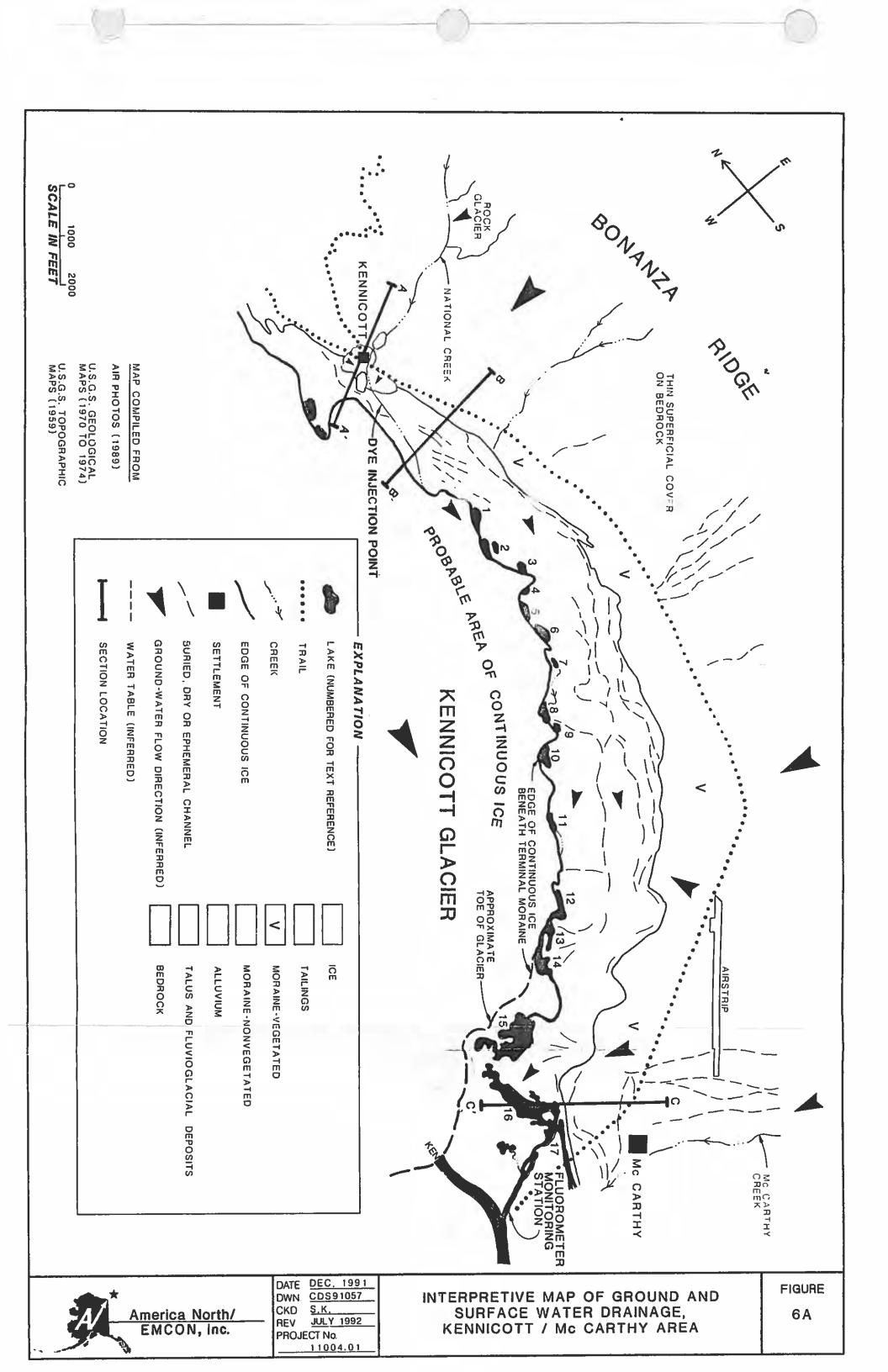
Location	Type of container	Type of oil or grease	Sample #	Volume
	Type of contained	Type of on or grouse	Sample #	gallons
	74.1-1-1-1-1-1			ganons
Framway terminus, bidg #2	50 gallon drum	Yellow grease & water	33*	21
	Transformer	Transformer oil	36*	6
	Coffee cans, etc	Yellow or black grease	37*, 38*	estimated 50
	Plat-O table oil sumps	Light lube oil		21
	James table oil sumps	Light lube oil	40*	4
Powerhouse, bldg #9	Oil in floor troughs	Fuel oil and water mix	31*	793
	Oil tanks in SE corner	Fuel oil?		724
	Oil tank in rafters	Fuel oil?		133
Leaching Plant, bldg#15	Switchgear	Insulating oil	42*	14
	Leaching tanks	Fuel oil residues?		~3508
	2x50 gallon drums	Yellow grease		100
	25 lb tins	'Arctic Cup' grease		estimated 45
Store, bidg#19	2 recent oil drums	Diesel?-not opened		110?
	4 small cans- labelled	Inflammable mix of vaseline,		1
	battery vaseline	rosin & benzine (gasolene)		
West Bunkhouse, bldg #20	55 gailon drum	Chevron #1 heating oil,recent	1000000	estimated 5
Machine Shop, bidg#36	Small cans	Black grease		estimated 5
Transformer House, bldg#37	Transformers	Transformer oil	48*	160
Oil tank next bldg #38	Large oil tank	Fuel oil	35*	235
Tank #4 next to bidg #49	Large oil tank	Fuel oll	32*	26655
Junction Station	50 gallon drum	Grease		estimated 10
	Switchgear	Insulating oil		2
	Transformers	Transformer oil	50*	97
Bonanza Mine, tram terminus	Drum and cans	Black grease		estimated 135
Total				32834

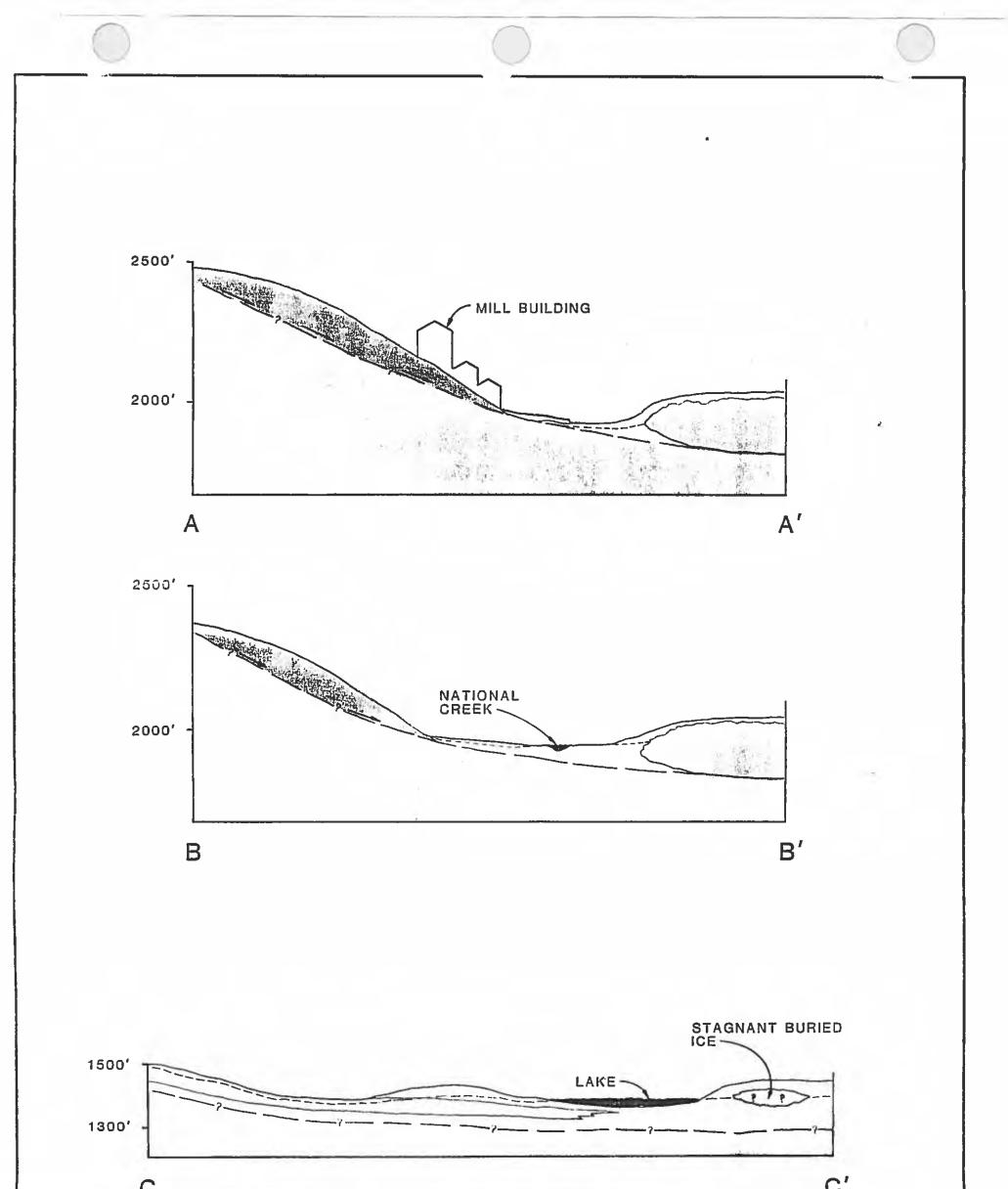
Ť

TABLE 6	ORE CONCENT	RATE ANALYSES									1			L	
				-				-	-		-				
			Metal	s, % b	/ weigh	nt:	_				1.11			1	
Sample #	Location	Interred bulk composition	AI	As	Bo	Ca	Co	Cu	Fe	Mg	Mn	NI	P	SI	Zn
4	Leach plant	magnetite	nd	nd	0.13	0.34	nd	nd	74.2	nd	0.54	0.16	0.18	0.25	nd
6	Tallings	copper carbonate and limestone concretion	0.26	nd	nd	21.5	nd	23.4	5.9	4.7	nd	nd	nd	0.11	0,14
	Flotation plant outfall pipe	limestone with minor copper carbonate	0.69	0.95	nd	33.1	nd	8.7	2.5	4.2	nd	nd	nd	0.25	nd
8	Mill bldg ore bins	copper sulphide	0.22	nd	пю	2.2	nd	48.9	1.4	0.2	nd	nd	nd	nd	0.22
	Mill bldg high- grade ore bin	copper sulphide & limestone	0.2	0.4	nd	22.8	nd	25.2	1.8	4.7	nd	nd	nd	0.15	0.15

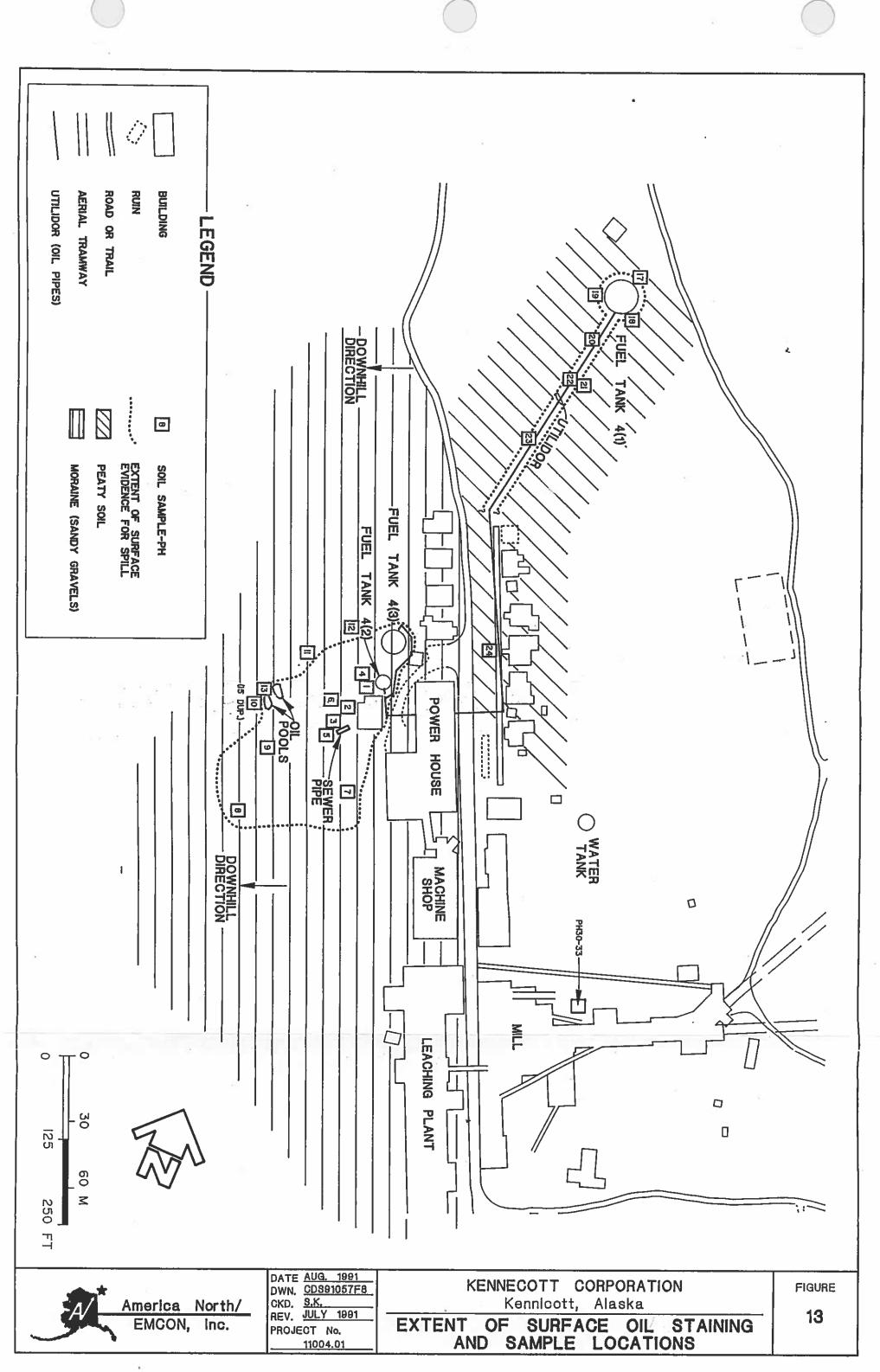
🐳 e editor

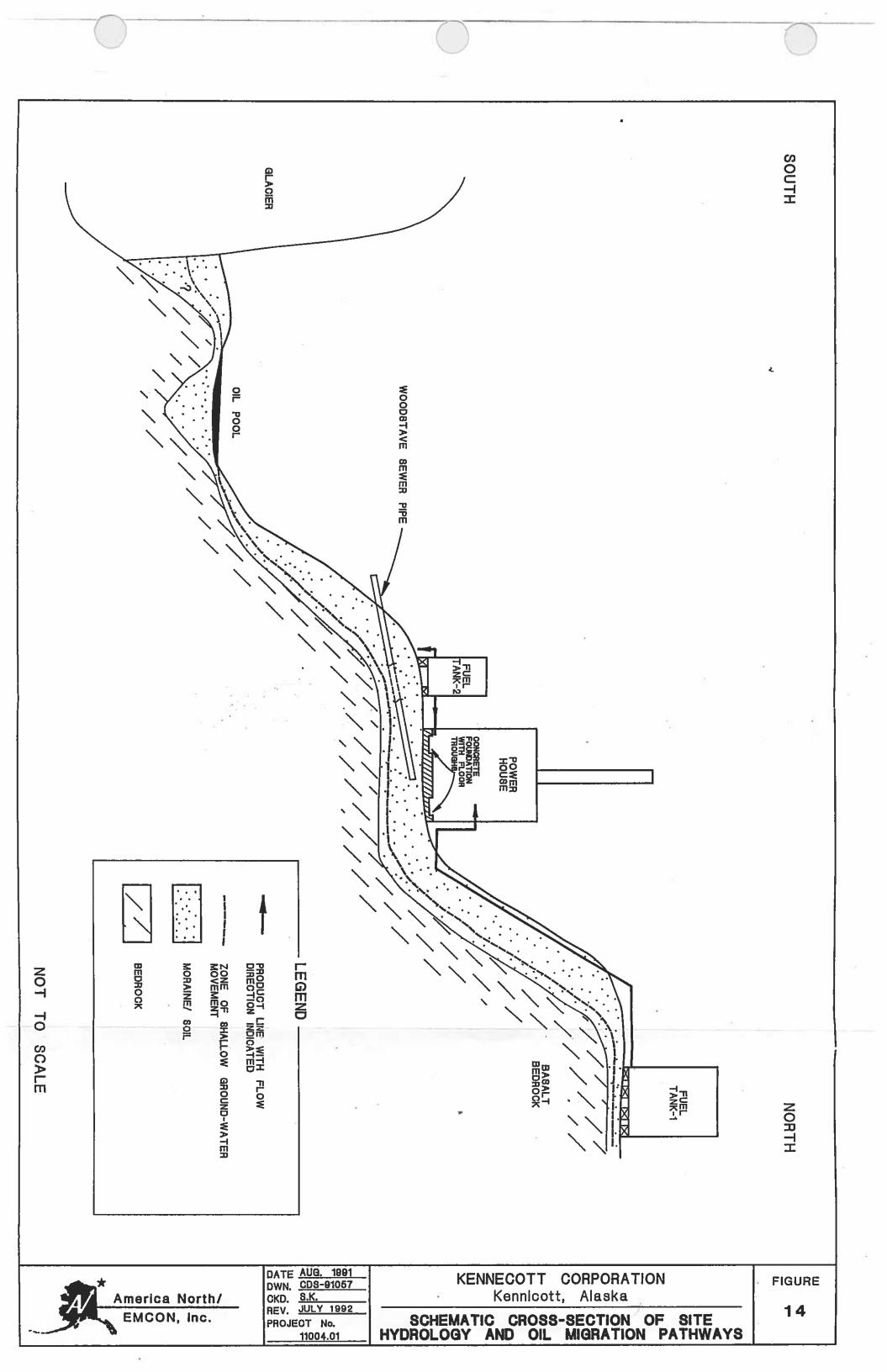
Building	Ore container type, location	Ore composition	Sample	Volume,	Density,	Weight,
				cu. ft	lb/cu.ft	Ib
Will, bldg #3	Main ore bin, #5 on fig.7	Mixed ores and lime-	34	12872	86	1106992
		stone				1.2.2.2
	Dorr Thickener, #20 on fig.7	Mixed ores and lime-	39	13102	86	1126772
	•	stone	1.00			
	Table concentrate/high grade	Chalcocite; Cu2S	41	125	66	8250
	ore circular tanks, #25 on fig.7					
	Rectangular high-grade bin at	Chalcocite; Cu2S	10*	est. 130	88	11440
	north end of loading area, #25					
	on fig.7					
Flotation Plant,	Two rectangular bins in	Copper sulphide; CuS	46	213	94	20022
bldg #15	NE comer of building					
	Three Dorr Thickeners	Copper sulphide; CuS		est. 6190	94	581860
	Loading bay, 105 cardboard drums		4.	263	191	50233
Store, bldg #19	Assay samples; paper bags	Copper carbonate or	13		53	est. 200
		sulphide				1
Totals				32895		2905769

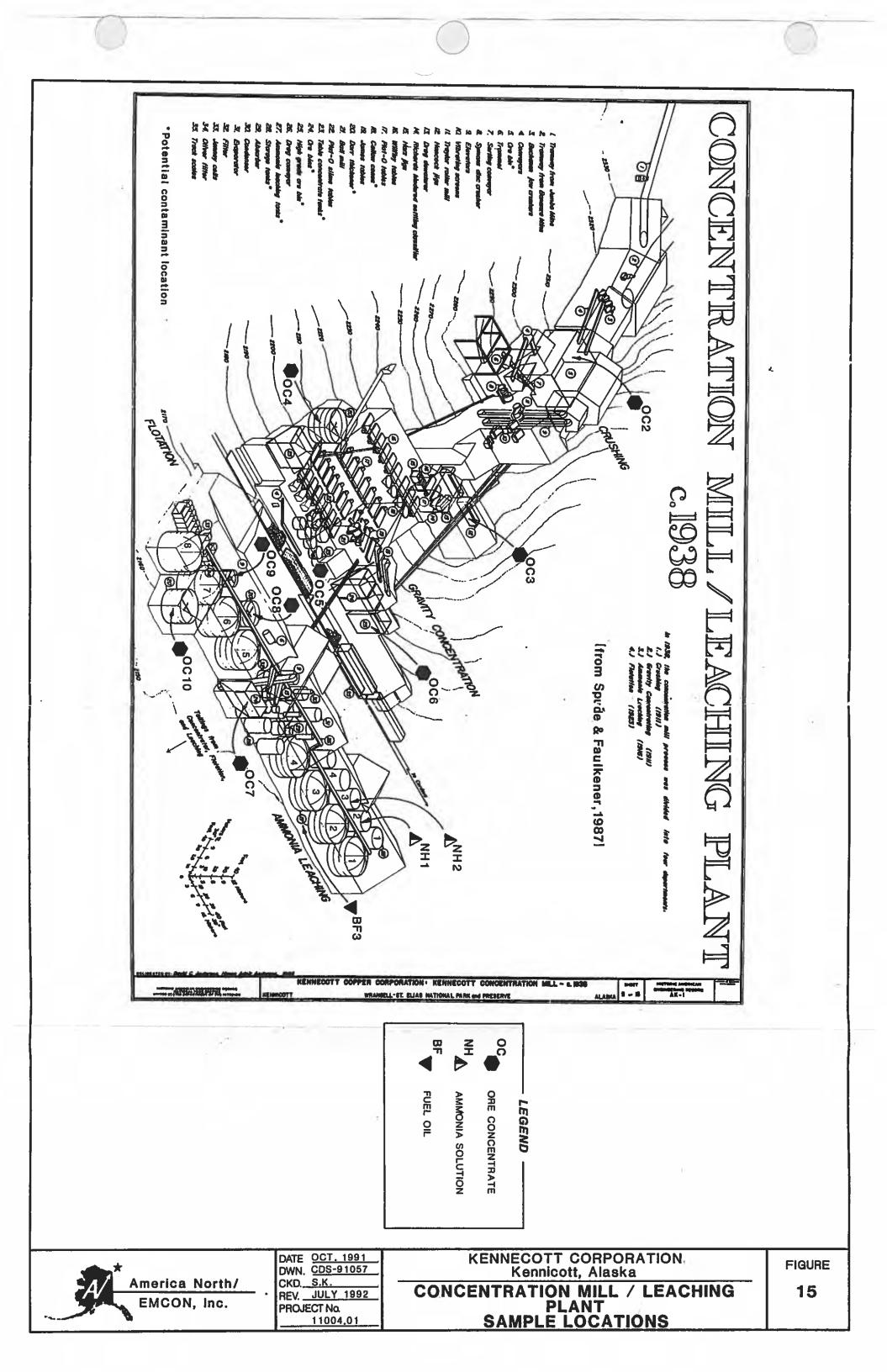

Sample #	Туре	Location	Parameter tested	Result	Units
2	White paint	Hospital	Lead	525	g/kg
9	Red paint	Leach Plant	Lead	8.2	g/kg
47	Red paint powder	Bidg #46	Lead	4.8	g/kg


TABLE 9	EP TOX	ICITY FOR ME	TALS											
Sample #	Туре	Location	Metals: c	concentra	tion in m	g/L:	1	1		1	pH	Flammability,		
2		1	Ag	As	Ba	Cd	Cr	Hg	Pb	Se	corrosivity	deg. F	Reactivity	
1	Tailings	W of bldg #19	<0.05	0.14	0.2	0.18	<0.05	<0.0002	<0.05	<0.01				
53	Ash	W of bldg #9	<0.1	<0.01	<0.05	<0.1	<0.05	<0.002	<0.05	<0.010	7.1	>200	non-reactive	-
39	Ore conc.	Bldg #3	<0.1	1.06	0.21	1.6	<0.05	0.004	<0.05	<0.010				
RCRA lim	its:		<5	<5	<100	<1	<5	<0.2	<5	<1	2 to 12.5	>140		-

		CE VOLUMES AND W	CIGINO					-
Туре	Composition	Location	Sample?	Volume-cu.ft.	Density-Ib/cu.ft.	Weight-ib.	Amount-misc. units	-
Fiberboard Interior	100% wood fiber	Bidg#19, Steward's	-	8.3		-	394 sq.ft.	_
walt covering		Office						
		Bidg#1		7.5			384 sq.ft.	-
	1	Bidg#5 Bidg#14	51*	19.2	1.0		974 sq.ft, 7750 sq.ft,	-
							TTEC Salu	-
Firebricks	Ceramic	Bidg#9	30*	5832	37.5	218700		1
		Open store or bldg#38	52	48	37.5	1800		-
Plaster	Calcium sulphate	Bidg#19				estimated 4000		-
White powder	Unknown	Bidg#19				estimated 170		_
Carbide cans	ICaC2/CatOH)2	Bidg#19	12	0.7	45	32		_
Crates washing soda	Na2CO3.10H2O	Bidg#19	11	5.4	34	184		
Powdar barrels	Unknown	Bidg#19	1000 C	11				
Carbolic acid crystals	C6H5OH-Phanol	Bidg#19	1	0.6		estimated 65		-
	CaO/Ca/OH(2	Bidg#19		0.04				
Sulphur powder	Sulphur	Bidg#19	3	1		estimated 50		-
Grease sticks	Solid grease	Bidg#19				estimated 10		
Ammonia solution	(NH4)2CO3 ag.	Bldg#15	45	-	1		stimated 17220 gallons	1
10.15.							S	-
White powder	Unknown	Bidg#36		3.4				-
loiler ash	Hydrocarbon residues	West of Bidg#9	53	1443	34	49062		
ssorted chemicals	Unknown	Bida#8	-			estimated 10		-
ssorted drugs	See text	Bidg#14				estimated 10		_
las and a second	umber indicates that an	lun .						-




Appendix C-2 – Data from America North/EMCON, Inc. 1992. Kennicott Mine Site Investigation Final Report, Volumes 2nd 2.



			*		
Q	525'	1050'			
SECTIO	N HORIZONT	AL SCALE			
0	300'	600'		SEE FIGURE 6A FOR KEY	
SECTI	ON VERTICAI	LSCALE		GEL HOME OAFOA REI	
*		DATE DEC. 1991 DWN. CDS			FIG
	a North/	- REV.	SECTIONS TO AC	COMPANY FIGURE 6A	6
EMC	ON, Inc.	PROJECT No. 11004.01			

Sample	Date Sampled	Sample Type	Analysis	Sampling Description
PH30	6/19/92	Soil	TPH, EPH	For location see Figure 7 and plate (referenced in text).
				Soil type: Olive (5Y 4/3) sandy gravel (GM). Gravel 35-45%, angular, max. 1cm; Sand 55-65%, very coarse to fine.
	┦────┤─			Visible oil-staining and patroleum odor.
PH31	6/19/92	Soil	TPH, EPH	For location see Figure 7 and plate (referenced in text).
				Soil type: sandy gravel, as above.
	<u> </u>			Visible oil-staining and petroleum odor.
PH32	6/19/92	Soil	ТРН	For location see Figure 7 and plate (referenced in text).
				Soil type: sandy gravel, as above.
				Visible oil-staining and petroleum odor.
PH33	6/19/92	Soil	ТРН	For location see Figure 7 and plate (referenced in text).
				Soil type: olive green sandy gravel (GP). Gravel 30-40%, angular, max. 1cm.; Sand 60-70%, very coarse to medium.
				Visible oil-staining but no odor.
TPS1	7/20/91	Tailings	Total metals; sulfide; synthetic precipitation	For location see map; Enclosure 3.
	жīс,		leaching procedure (1312)	Tailings type: Sandy, silty gravel (GM); Gravel 60%, angular, limestone composition, fine, with <2% azurite and malachite in gravel fraction; Sand 40%, very fine grained, grading to silt, moderately well graded; color 5Y 5/2 olive gray. In-place tailings are hard, compacted, with a silty sand matrix.
		đ.		Sampling technique: by hand auger, sample homogenized in a stainless steel bowl. Sampling depth 2"-10".

Sample	Date Sampled	Sample Type	Analysis	Sampling Description
TPS2	7/20/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: Silty sand with gravel (SM); Gravel 50%, composition as abov (a/a); Sand 50%, silty and very fine grained, non plastic; well graded; color 5 5/2 olive gray. In-place characteristics a/a.
	╉────╂		<u> </u>	Sampling technique a/a. Sample depth 2"-12".
TPS3	7/20/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: Silty gravel (GM); Gravel 60-70%, angular, composition a/a; Sand 30-40%, very fine grained, grading to silt, non-plastic; well graded; cold 5Y 6/2 light olive gray. In-place tailings are loose, easy auger penetration.
	┥────┥-			Sampling technique: a/a. Sample depth 2"-14".
TPS4	7/20/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: Silty/sandy gravel (GM); Gravel 50%, a/a; very fine grained sand grading to silt 50%; well graded; color 5Y 5/2 olive gray. Tailings are loose, unconsolidated, moist.
	ļ			Sampling technique: a/a. Sample depth 2"-10".
TPS5	7/20/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: Silty/sandy gravel (GM) a/a. Color 5Y 4/2 olive gray.
				Sampling technique: a/a. Sample depth 2"-10".

1

Sample	Date Sampled	Sample Type	Analysis	Sampling Description
TPS8	7/20/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3. Tailings type: Silty sand with gravel (SM); 70-80% very fine grained sand and silt; 20-30% fine gravel, angular limestone clasts with ~5% azurite and malachite; moderate to poor grading; color 2.5Y 6/2 light brownish gray; very moist; sample taken below tailings cribbing - finer grain size may be due to coarser material being held back by cribbing. Hard-packed surface, difficult to auger. Sampling technique: a/a. Sample depth 2"-8".
TPS7	7/20/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3. Tailings type: poorly graded silty sand (SM); very fine grained sand, grading to silt, 50-60%; gravel 40-50%, fine, angular with <1% azurite and malachite; color 2.5Y 5/4 light olive brown. Sampled from above cribbing, hard packed sand. Sampling technique: a/a. Sample depth 2"-10".
TPS8	7/20/91	Tailings	Totał metals; sulfide; 1312	For location see map; Enclosure 3. Tailings type: Sandy/silty gravel (GW); gravel 70%, fine, angular, limestone composition with 2-5% azurite and malachite; silty very fine grained sand 30%; color 5Y 4/2 olive gray; well graded and loose gravel. Sampling technique: a/a. Sample depth 2"-16".
TPS9	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3. Tailings type: gravelly silt (ML); 60-70% silt, slightly plastic; 30-40% fine angular gravel with <1% azurite and malachite; moist; color 5Y 6/3 pale olive; moderately well graded. Sampling technique: a/a. Sample depth 2"-12".

Υ.

Sample	Date Sampled	Sample Type	Analysis	Sampling Description
TPS10	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: Sandy, silty gravel (GW); fine, angular limestone gravel 60% with ~2% azurite and malachite; very fine sand and silt 40%; moist; moderately well graded; color 5Y 5/2 olive gray; loose to firm surface.
·	╋───┼		54	Sampling technique a/a. Sample depth 2"-18".
TPS11	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: Gravelly sand (SW); fine grained sand 40-50%; gravel 30-40%, fine, angular, <1% copper minerals; silt 10-20%, low plasticity; color 2.5Y 5/4 light office brown; slightly moist; well graded. Material is road fill by railway bridge.
	<u> </u>			Sampling technique: a/a. Sample depth 4"-12".
TPS12	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
r				Tailings type: Clayey, gravelly silt (ML): Silt 60-70%, clayey, moderately plastic, moist; gravel 30-40%, coarse, angular, limestone composition with ~5% azurite and melachite; color 5Y 5/3 olive. Hard packed. Foundation material for Leaching Plant.
	 			Sampling technique: a/a. Sample depth 2"-6".
TPS13	7/21/91	Tailings	Total metals; suffide; 1312	For location see map; Enclosure 3.
				Tailings type: Sandy gravel (GW); gravel 60-70%, fine with \sim 5% azurite and malachite; sand 30-40%, coarse; color 5Y 5/1 gray.
				Sampling technique: hand trowel. Sample depth 0-8".

Sample	Date Sampled	Sample Type	Analysis	Sampling Description
TPS14	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: Gravelly sandy silt (ML); silt 85%, slightly plastic; gravel 15%, fine, angular, limestone composition; color BY 5/3 olive; poorly graded; compacted.
				Sampling technique: hand auger. Sample depth 2"-8".
TPS15	7/21/91	Tailings	Total metals; suffide; 1312	For location see map; Enclosure 3.
				Tailings type: Silty send with gravel (SM); sand 60-70%, fine to medium grained; silt 25-30%, low plasticity; gravel 10-15% with 5-8% copper minerals, fine, angular; color 5Y 5/4 olive; well compacted.
	<u> </u>			Sampling technique: a/a. Sample depth 2"-8".
TPS16	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: Sandy gravel (GW); gravel 70%, fine, angular limestone clasts with $\sim 1\%$ azurite and malachite; silty sand 30%; moderate to well graded. Loose.
<u>.</u>				Sampling technique: a/a. Sample depth 2"-7".
TPS17	7/21/91	Tailings	Total metals; sulfida; 1312	For location see map; Enclosure 3.
				Tailings type: Sandy gravel with silt (GW); gravel 50-60% with 8-10% azurite and malachite, fine; sand 30-40% fine; silt 10%, low plasticity; color 6Y 3/2 dark olive gray. Very hard surface.
				Sampling technique: a/a. Sample depth 2"-6".

.

 ${\cal H}^{0}_{i}$

Г

TABLE 1. LIST OF SAMPLES TAKEN, ANALYSES PERFORMED AND SAMPLE DESCRIPTIONS (continued)

Sample	Date Sampled	Sample Type	Analysis	Sampling Description						
TPS18	TPS18 7/21/91 Tailings		Total metals; sulfide; 1312	e; For location see map; Enclosure 3.						
				Tailings type: gravel with very fine sand and silt (GW); gravel 50%, coarse, angular, with about 5% azurite and malachite and occasional cobbles; silt and fine sand 50%; occasional wood fragments; color 2.5Y 4/2 dark gravish brown. Substrate is take, rock waste from surface mining.						
	╆━━━╋		13	Sampling technique: hand auger and hand scoop. Sample depth 2"-6".						
TPS19	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.						
				Tailings type: gravelly silt (ML); silt 80%, non plastic; gravel 20%, fine, occ. coarse, angular, occ. cobbles, with 5-10% azurite and malachite; occ. roots;color 5Y 5/3 olive; foundation for gravity concentrator, possibly a natural soil with allochthonous ore bin debris, hard substrate.						
				Sampling technique: hand auger. Sample depth 2-6".						
TPS20	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.						
				Tailings type: gravelly, sandy silt (ML); slight plasticity; silt 85%; gravel 10% fine with ~5% azurite and malachite; sand 5%; poorly graded; wood fragments; color 5Y 5/4 olive; foundation for gravity concentrator, may be natural soil, hard substrate.						
	·			Sampling technique: a/a. Sample depth 2"-6".						
TPS21	7/21/91	Tailings		For location see map; Enclosure 3.						
		Ŷ		Tailings type: sandy silt with gravel (ML): silt 75-80%, low plasticity, slightly moist; gravel 10-20%, fine, subangular with ~5% azurite and malachite; sand 5-10%, very fine grained, angular; color 10YR 3/4 dark yellowish brown.						
				Sampling technique: a/a. Sampling depth 2-8".						

1

Sample	Date Sampled	Sample Type	Analysis	Sampling Description
TPS22	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: angular limestone talus; cobbles 80%, 2-4 cm long axis, with 5-10% azurite and malachite; silt with roots 20%; color 2.5Y 4/4 olive brown Location is a rock pile behind the Transformer House, rocks may be a natural scree slope, or at least not processed beyond a coarse crusher.
	┼────┼╴			Sampling technique: hand auger. Sample depth 2"-10".
TPS23	7/21/91	Tailings	Total metals; sulfide; 1312	For location see map; Enclosure 3.
				Tailings type: sandy gravel (GP); gravel 60-70%, very fine with 2-4% azurite and malachite, angular; poorly graded; sand 30-40%, medium to coarse, angular; color GY 5/2 olive gray. Loose substrate.
	┠────┤─			Sampling technique: hand trowel.
TPS24	7/21/91	Tailings	Total metals; sulfide; 1312	Duplicate of TPS 10.
TPS25	7/21/91	Tailings	Total metals; sulfide; 1312	Duplicate of TPS20
TPS26	5/21/92	Tailings	Total metals	For location see map; Enclosure 3. Sample obtained west of Leaching Plant in a gully carrying water discharge from the plant. Tailings were stained green.
				Tailings type: well graded sandy gravel (GP); gravel 40-50%, angular max. 1 cm; sand 40-50%, coarse to fine, moist; very lew fines; <1% azurite or malachite; dark olive gray (5Y 3/2).
				Sampling technique: hand auger. Sample depth 2"-10".

Sample	Date Sampled	Sample Type	Analysis	Sampling Description					
TPS27	5/21/92	5/21/92 Tailings		For location see map; Enclosure 3. Sample obtained west of the Leaching Plant from the base of a well-stratified tailings sequence adjacent to Nation Creek.					
				Tailings type: poor to medium graded gravelly send (SP); gravel 15-20%, angular, max. 1 cm.; sand 80-85%, v. coarse to medium, dry to slightly moist; very few fines; 1% malachite; gray (6Y 5/1).					
	┢────┤─			Sampling technique as above.					
TPS28	5/21/92	Tailings	Total metals	For location see map; Enclosure 3. Sample obtained beneath flume on south side of National Creek.					
				Tailings type: well graded sandy gravel (GP); gravel 70-80%, angular, max. 6mm; sand 20-30%, v.coarse to medium, moist; very few fines; <1% azurite or malachite; olive gray (5Y 5/2).					
<u></u> ,				Sampling technique as above.					
TPS29	5/21/92	Tailings	Total metals	For location see map; Enclosure 3.					
				Tailings type: moderately graded sandy gravel (GP); gravel 85-95%, angular, max. 1 cm.; sand 5-15%, v.coarse to coarse, moist; very few fines; <1% azurite or malachite; olive gray (5Y 5/2).					
TPS30	5/21/92	Tailings	Total metals	Duplicate sample of TPS29.					

.

TABLE 2. ANALYTICAL RESULTS FOR AIRBORNE ASBESTOS SAMPLING

Sample Number	Location		Result -
ACR 01		Analytical Method	Fibers/cc
ASB-01	Power Plant	NIOSH 7400	<0.01
ASB-02	R. Sweet, personal monitor	NIOSH 7400	8
ASB-03			<0.01
	W. Willson, personal monitor	NIOSH 7400	0.02
ASB-04	Leaching Plant	NIOSH 7400	<0.01

kennecot\1100401\t2ar-t.818/j:1

TABLE 3. SUMMARY OF ANALYTICAL RESULTS FOR ASBESTOS SAMPLING

Sample Number (KEN prefix)	Material	Location	Asbestos Content		
1	Ore chute insulation	Building 3	None		
2	Electrical insulation	Building 3	None		
3	Vapor barrier	Building 3	None		
4	Roofing	Building 3	None		
5	Electrical insulation	Building 3	None		
6	Drive belt	Building 3	None		
7	Shaker table covering	Building 3	None		
8	Sorbent pads	Building 3	None		
9	TSI debris	Building 2/3	35% Chrysotile		
10	Wall covering	Building 3	None		
11	Ceiling board	Building 2/3	70% Chrysotile		
12	Wall board scrap	Building 9	None		
13	Roofing	Building 9	None		
14	Flexible hose	Outside Building 9	None		
15	Floor debris	Building 13e	<1% Chrysotile		
16	Wall board	Building 13e	None		
17	Roofing	Building 13e	None		
18	Sample blank		None		
19	Vepor barrier	Building 15	None		
20	Roofing	Building 15	None		
21	Vapor barrier	Building 15	None		
22	Roofing	Building 36	Nona		
23	Canvas pump packing	Building 19	None		
24	Woven gaskets	Building 19	70% Chrysotile		
25	Wall board	Building 19	None		
26	Westinghouse metal paper	Building 19	None		
27	Electrical insulation	Building 19	None		
28	Fuse box liner	Building 19	75% Chrysotile		
29	Floor tile	Building 20	None		
30	Wall covering	Building 20	None		
31	Vapor barrier	Building 23	None		
32	Fibrous dust	Building 23	None		
33	Vapor barrier	Building 5	None		
34	Wall board	Building 5	None		
35	Electrical insulation	Building 5	None		
36	Roofing	Building 5	None		
37	Roofing	Building 14	None		
38	Electrical insulation	Building 14	None		
39	Vapor barrier	Building 39c	15% Chrysotile		
40	Vapor barrier	Building 32c	None		
41	Roofing	Building 32c	None		
42	Floor covering	Building 30b	None		
43	Stove heat shield	Building 30b	85% Chrysotile		
44	Roofing	Building 1	None		
46	Flooring	Building 13b	None		

C

TABLE 3. SUMMARY OF ANALYTICAL RESULTS FOR ASBESTOS SAMPLING (continued)

Sample Number (KEN prefix)	Material	Location	Asbestos Content		
46	Stove heat shield	Building 26	95% Chrysotile		
47	Floor covering	Building 26	None		
48	Floor covering	Building 26	None		
49	Wall board	Building 26	None		
50	Vapor barrier	Building 26	None		
51	Tar paper	Building 26	None		
52	Projection screen	Building 18	None		
53	Wall board	Building 18	97% Chrysotile		
54	Vapor barrier	Building 18	None		
55	Chimney gasket	Building 18	97% Chrysotile		
56	Vapor barrier	Building 3	None		
57	Gunny sacks	Mill town	None		
58	Roofing	Building 15	None		
59	Plaster	Building 19	None		
60	Rubber gaskets	Building 19	None		
61	Stove wicks	Building 19	None		
62	Vapor barrier	Building 15	None		
63	Pipe insulation	Building 9	Nona		
64	Extractor hood board	Building 8	95% Chrysotile		
65	Wall covering	Building 8	90% Chrysotile		
66	Sample blank		None		
67	Roofing	Building 29a	None		
68	Vapor barrier	Building 29a	Nona		
69	Vapor barrier	Building 19	Nona		
70		Building 19	None		
ASB2-61692	Roofing	Building 2/3	10% Chrysotile		

F

TABLE 4. LIST OF WATER SAMPLES TAKEN, ANALYSES PERFORMED AND SAMPLING DESCRIPTIONS

Sample	Date Sampled	Time Sampled	Analysis	Sampling Description
SP1	Primary and Secondary W		Primary and Secondary Water Quality Standards (WQS), 65 Toxics	For location see Enclosure 3. Seep near Power House. Water seeping from the hill immediately downslope
	6/20/92	16:16	WQS, Gross alpha, Total uranium ion, Total Petroleum Hydrocarbons (418.1), Extractable Petroleum Hydrocarbons (8100M), Aromatic Volatile Organics (8020)	from the two fuel tanks near the Power House. Sample collected in 1992 approximately 10 yards downslope of 1991 location. Steady trickle of water from base of moraine. Water is clear but has a patchy visible sheen and hydrocarbon odor.
SP2	7/26/91	10:30	WQS	For location see Enclosure 1.
				Mother Lode mine seep. Water seeping from one of the mine portals.
SP3	7/27/91	14:15	WQS, 65 Toxics, Polynuclear Aromatic Hydrocarbons	For location see Enclosure 3.
2				Water seeping from the tailings/bedrock contact immediately downslope from the Leaching Plant.
	9/23/91	11:00	WQS	
	5/20/92	12:15	WQS, Gross alpha, Total uranium ion	

.

1 E

.

1

kennecot\1100401\t4lo-t.820/j:1

Г

TABLE 4. LIST OF WATER SAMPLES TAKEN, ANALYSIS PERFORMED AND SAMPLING DESCRIPTIONS (continued)

Sample	Date Sampled	Time							
	Sampled	Sampled	Analysis	Sampling Description					
SP4	7/27/91	14:25	WQS, 65 Toxics, Polynuclear Aromatic Hydrocarbons	For location see Enclosure 3.					
				Water saeping from beneath flume wreckage near the Leaching Plant.					
	9/23/91	11:15	WQS						
	6/20/92	12:45	WQS, Gross alpha, Total uranium ion						
SP5	9/23/91	10:00	WQS	Water lying over oil in a pool downslope of the July 1991 sampling location for SP1.					
SWB	7/24/91	11:66	WQS	For location see Figure 5.					
	9/21/91	17:00	WQS	Bonanza Creek. Water sampled from a riffle area immediately upstream from					
	6/22/92	09:20	WQS	the trail.					
SWBK	7/23/91	16:00	WQS	Distilled water blank.					
SWBK 1	9/21/91	20:40	WQS	VWR Scientific deionized water.					
SWBK2	9/21/91	20:40	WQS	VWR Scientific deionized water.					
SWBK3	5/21/92	10:00	WQS, Gross alpha, Total uranium ion	Deionized water provided by Chemical & Geological Labs.					
LWS	7/24/91	11:30	WQS	For location see Figure 5.					
	9/21/91	16:30	WQS	Jumbo Creek. Water sampled upstream from the trail in a pool at the base of a series of waterfalls.					
	5/22/92	12:00	was						

TABLE 4. LIST OF WATER SAMPLES TAKEN, ANALYSIS PERFORMED AND SAMPLING DESCRIPTIONS (continued)

Sample	Date Sampled	Time Sampled	Analysis	Sampling Description						
SWK 1	7/24/91	10:15	e WQS	For location see Figure 5. Kennicott Creek is defined as the intermittent drainage paralleling the Root and Kennicott Glaciers.						
			-	Kennicott Creek below Amazon Creek. Amazon Creek was dry and the Root Glacier is adjacent to the ridge so that Kennicott Creek, if present, flows beneath the ice of the glacier or beneath the lateral moraine. Water seeping from the hillside adjacent to the glacier and slightly down gradient from Amazon Creek was sampled.						
	9/21/91	16:00	WQS	Above location was dry. Sampled approx. 300 yards further south of previous location. Water is predominantly glacier meltwater.						
	5/22/92	11:15	WQS	Same location as for 9/21/91.						
SWK2	7/24/91	20:40	WQS, 65 Toxics	For location see Figure 5.						
	9/22/91	18:45	WQS	Kennicott Creek below National Creek. Water taken from a riffle area downstream from a solid waste disposal area (drums and assorted debris). Surface flow at this point was from National Creek.						
	5/20/92	17:45	WQS, Gross alpha, Total Uranium ion							
SWK3	7/24/91	18:00	WQS, 65 Toxics	For location see Figure 5.						
	9/22/91	11:20	WQS	Clear Creek. A survey of the area between McCarthy and the moraine of Kennicott Glacier indicated that there was no surface flow in Kennicott Creek. Consequently, Clear Creek was sampled in a pool upstream from McCarthy near the museum.						
	6/21/92	14:30	WQS							

TABLE 4. LIST OF WATER SAMPLES TAKEN, ANALYSIS PERFORMED AND SAMPLING DESCRIPTIONS (continued) (continued)

Sample	Date Time Sample Sampled Analysis		Analysis	
SWK4	4 7/25/91 11:25 WQS			Sampling Description For location see Figure 5.
	9/22/91	13:30	WQS	Kennicott River below McCarthy Creek, Kennicott River was command
	6/21/92	14:00	was	downstream of the confluence with McCarthy Creek.
SWKE	7/24/91	20:40	WQS	Duplicate of SWK2.
	9/22/91	15:30	Was	Duplicate of SWN1.
SWM1	7/26/91	10:30	WQS	For location see Figure 5.
		8		McCarthy Creek downstream of Lubbe Creek. Water sampled in a riffle area equidistant from Lubbe Creek and Dimond Creek.
SWM2	7/25/91	11:00	WQS	For location see Figure 5.
				McCarthy Creek downstream of Dimond Creek. Water sampled from a riffle area downstream of the Green Butte mine.
SWM3	7/25/91	11:15	WQS	For location see Figure 5.
				McCarthy Creek southeast of mill town. Water sampled from a riffle area approx. 1/4 mile downstream of the last tributary entering McCarthy Creek from the east.
SWM4	7/24/91	16:10	WQS	For location see Figure 5.
	9/22/91	10:15	WQS	McCarthy Creek above McCarthy. Water sampled from a riffle area upstream from the foot bridge and directly across the creek from the stables.
	5/21/92	13:00	WQS	

Sample	Date Sampled	Time Sampled	Analysis	
SWN1	SWN1 7/24/91 1		was	Sampling Description For location see Figure 5.
	9/22/91	16:30	WQS	
	5/20/92	09:30	WQS, Gross alpha, Total uranium ion	National Creek above Mill Town. Water sampled from a riffle area approx. 100 yards upstream from the remains of a dam.
SWN2	7/24/91	21:10	WQS, 65 Toxics	For location see Figure 5.
	9/22/91	18:30	WQS	National Creek below Mill Town. Water sampled from a riffle area approx. 300 yards downstream of the bridge in the Mill Town at a point where the creek bends from flowing west to flowing south.
	5/19/92	18:00	WQS, Gross alpha, Total uranium ion	
SWN3	5/20/92	09:45	WQS, Gross alpha, Total uranium ion	Duplicate sample of SWN1
WP3	7/23/91	17:45	WQS, 65 Toxics	For location see Figure 5.
	9/23/91	08:46	WQS	Well point. The well point is located adjacent to Kennicott Creek near the old School House.
	5/20/92	17:00	WQS	

TABLE 5. WATER QUALITY - PRIMARY STANDARDS - JULY 1991 SAMPLING EVENT

Semple	Date		Arsenic	Berium	Cadmlun	Chromium	Fluoride	Lead	Mercury	Nitrate-N	Coloritor	<i>61</i>		
	Sampled	Location	mg/L	<u>mg/L</u>	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L			Turbidity	
SP1 - unfiltered	7/23/91	Scop west of Power Hse.	ND	0.031	0.0006					indire.	mg/L	mg/L	<u>NTU</u>	col/100mL
SP2 - unfiltered	7/25/91	Mother Lode mine	0.046	0.130	ND	ND	0.2	0.011	ND	1.4	ND	ND	1.2*	5
SP3 - unfiltered	7/27/91	Teilings	0.007	0.034	ND	ND	ND	ND	ND	ND	ND	ND	0.5	NA
SP3 - filtered			0.008	0.034		ND	ND	ND	ND	2	ND	ND	0.1*	0
SP4 - unfiltered	7/27/91	Tailings	(0.5)	0.040	0.0012	ND	NA	0.012	ND	NA	ND	ND	NA	NA
SP4 - filtered		-	0.046	0.040		ND	0.2	0.017	0.0017	2.4	ND	0.001	0.5*	0
SWB - unfiltered	7/24/91	Bonanza Creek	0.001	0.033	ND	ND	NA	0.061	ND	NA	ND	ND	NA	NA
SWB - filtered			0.001	0.027	ND	ND	ND	ND	ND	0.2	ND	ND	0.3	0
SWBK - unfiltered	7/23/91	Blank	ND		ND	ND	NA	0.006	ND	NA	ND	ND	NA	NA
SWBK - filtered			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	0
SWJ - unfiltered	7/24/91	Jumbo Creek	0.002	ND	ND	ND	NA	ND	ND	NA	ND	ND	NA	NA
SWJ - filtered				ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0
SWK1- unfiltered	7/24/91	Kennicott Ck	0.002	ND	ND	ND	NA	ND	ND	NA	ND	ND	NA	-
SWK1 - filtered		south of Amazon Ck.	0.002	0.031	ND	ND	ND	ND	ND	0.7	ND	ND	0.2	NA
SWK2 - unfiltered	7/24/91	Keppicott Ck	0.002	0.023	ND	ND	ND	0.012	ND	NA	ND	ND	NA	0
SWK2 - filtered		south of National Ck.	0.001	0.028	ND	ND	NÐ	ND	ND	0.2	ND	ND	0.8	NA
SWK5 - unfiltered		Duplicate sample of SWK2	ND	0.026	ND	ND	NA	0.009	ND	NA	ND	ND	NA	0
SWK3 - unfiltered	7/24/91	Kennicate sample of SWK2	0.001	0.027	ND	ND	ND	ND	ND	0.2	ND	ND	0.4*	NA
SWK3 - filtered	1144131		ND	0.022	ND	ND	ND	ND	ND	0.4	ND	ND		0
SWK4 - unfiltered	7/25/01	above McCarthy Ck.	ND	0.022	ND	ND	NA	ND	ND	NA	ND	ND	0.4	0
SWK4 - filtered	1120101		ND	0.040	ND	ND	ND	ND	ND	0.2	0.001	ND	NA	NA
SWM1- unfiltered	7/05/01	below McCarthy Ck.	ND	0.025	ND	ND	NA	ND	ND	NA	ND	ND	23	NA
SWM1 - filtered	/120191		ND	0.026	ND	ND	ND	ND	ND	ND	ND		NA	0
	7 10 5 10 1	below Luss Ck.	ND	0.014	ND	ND	NA	0.007	ND	ND	ND	ND	29	0
SWM2 - unfiltered SWM2 - filtered	//25/91		ND	0.034	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
		below Green Butte Mine	ND	0.017	ND	ND	NA	ND	ND	NA		ND	26	1
5WM3 - unfiltered	7/25/91		ND	0.040	ND	0.005	ND	ND	ND	0.2	ND	ND	NA	NA
SWM3 - filtered	_	south of Bonanza Ridge	ND	0.026	ND	ND	NA	ND	ND		0.001	ND	22	1
SWM4 - unfiltered	7/24/91	McCarthy Ck.,	ND	0.041	ND	ND	ND	0.006	ND	NA	ND	ND	NA	NA
SWM4 - filtered		above McCarthy	ND	0.025	ND	ND	NA	ND	ND	0.2	0.002	ND	30	0
SWN1- unfiltered	7/24/91	National Ck.,	ND	0.027	ND	ND	ND	ND		NA	ND	ND	NA	NA
SWN1 - filtered		above Mill Town	ND	0.024	ND	ND	NA	ND	ND	0.1	ND	ND	0.8	0
SWN2 - unfiltered	7/24/91	National Ck.,	ND	0.028	ND	ND	ND		ND	NA	ND	ND	NA	NA
SWN2 - filtered		bolow Mill Town	ND	0.026	ND	ND		ND	ND	0.2	ND	ND	2.2	0
WP3 - unfiltered	7/23/91	Adjacent Kennicott Ck.,	0.091	0.120	0.0015	ND	NA	ND	ND	NA	ND	ND	NA	NA
WP3 - filtered		nr. School House	0.004	0.029	0.0005	ND	ND	0.013	0.0021	0.6	ND	ND	46*	0
								0.019	ND	NA	ND	ND	NA	NA
<u> </u>			0.05 ASTM	<u>1</u>	0.0100	0.05		0.05	0.002	10	0.01	0.05	1	0
lethod				EPA		EPA 218.2	EPA	EPA	SM14	EPA	ASTM	EPA	EPA I	Membrane filter
lethod Reporting Li	mit		D2972	200.7	213.2	1	340.3		<u>301AVI</u>	353.2	D3859	272.2	180.1	
			0.001	0.013	0.0005	0.005	0.1	0.005	0.0002	0.1		0.001	0.1	0

Abbreviations:

MCL - Maximum contaminant concentration levels ND - Not detected at Method Reporting Limit

NA - Not analyzed

NTU - Nephelometric turbidity units

٠

• Lab measured value, other turbidity measurements are field values.

Zinc

mg/L

ND

ND

ND

0.049

ND

0.08

ND

0.013

0.021

ND

ND

ND

ND

ND

ND

ND

0.015

ND

ND

ND

ND.

0.013

0.016

ND.

ND

ND

ND

0.015

NA

ND.

ND

ND

ND

3.70

1.10

5

EPA

200.7A

0.013

95

<5

NA

80

NA

80

NA

NA

NA

NA

191

NA

172

NA

74

NA

83

NA

100

NA

500

5

Date Chloride Color L.I. @ 40 F L.I. @ 140F MBAS Copper hou Mengenese Odor ъH Sodium Sulfate TDS Sample Sempled Location mg/L PCU mg/L unite unite mg/L mg/L mg/L TON unite mg/L mg/L mg/L SP1- unfiltered 7/23/91 Seep W. of Mother Lode 0.6 <5 0.023 0 1.08 ND 0.240 0.013 No odor 7.661 2.4 8.2 270 SP2 - unfiltered 7/25/91 Mother Lode 0.3 <5 0.033 -0.53 0.55 ND 0.042 ND No odor 7.6 ND 5.6 83 SP3 - unfiltered 7/27/51 Tailings 0.8 5 0.065 0.47 1.55 ND 0.022 ND 1 8,19 1.4 13.6 261 SP3 · filtered NA NA. 0,072 NA NA NA 0.060 ND NA NA 1.4 NA NA. SP4 - unlittered 7/27/91 Tailings 0.4 5 (10.0) 0.66 1.74 ND 0.840 0.018 Na adat 8.32* 2.3 10.1 280 SP4 - filtered 0.47 NA NA. NA NA NA 0.110 NO NA NA 2.8 NA NA SWB - unfiltered ND 7/24/91 Bonenze Ck <5 ND -0.58 0.5 ND 830.0 ND No odor 7.7 3.1 6.6 SWB - filtered NA NA ND NA NA NA 0.015 ND NA. NA 2.8 NA NA SWBK - unfiltered 7/23/91 Blank 0.3 <5 ND -5.81 -4.73 ND 0.120 ND 6.041 No odor 0.32 <1 SWBK - filtered NA NA ND NA NA NA ND ND NA NA 0.27 NA NA SWJ - unfiltered 7/24/91 Jumbo Ck 0.9 < 25 ND -0.54 0.54 ND 0.014 ND No odor 8.0 1.5 10.8 121 SWJ - filtered NA NA. ND NA NA NA. 0.045 ND NA 1.5 NA NA. NA. SWK1- unfiltered 7/24/91 Kennicott Ck 0.7 <5 ND 0.14 1.22 ND 0.610 0.042 No odor 8.0 2.5 11.5 131 SWK1 - Biterad S. of Ameton Ck NA NA ND NA NA NA 0.015 ND NA NA 2.4 NA SWK2 - unfiltered 7/24/91 ND Kennicott Ck. <5 0.019 -0.8 0.28 ND 0.062 No odor 8.0 3.8 ND 6.2 SWK2 - filtered S. of Netional Ck NA. NA ND NA NA NA 0.027 ND NA NA 3.9 NA SWK5 - unfiltered 7/24/91 Dup. of SWK2 0.1 <5 0.014 -0.79 0.29 ND 0.064 ND No odor 8.04 4 6.2 SWK3 - unfiltered 7/24/91 Kennicott Ck <5 0.19 1.27 ND 0.041 ND No odor 7.9 3.7 19.1 215 0.8 ND SWK3 - filtered aby McCarthy Ck NA NA ND NA NA NA 0.030 ND NA. NA 3.6 NA 0.025 7.6 SWK4 - unfiltered 7/25/91 **Kennicolt Ck** 0.4 <5 ND -0.76 0.32 ND 1.70 No odor 3.4 62.3 194 SWK4 - filtered **blw McCarty Ck** ND NA 0.033 NA NA 3.1 NA NA NA NA NA ND 0.032 30.8 SWM1 - unfiltered 7/25/91 **McCerthy Ck** 0.6 <5 ND 0.78 0.3 ND 1.60 No odor 7.7 2.1 118 SWM1 - filtered **blw Russ Ck** NA NA ND NA NA NA 0.042 ND NA. NA 1.9 NA SWM2 - unfiltered ND -0.66 0.42ND 2.40 0.039 No odor 7.7 2.3 54.1 169 7/25/91 **McCarthy Ck** 0.8 <5 ND NA NA. NA 0.048 ND NA. NA 2 NA SWM2 - filtered **blw Green Butte** NA NA SWM3 - unfiltered 7/25/91 **McCarthy Ck** 0.5 <5 ND -0.98 0.1 ND 1.70 0.027 No odor 7.7 3.2 62.2 SWM3 - filtered S. of Bonanza Ridge NA NA ND NA NA NA 0.034 ND NA NA 3.1 NA. SWM4 - unlittered 7/24/91 McCarthy Ck. 0.6 <5 ND -0.12 0.96 ND 1.80 0.030 No odor 8.0 3.3 54.4 SWM4- filtered aby McCarthy Ck NA NA ND NA NA NA 0.021 ND NA NA 3 NA SWN1- unfiltered National Ck 0.2 <5 ND -0.81 0.27 ND 0.053 ND No odor 7.8 -4 5.6 7/24/91 NA 0.025 ND NA NA 3.8 NA SWN1 - filtered aby Mill Town NA NA NO NA NA. ND ND No odor 7.9 3.9 6.6 ND <5 ND -0.77 0.31 ND SWN2 - unfiltered 7/24/91 National Ck ND NA NA NA 0.024 NA. NA 3.9 NA SWN2 - filtered hiw Mill Town NA NA ND 7/23/91 adj Kennicott Ck 5,60 0.310 No odor 7.99 4.4 7.1 WP3 - unfiltered ND <5 1.60 -0.4 0.68 ND 0.035 0.071 ND NA NA WP3 - filtered nr School House NA NA NA -4 NA NA NA MCL (18 AAC 80.070) 250 15 >0 0.5 0.3 0.05 а 6.5-8.5 250 250 1 EPA **EPA** EPA EPA EPA ËPA Method SM16ED5128 200.7A EPA 200.7A SM16ED207 SM16ED407A SM16ED204A 200.7A SM14E0203 150.1 200.7A 375.4 160.1 **Method Reporting Limit** 0.1 <5 0.013 0.05 0.013 0.013 0 0.013 1 L.I. - Longelier Index MRL - Method Reporting Limit PCU - Platinum Color Units Abbreviations: MBAS - Methylene-blue active substances (detergents) **TDS · Total dissolved solide**

Corroeivity:

Feaming Agent

TABLE 6. WATER QUALITY - SECONDARY STANDARDS - JULY 1991 SAMPLING EVENT

MCL - Meximum contaminant concentration levels

NA - Not analyzed ND - Not detected at MRL

TON - Threshold odor number

* Lob value, all other pH readings taken in field.

TABLE 7. WATER QUALITY - FIELD AND MISCELLANEOUS PARAMETERS - JULY 1991 SAMPLING EVENT

				Field A	nelysee				1.000		Miscellaneous	Paramete		
8emple	Date Sampled	Temperature C	Discolved Oxygen mg/L	Percent Seturation	Conductivity umhos/cm 25C	Turbidity NTU	pH unite	Oxidation Reduction Potential mV	Calcium mg/L	Magnosium mg/L		Sulfide mg/L	Chemicel Oxygen Demend mg/L	Ammonia-N
SP1	7/23/91	NA	NA	NA									and in	mg/L
SP2	7/25/91	NA	NA	NA	NA	NA	NA	NA	80	12	ND	ND	67	ND
SP3	7/27/91	NA	NA		29	0.5	7.6	340	20	7.5	ND	ND	ND	0.20
SP4	7/27/91	NA	• • • •	NA	NA	NA	NA	NA	78	11.0	ND	<0.2	3.3	0.13
SWB	7/24/91	5.1	NA	NA	NA	NA	NA	NA	91	14.0	ND	ND	10.0	0.13
SWBK	7/23/91		11.4	97	500	0.3	7.7	354	21	5.4	ND	ND	ND	
SWJ	7/24/91	NA	NA	NA	NA	NA	NA	NA	0.04	ND	ND	ND	ND	ND
SWK1	7/24/91	4.5 2.6	12.6	105	500	0.2	8.0	351	21	4.8	ND	ND	ND	ND
SWK2	7/24/91	2.0	12.2	96	500	0.2	8.0	354	57	8.5	ND	ND	ND	ND
SWK2 duplicate	7/24/91	NA	11.4	99	540	0.8	8.0	370	16	5.1	ND	ND	16.3	ND ND
SWK3	7/24/91	4.6	NA	NA	NA	NA	NA	NA	16	5.1	ND	ND	13.1	ND
SWK4	7/25/91	4.0	10.8	88	530	0.4	7.9	384	61	9.1	ND	ND	ND	ND
SWK5	duplicate of		12.5	95	27	23.0	7.6	327	49	7.5	ND	ND	ND	ND
SWM1	7/25/91	4.8											110	ND
SWM2	7/25/91	5.1	12.6 12.7	96	26	29.0	7.7	321	28	3.1	ND	NÐ	6.7	ND
SWM3	7/25/91	5.5	12.7	96	26	26.0	7.7	355	44	5.3	ND	ND	10.0	0.25
SWM4	7/24/91	7.0	11.1	96	29	22.0	7.7	336	47	7.2	ND	ND	6.7	ND
SWN1	7/24/91	5.7	11.9	96	500	30.0	8.0	360	47	7.1	ND	ND	9.8	ND
SWN2	7/24/91	5.8	11.3	103 97	500	0.8	7.9	359	15	5.0	ND	ND	ND	ND
WP3	7/23/91	5.7	NA		590	2.2	7.9	354	15	4.9	ND	ND	9.8	0.20
		0.7	ina.	NA	134	NA	7.3	NA	40	11.0	ND	ND	13.0	ND
		ASTM mercury							EPA			-		-
Method Method Reporting	Limit	thermometer							200.7 ICP	EPA 200.7	EPA 258.1	EPA 376.2	EPA 410	EPA 350.1
in the period	PULL						_		0.03	0.03	1.25	0.10	0.10	0.20

NTU - Nephelometric turbidity units NA - Not enalyzed Abbreviations:

ND - Not detected at MRL

All samples were unfiltered

TABLE 8. WATER QUALITY - SUMMARIZED 65 TOXICS ANALYTICAL RESULTS - JULY 1991

				Án	alyte Group			T		_	1	otal Un	filtered	Matal					·
Sample	Date Sampled	Asbestos	Cyanida mg/L	Organochiorine Pesticides and PCBs ug/L	Volatile Organic Compounde ug/L	Semivolatile Organic Compounde ug/L	Dioxins ng/L	As mg/L	Cd mg/L	Cr	Cu mg/L	Pb	Hg	NI	Se	Ag	Th	Zn	РАН
SP1 SP3 SP4 SWK2 SWK3 SWN2 WP3	7/23/91 7/27/91 7/27/91 7/24/91 7/24/91 7/24/91 7/23/91	ND ND ND ND ND ND	ND ND ND ND ND ND	ND NA ND ND ND ND	ND ND ND ND ND ND	ND ND 'h ND ND ND 10 of Bis(2-ethylhexyl) Phthelate	ND NA NA ND ND	ND NA NA ND ND ND 0.03	ND NA NA ND ND ND ND	ND NA NA ND ND 0.01	0.01 NA NA 0.02 ND ND 0.7	mg/L 0 NA NA 0 ND 0.02	Mg/L ND NA ND ND ND ND	Mg/L ND NA ND ND ND ND	Mg/L ND NA ND ND ND ND	mg/L ND NA NA ND ND ND	Mg/L ND NA NA ND ND ND	Mg/L ND NA ND ND 2.38	NA ND ND NA NA NA NA
Method Method Reporting Limit		PLM/ Dispersion Staining	335.2	3510/8080 between 0.04 and 0.5	8240 between 1 and 20	3510/8270 between 5 and 50	8280 between 0.04 and 0.079		6010 0.003			7421		6010 0.02			7841	6010	3510/83 betwee 0.05 an

Abbreviations: NA - Not Analyzed

ND - Not Detected at MRL

PAH - Polynuclear Aromatic Hydrocarbons

PCB - Polychlorinated Biphenyls

PLM - Polarized Light Microscopy

£,

	Date													Fecal
Sample	Sampled		Arsenic	Barium		Chromium	Fluoride	Lead	Mercury	Nitrate-N	Selenium	Silver	Turbidity	Coliform
Gampie	0 allibred	Location	mg/L	mg/L_	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	NTU	col/100m
SP3 - unfiltered	9/23/91	Tailings	0.0074	0.033	ND	ND								
SP3 - filtered		g -	0.008	0.033	ND	ND	ND	ND	ND	1.8	0.0008	ND	0.07 •	0
SP4 - unfiltered	9/23/91	Tailings	0.019	0.034		ND	NA	ND	ND	NA	0.001	ND	NA	NA
SP4 - filtered			0.022		ND	ND	ND	ND	ND	2.4	ND	ND	0.08*	0
	9/23/91	Seep west of Power Hse.	0.022	0.025	ND	0.008	NA	ND	ND	NA	ND	ND	NA	NA
SWB - unfiltered	9/21/91	Bonenze Creek		0.13	0.0009	800.0	ND	0.18	0.0002	ND	0.0047	0.001	76*	>0
SWB - filtered	0121101	Bonanza Crook	0.0013	0.025	ND	ND	ND	ND	ND	0.23	0.0006	ND	0.47	0
WBK1 - unfiltere	9/21/91	Blank	0.0013	0.026	ND	ND	NA	ND	ND	NA	0.0007	ND	NA	NA
SWBK1 - filtered	0121101	Erenk	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06*	NA
WBK2 - unfiltere	9/21/91	Plack	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	NA	NA
SWBK2 - filtered	0/21/01	Lidik	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16*	NA
SWJ - unfiltered	9/21/91	lumba Creek	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	NA	NA
SWJ - filtered	3/21/31	JUNDS CIREK	0.0022	0.012	ND	ND	ND	ND	ND	0.25	ND	ND	0.4	0
SWK1- unfiltered	9/21/01	Kannigatt Ck	0.0022	0.012	ND	ND	NA	ND	ND	NA 🔅	ND	ND	NA	NA
SWK1 - filtered	3/21/31		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	16.5	0
WK2 - unfiltered	0/22/01	south of Amazon Ck.	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA
SWK2 - filtered	9/22/31	-	0.0006	0.029	ND	ND	ND	ND	ND	0.22	ND	ND	4.1	0
	0/00/04	south of National Ck.	ND	0.028	ND	ND	NA	ND	ND	NA	ND	ND	NA	NA
SWK3 - unfiltered	9/22/91		0.0006	0.022	ND	ND	ND	ND	ND	0.54	0.0007	ND	0.21	0
SWK3 - filtered		above McCarthy Ck.	0.0006	0.023	ND	ND	NA	ND	ND	NA	NÐ	ND	NA	NA
WK4 - unfiltered	9/22/91	-	0.0072	0.042	ND	ND	ND	ND	ND	0.26	0.0011	ND	90	0
SWK4 - filtered		below McCarthy Ck.	0.0035	0.031	ND	ND	NA	ND	ND	NA	0.0012	ND		NA
	9/22/91	Duplicate of SWN1 - see belo	DW											0
SWK5 - filtered				455										NĂ
WM4 - unfiltere	9/22/91		0.0005	0.042	ND	ND	ND	ND	ND	0.33	0.0019	ND	23.5	0
SWM4 - filtered		abova McCarthy	0.0005	0.039	ND	ND	NA	ND	ND	NA	0.0012	ND	NA	NA
WN1- unfiltered		National Ck.,	ND	0.031	ND	ND	ND	ND	ND	0.19	ND	ND	1.7	0
WN1 - unfiltered	duplicate	above Mill Town	ND	0.031	ND	NÐ	ND	0.01	ND	0.17	ND	ND	1.7	NA
SWN1 - filtered			ND	0.029	ND	ND	NA	ND	ND	NA	ND	ND	NA	NA
SWN1 - filtered			ND	0.028	ND	ND	NA	0.008	ND	NA	ND	ND	NA	NA
WN2 - unfiltered	9/22/91	National Ck.,	0.0012	0.030	ND	ND	ND	ND	ND	0.21	ND	ND	2.2	>0
SWN2 - filtered		below Mill Town	ND	0.028	ND	ND	NA	ND	ND	NA	ND	ND	NA	NA
WP3 - unfiltered	9/23/91	Adjacent Kennicott Ck.,	0.022	0.160	0.0033	ND	ND	0.032	0.001	0.52	ND	ND		0
WP3 - filtered		near School House	0.0011	0.028	ND	ND	NA	ND	ND	NA	ND	ND	380" NA	NA
ACL (18 AAC 80.	.070)		0.05	1	0.0100	0.05	4	0.05	0.002	10	0.01	0.05	1	0
	1.14		ASTM	EPA	EPA	EPA	EPA	EPA		EPA	ASTM	EPA		Membrane
Aethod			D2972	200.7	213.2	218.2	340.3	239.2	SM14 301AV		D3859	272.2	180.1	filter
Aethod Reporting	Limit (MR	L)	0.001	0.013	0.0005	0.005	0.1	0.005	0.0002	0.1	0.001	0.001	0.1	0

Abbreviations: MCL - Maximum contaminant concentration levels NA - Not analyzed

ND - Not detected at MRL

1

NTU - Nephelometric turbidity units

* Lab measured value, other turbidity measurements are field values.

TABLE 10. WATER QUALITY - SECONDARY STANDARDS - SEPTEMBER 1991 SAMPLING EVENT

1.001	Sampled	Location	Chioride <u>mg/L</u>	Color PCU	Copper mgA	Cerroelvity: L.I. O 40 F unite	L.I. @ 140F unite	Agent MBAS mg/L	kon mg/L	Manganese mg/L	Odor TON	рH	Sodium	Sulfare	TDS	Zinc
SP3 - unfiltered	9/23/91	Teilinge		_					1141110	mgru	101	unite	mg/L	mg/L		<u>mg/L</u>
SP3 - liltered		· muttigs	0.6	5	0.064	0.53	1.61	ND	ND	ND	No odor	0.11				
SP4 - unlitered	9/23/91	Teilinna	NA	NA	0.068	NA	NA	NA	ND	ND	NA	NA NA	2.8	17	245	ND
SP4 - filtered			0.8	5	0.16	0.54	1.62	ND	ND	ND	No odor	8.11	2.7	NA	NA	ND
SP5- unfiltered	9/23/91	Seep west of Power Hee.	NA	NA	0.16	NA	NA	NA	ND	ND	NA	NA	4.4	14	236	ND -
SW8 - unlittered	9/21/91		0.8	120	0.45	-0.78	0.32	0.81	30.000	0.58	16	7.37	4,3	NA	NA	ND
SWB - filtered		Source GR.	0.6	<5	ND	-0.91	0.17	ND	ND	ND	No odor		3.9	13	263	0.67
SWBK1 - unfiltered	9/21/91	Diant	NA	NA	ND	NA	NA	NA	ND	ND		8.05	3	8.4	87	ND
SWBK1 - fillered	9141191	CHOIN.	ND	<5	ND	-6.06	-4.98	ND	ND	ND	NA	NA	3.1	NA	NA	ND
SWBK2 - unfiltered	9/21/91	Dianh	NA	NA	ND	NA CR	NA	NA	ND	ND	No odor	5.49*	0.22	0.4	1	ND
SW8K2 - filtered	9121191	Blank	ND	<5	ND	-6.01	-4.93	ND	ND	ND	NA	NA	0.24	NA	NA	ND
SWJ - unfiltered			NA	NA	ND	NA	NA	NA	ND		No odor	5.47	0.24	1	1.4	ND
SWJ - filtered	3171131	Jumbo Ck.	1	<5	ND	-0.58	0.5	ND	ND	ND		NA	0.25	NA	NA	ND
			NA	NA	ND	NA	NA	NA	ND	ND	No odor	8.1	2	13	98	ND
SWK1- unfiltered	9/21/91	Kennicolt Ck.	ND	5	ND	-3.4	-2.36	ND		ND	NA	NA	1.9	NA	NA	ND
SWK1 - filtered		south of Amszon Ck.	NA	NA	ND	NA	NA	NA	0.480	ND	No odor	7.3	0.23	ND	7	ND
SWK2 - unlittered	9/22/91	Kennicott Ck.	ND	5	ND	-0.57	0.51	ND	ND	ND	NA	NA	0.22	NA	NA	ND
SWK2 - filtered		south of National Ck.	NA	NA	ND	NA	NA	NA	ND	ND	No odor	8.0	5.4	7.6	84	ND
SWK3 - unfiltered	9/22/91	Kennicott Ck.	0.8	<5	ND	0.03			ND	ND	NA	NA	5.4	NA	NA	ND
SWK3 - filtered		above McCarthy Ck.	NA	NA	ND	NA	-1.11	ND	ND	ND	No odor	7.63	3.6	17	211	ND
SWK4 - unfiltered	9/22/91	Kennicott Ck.	4.2	10	ND		NA	NA	ND	ND	NA	NA	4	NA	NA	ND
SWK4 - filtered		below McCarthy Ck.	NA	NA	ND	0.28	1.36	ND	0.74	0.038	No odor	7.63	5.2	63	208	ND
SWK5 - unfiltered	9/22/91	duplicate of SWN1 - see below	1974		NU	NA	NA	NA	0.05	ND	NA	NA	5.1	NA	NA	ND
SWK5 - filtered		duplicate of SWN1 - see below													BO	0.015
SWM4 - unfiltered	9/22/91	McCerthy Ck.	0.5	5												0.010
SWM4- filtered		above McCarthy	NA	NA	ND	-0.02	1.08	ND	0.58	ND	No odor	8.2	4.2	108	274	ND
SWN1- unlitered	9/22/91	Netional Ck.	0.4	5	ND	NA	NA	NA	ND	ND	NA	NA	4.5	NA	NA	ND
SWN1 - unfiltered	duplicate	above Mill Town	0.4	5	ND	-0.56	0.52	ND	ND	ND	No odor	7.84	5.5	7.2	80	ND
SWN1- filtered			ND	-	ND	-0.53	0.55	ND	ND	ND	No odor	7.84	5.3	7.2	85	ND
SWN1 - filtered	duplicate			NA	ND	NA	NA	NA	0.06	ND	NA	NA	5.6	NA	NA	ND
SWN2 - unfiltered		National Ck.	NA	NA	ND	NA	NA	NA	ND	ND	NA	NA	5.4	NA	NA	ND
SWN2 - liltered	elerie i	below Mill Town	0.2	5	ND	-0.51	0.57	ND	ND	ND	No odor	7,99	6.1	7.2	86	
WP3 - unfiltered	9/23/81	Adjecent Kennicott Ck.	NA	NA	ND	NA	NA	NA	ND	ND	NA	NA	5.6	NA		ND
WP3 - filtered	0120101	near School House	0.6	10	1.00	-0.53	0.55	ND	10.00	0.230	No odor	7.85	5.8	8.4	NA	ND
		tine Scitoo Hoder	NA S	NA	ND	NA	NA	<u>NA</u>	ND	0.021	NA	NA NA	5.6	NA	105 NA	2.20
MCL (18 AAC 80.070)			250	15	1 1	>0	1.	0.5	0.3	0.05	3					ND
Method					EPA	0.0			EPA	0.00		6.5-8.5 EPA	250 EPA	250	500	5
Method Reporting Limit	45 4754 A		SM16ED407A	M16ED204A	200.7A	SM14ED203		SM16ED512B	200.7A	EPA 200.7A	SMISSDOOT			ËPA	EPA	EPA
meruod Kabounid Liwit			0.1	<5	0.013			0.05	0.013	0.013	0	150.1	200.7A 0.013	375.4	160.1	200.7A
Abbreviations:		L.I Langelier Index MBAS - Methylene-blue ective sub MCL - Meximum contaminent con NA - Not analyzed	ostances (detergent centration levels			ND - Not detecte PCU - Platinum TDS - Total disso TON - Threshold , all other pH read	Color Units Nved solids odor number	<u>(</u> 2					0.013	1	5	0.013

kennecet\1100***\t10wq-x.820

					Field Analyses				<u> </u>		·	Miscellan	eous Parameters		
Sample	Date Sempled	Temperature C	Discolved Oxygen mg/L	Percent Seturation	Conductivity umhoe/cm @ 25C	Turbidity NTU	pH ite	Oxidation Reduction Potential mV	Calcium mgA_	Magnesium mg/L	Potaesium mg/L	Sulfide mgA.	Chemical Oxygen Demand mg/L	Blochemical Oxygen Demend	Ammonia-N mg/L
5P3	9/23/91	NA	NA	NA	409	NA	8.1	537	67	9.8	ND	ND	3.6	ND	ND
SP4	9/23/91	NA	NA	NA	394	NA	0.1	590	68	9.9	ND	ND	3.6		
SP5	8/23/81	NA	NA 🚟	NA	270	NA	7.37	521	57	13	2.8	ND		ND	ND
SWB	9/21/91	4.2	12.1	98	192	0.5	8.1	353	18	5.0	_		945	47	6.7
SWBK1	9/21/91	NA	NA	NA	NA	0.08*	5.49*	NA	0.20		ND	ND	2.7	1.1	ND
SWBK2	\$/21/91	NA	NA	NA	NA	0.18*	5.43*			0.0	ND	NA	ND	ND	ND
SWJ	9/21/91	4.0	11.8	96	217	0.4		NA	0.20	0.0	ND	NA	0.7	ND	ND
SWK1	9/21/91	0.3	12.6	93	26.8		8.1	390	23	5.7	ND	ND	0,7	ND	ND
SWK2	9/22/91	3.0	11.4	91	152	16.5 4.1	7.3	360 350	03	0.3	ND	ND	2.2	1.5	ND
SWK3	8/22/91	2.8	11.4	89	446	0.2	7.6	350	15	5.7	ND	ND	ND	<1.0	ND
SWK4	9/22/91	2.9	14.2	110	394	90.0	8.2	370	65 58	9.6	ND	ND	1.4	1.0	ND
SWK5		SWN1 - see be		110	434	30.0	4.4	303	26	7.8	ND	ND	1.0	ND	ND
SWM4	9/22/91	2.4	13.8	104	522	23.5	B.2	388	71	11.0	ND	ND	1.4	ND	
SWN1	9/22/91	3.0	13.4	107	NA	1.7	NA	NA	14	5.7	ND	ND	ND	ND	ND
SWN1	duplicate	3.0	13.4	107	165	1.7	7.8	359	14	5.6	ND	ND	1.0	<1.0	ND
SWN2	9/22/91	3.0	12.2	97	144	2.2	8.0	329	17	5.8	ND	ND	2.2	<1.0	ND
WP3	9/23/91	NA	NA	NA	181	NA	7.9	534.00	15	5.3	ND	NO	14.3	ND ND	ND ND
lethod		ASTM mercury	thermometer						EPA 200.	EPA 200.7	EPA 258.1	PA 376.	EPA 410	EPA 405.1	EPA 350.1
lathod Rep	orting Limit	(MRL)							0.03	0.03	1.25	0.10	0.10	1.00	0.20

* Asterisk indicates lab based analysis of pH or turbidity

TABLE 11. WATER QUALITY - FIELD AND MISCELLANEOUS PARAMETERS - SEPTEMBER 1991 SAMPLING EVENT

1

Abbreviations: NTU - Nephelometric tu

NTU - Nephelometric turbidity units NA - Not enalyzed

ND - Not detected at MRL

All samples were unlittered

 \sim

245

TABLE 12. WATER QUALITY - PETROLEUM HYDROCARBON CONTENT -SEPTEMBER 1991

		Total Recoverable	
	Date	Petroleum Hydrocarbons	Diesel
Sample	Sampled	mg/L	pptn
Sb2	9/23/91	16.8	6.9
Method		418.1	3510/3550/8100

.

÷

TABLE 13. WATER QUALITY - PRIMARY STANDARDS - MAY 1992 SAMPLING EVENT

Sample SP1 - unfiltered	Date Sampled	Location	Arsenic mg/L	Barium mg/L	Cadmium mg/L	Chromium <u>mg/L</u>	Fluoride mg/L	Lead	Mercur mg/L	Nitrate-N mg/L	Selenium mg/L	Silver mg/L	Turbidity NTU	Fecal Coliform
SP1 - filtered	5/20/92	Seep west of Power Hse.	ND	ND	ND	ND	ND	ND	ND	0.14				_col/100mL
SP3 - unfiltered	5/20/92		ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	1.5	0
SP3 - filtered	5/20/92	l ailings	0.0073	ND	ND	ND	0.051	ND	ND	1.4	ND	ND	NA	NA
SP4 - unfiltered	E 100 100		0.0063	ND	ND	ND	NA	ND	ND	NA	ND	ND	1.3	ο
SP4 - filtered	5/20/92	Tailings	0.013	ND	0.0014	ND	ND	ND	6E-04		ND	ND	NA	NA
SWB - unfiltered	£ /2.0 /0.0		0.011	ND	ND	ND	NA	ND	ND	1.9	ND	ND	4.1	0
SWB - filtered	5/22/92	Bonanza Creek	0.0011	ND	ND	ND	ND	ND	ND	NA 1.5	ND	ND	NA	NA
SWBK3 - unfiltered	F/64/000	-	ND	ND	ND	ND	NA	ND	ND		ND	ND	0.89	0
SWBK3 - filtered	5/21/92	Blank	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA
SWJ - unfiltered	E 10 0 10 0		ND	NÐ	ND	ND	NA	ND	ND	ND	ND	ND	NA	0
SWJ - filtered	5/22/92	Jumbo Creek	0.0018	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA
		_	0.0015	ND	ND	ND	NA	ND	ND	0.85	ND	ND	6.2	0
SWK1- unfiltered	5/22/92	KC, south of Amazon Ck.	0.0022	0.053	ND	0.0066	ND	0.008		NA	ND	ND	NA	NA
SWK1 - filtered			ND	ND	ND	ND	ND	ND	ND	0.16	ND	ND	NA	0
SWK2 - unfiltered	5/20/92	KC, south of National Ck.	0.0071	ND	ND	ND	0.058	ND	ND	NA	ND	ND	NA	NA
SWK2 - filtered			0.0018	ND	ND	ND	NA	ND	ND	1.4	ND	ND	5.3	0
SWK3 - unfiltered	5/21/92	KC, above McCarthy Ck.	0.0011	ND	ND	ND	0.065	ND	ND	NA	ND	ND	NA	NA
SWK3 - filtered			0.0011	ND	ND	ND	NA NA		ND	0.73	ND	ND	0.26	0
SWK4 - unfiltered	5/21/92	KC, below McCarthy Ck.	0.0016	ND	ND	ND	0.051	ND	ND	NA	ND	ND	NA	NA
SWK4 - filtered			ND	ND	ND	ND	NA	ND	ND	0.79	ND	ND	= 14	0
SWM4 - unfiltered	5/21/92	McCarthy Ck., above McCarthy	0.0016	ND	ND	ND	0.065	ND	ND	NA	ND	ND	NA	NA
SWM4 - filtered		-	ND	ND	ND	ND		ND	ND	0.68	0.0013	ND	11	0
SWN1- unfiltered	5/20/92	National Ck., above Mill Town	ND	ND	ND	ND	NA ND	ND	ND	NA	ND	ND	NA	NA
SWN1 - filtered			ND	ND	ND	ND		ND	ND	1.6	ND	ND	0.9	0
SWN2 - unfiltered	5/19/92	National Ck., below Mill Town	0.0036	ND	ND	ND	NA	ND	ND	NA	ND	ND	NA	NA
SWN2 - filtered			0.0013	ND	ND	ND	ND	ND	ND	1.4	ND	ND	2.8	0
SWN3 - unfiltered	5/20/92	Duplicate of SWN1	ND	ND	ND		NA	0.007	ND	NA	ND	ND	NA	NA
SWN3 - filtered		• • • • • • •	ND	ND	ND	ND	ND	ND	0.001	1.6	ND	ND	0.9	ο
WP3 - unfiltered	5/20/92	Adj to KC, nr School House	0.094)	0.130		ND	NA	ND	ND	NA	ND	ND	NA	NA
WP3 - filtered			0.0025	ND	0.0051	ND	ND	0.022	ND	1.5	ND	ND	NA	0
MCL (18 AAC 80.070					ND	ND	NA	ND	<u>ND</u>	<u>NA</u>	ND	ND 1	NA	NA
			0.05 ASTM	1	0.0100	0.05	4	0.05	0.002	10	0.01	0.05	1	0
Method			D2972	EPA	EPA		SM16	EPA	EPA	EPA	ASTM	EPA		Membrane
Method Reporting Lim	it (MRL)			200.7	213.2	218.2	413	239.2	245.1	353.2	D3859	272.2		filter
			0.001	0.05	0.0005	0.005	0.1	0.005	2E-04	0.1	0.001	0.001	0.1	0

Abbreviations: KC - Kennicott Creek

MCL - Maximum Contaminant Levels

ND - Not detected at MRL

NA - Not analyzed

NTU - Nephelometric turbidity units

.

TABLE 14. WATER QUALITY - SECONDARY STANDARDS - MAY 1992 SAMPLING EVENT

Sample	Date Sampled	Location	Chloride mg/L	Color PCU	Copper mg/L	Corrosivity: L.I. @ 20C units	Foaming Agent MBAS mg/L	lron mg/L	Manganese mg/L	Odor TON	pH	Sodium			Zinc
SP1- unfiltered	5/20/92	Seep west of Power Hse.	ND	<5	ND	-0.53	ND				units	mg/L	mg/L	mg/L	mg/
SP1 - filtered			NA	NA	NA	NA	NA	ND ND	ND	5	7.6	1	7	108	0.61
SP3 - unfiltered	5/20/92	Tailings	NA	<5	0.066	0.34	ND		ND	NA	NA	NA	NA	NA	ND
SP3 - filtered			NA	NA	0.055	NA	NA	ND	ND	No odor		1.6	16	197	ND
SP4 - unfiltered	5/20/92	Tailings	0.8	<5	2.6	0.44	ND	ND	ND	NA	NA	NA	NA	NA	ND
SP4 - filtered			NA	NA	0.15	NA		ND	ND	No odor		2.1	7	199	ND
SWB - unfiltered	5/22/92	Bonanza Ck.	ND	<5	ND	-0.29	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWB - filtered			NA	NA	ND	NA	ND	ND	ND	No odor	8.25	3.1	8	107	ND
SWBK3 - unfiltered	5/21/92	Blank	ND	<5	ND	-6.07	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWBK3 - filtered			NA	NA	ND		ND	ND	ND	No odor	NA	ND	ND	44	ND
SWJ - unfiltered	5/22/92	Jumbo Ck.	ND	<5	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWJ - filtered			NA	NA		-0.14	ND	ND	ND	No odor	8.5	2.3	9	122	ND
SWK1- unfiltered	5/22/92	KC south of Amazon Ck.	ND		ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWK1 - filtered			NA	10	ND	0.38	ND	5.400	0.092	No odor	8.9	1.1	14	100	ND
SWK2 - unfiltered	5/20/92	KC south of National Ck.		NA	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWK2 - filtered		to boath of Hallonal CK.	ND	<5	0.11	-0.47	ND	0.11	ND	No odor	8.1	3.6	10	107	ND
SWK3 - unfiltered	5/21/92	KC above McCarthy Ck.	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWK3 - filtered		no above mccariny ck.	2.6	<5	ND	0.14	ND	ND	ND	No odor	8.02	6.4	2.1	187	ND
SWK4 - unfiltered	5/21/92	KC below McCarthy Ck.	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWK4 - filtered	0/21/02	NO DEIDW MCCENINY CK.	23	<5	ND	0.19	ND	0.39	ND	No odor	8.25	3,9	78	323	ND
SWM4 - unfiltered	5/21/92	McCarthy Ck. above McCarthy	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWM4- filtered	0/2//02	McCarthy CK. above McCarthy	ND	<5	ND	0.16	ND	0.22	ND	No odor	8.2	3.7	44	179	ND
SWN1- unfiltered	5/20/02	National Ck. above Mill Town	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWN1- filtered	5/20/32	National CK. above Mill Lown	ND	<5	ND	-0.61	NÐ	ND	ND	No odar	8.28	3.7	10	117	ND
SWN2 - unfiltered	5/10/02	Notional Court to the term	ND	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWN2 - filtered	3/13/32	National Creek below Mill Town	ND	<5	0.054	·0.42	ND	ND	ND	No odor		3.9	10	105	ND
SWN3 - unfiltered	E/20/02	Duality of Chains	NA	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	ND
SWN3 - filtered	5/20/92	Duplicate of SWN1	ND	<5	ND	-0.57	ND	ND	ND	No odor	8.2	3.6	11	108	ND
WP3 - unfiltered	E 100 100		NA	NA	ND	NA	NA	ND	ND	NA	NA	NA	NA		
WP3 - filtered	5/20/92	Adjacent KC nr School House	ND	<5	1.50	·0.23	ND	19.00		No odor	7.85	4.2		NA	ND
WES - Inteled	_		NA	NA	ND	NA	NA	ND	ND	NA	NA	NA	10 NA	136 NA	1.20 ND
فال ما			SM16ED	EPA	EPA	SM14ED20		EPA	EPA		EPA	EPA	EPA		
ethod			407A	110.2	200.7A	3	EPA 425.1	200.7A		SM207	150.1			SM20	EPA
athod Reporting Limit	(MRL)		1	<5	0.05	80 - 1920 a.C.	0.1	0.1	0.05	0	130.1	200.7A	375.4	90	200.7
CL (18 AAC 80.070)			250	15	1	>0	0.5	0.3	0.05		6.5-8.5	0.25	1	5	0.5
breviations:	KC - Kennie								0100		0.0.0.0	250	250	500	5

L.I. - Langelier Index MBAS - Methylene-blue active substances (detergents) MCL - Maximum contaminant concentration levels

TON - Threshold odor number

NA - Not analyzed ND - Not detected at MRL

PCU - Platinum Color Units

TDS - Total dissolved solids

" Lab value, all other pH readings taken in field.

Field Analyses **Miscellaneous Parameters** Oxidation Sample Date Chemical **Biochemical** Temperature Dissolved Percent Conductivity Turbidity pH Reduction Sampled Oxygen С Oxygen Oxygen Saturation umhos/cm Potential Calcium Magnesium Potassium Sulfide Demand Demand Ammonia-N mg/L @ 25C NTU unite mV mg/L mg/L mg/L mg/L mg/L mg/L mg/L SP1 5/20/92 1 12.9 90.8 247 0.9 8.3 255 27 4.4 SP3 ND ND 5/20/92 18 2.5 3.5 ND 12.2 90.7 413 1.3 8.1 265.9 52 8.1 ND SP4 ND ND 5/20/92 2.1 2 11.4 ND 82.5 462 4.1 8.1 216 59 9.7 ND ND SWB 5/22/92 ND Ŧ 2.6 13.4 ND 91.8 189 0.9 8.3 332.6 24 6.5 ND SWBK3 5/21/92 ND ND NA 2.2 NA ND NA NA NA NA NA ND ND ND SWJ 5/22/92 ND ND 0.0 ND 12.6 ND 86.3 190 6.2 8.5 340.6 27 6.4 ND SWK1 ND ND 5/22/92 6.1 0.0 13.2 90.4 0.20 65 NA 8.9 292.7 26 3.9 ND SWK2 ND ND 5/20/92 8.0 2.0 11.6 ND 84 193 5.3 8.1 198.7 20 6.3 ND ND SWK3 5/21/92 ND 21.1 6.0 ND 10.2 82 301 0.3 8.0 230 39 7.1 ND. ND SWK4 5/21/92 ND 9.6 7.0 11.4 0.31 94 342 14.0 8.3 250 46 7.9 ND SWM4 ND 13.0 5/21/92 6.0 34.0 11.0 ND 88 334 11.0 8.2 250 46 7.8 ND SWN1 ND ND 5/20/92 1.0 4.1 12.9 0.41 90.8 247 0.9 8.3 255 20 6.8 ND ND SWN2 ND 5/19/92 10.2 1.4 12.5 ND 88 610 2.8 8.7 215 21 6.7 ND ND SWN3 ND 5/20/92 2.3 1.0 ND NA NA 150 NA 7.8* NA 19 6.7 ND WP3 ND ND 5/20/92 NA 11:4 ND NA NA 205 NA 7.9 267.00 37 11.0 ND ND 14.3 42.0 ND ASTM mercurv **EPA EPA** Method thermometer 200.7 EPA 200.7 EPA 258.1 376.2 EPA 410 EPA 405.1 EPA 350.1 ICP ICP AA Method Reporting Limit 0.03 0.03 1.25 0.10 0.10 1.00 0.20

TABLE 15. WATER QUALITY - FIELD AND MISCELLANEOUS PARAMETERS - MAY 1992 SAMPLING EVENT

Abbreviation NTU - Nephelometric turbidity units

NA - Not analyzed

ND - Not detected at MRL

*Leb value, all other pH readings taken in field.

All samples were unfiltered

TABLE 16. WATER QUALITY-TOTAL URANIUM AND GROSS ALPHA CONTENT - MAY 1992 SAMPLING EVENT

	Date		Total Uranium	Gross Alpha
Sample	Sampled	Location	mg/L	PCI/L
SP1	5/20/92	Seep west of Power House	0.00006	<2
SP3	5/20/92	Tailings	0.00024	<2
SP4	5/20/92	Tailings	0.00207	4+/-3
SWBK3	5/21/92	Blank	ND	<2
SWK2	5/20/92	Kennicott Creek, south of National Creek	0.00024	<2
SWN1	5/20/92	National Ck., above mill town	0.00023	<2
SWN2	5/19/92	National Ck., below mill town	0.00028	<2
SWN3	5/20/92	Duplicate of SWN1	0.00022	<2
WP3	5/20/92	Adjacent Kennicott Ck., nr School House	0.00038	<2
ICL	······································		None	15
lethod		1	200.8	900.0
Aethod Reporting	Limit		0.00001	2

ND - None Detected

MCL - Maximum Contaminant Level (18 AAC 080)

1

TABLE 17. WATER QUALITY-PETROLEUM HYDROCARBONS CONTENT OF SAMPLE SP1 - MAY 1992 SAMPLING EVENT

			EPA		
Parameter	Concentration	Units	Method	MRL	MCL
Benzene	ND	mg/L	8020	0.001	0.005
Toluene	ND	mg/L	8020	0.001	
Ethylbanzene	ND	mg/L	8020	0.001	
p & m Xylene	ND	mg/L	8020	0.001	
o-Xylene	ND	mg/L	8020	0.001	
1,4-Dichlorobenzene	ND	mg/L	8020	0.001	0.075
1,3-Dichlorobenzene	ND	mg/L	8020	0.001	
1,2-Dichlorobenzene	^ ND	mg/L	8020	0.001	
Diesel-range Hydrocarbons	I ND	mg/L	8100M	1	
Total Petroleum Hydrocarbons	0.33	mg/L	418.1	0.1	

MRL - Method Reporting Limit

MCL - Maximum Allowable Contaminant Concentration Level (18 AAC 80.070)

ND - None Detected

TABLE 18. TAILING SURFACE SOIL SAMPLES - TOTAL METALS CONTENT

······································	Data	Sample	Soil	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Sample	Sampled	Depth	Туре	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TPS1	7/20/91	2"-10"	GM	353	13	8 7	3	ND	2.6	ND	12
TPS2	7/20/91	2"-12"	SM	456	12	27	ND	49	7.1	ND	20
TPS3	7/20/91	2"-14"	GM	283	9	11	ND	21	6.9	ND	11
TPS4	7/20/91	2"-10"	GM	244	9	30	ND	ND	5.1	ND	5
TPS5	7/20/91	2"-10"	GM	594	8	9	ND	ND	5.1	ND	4
TPS6	7/20/91	2"-8"	SM	961	14	14	ND	27	4.4	ND	5
TPS7	7/20/91	2"-10"	SM	596	23	19	ND	27	11.5	ND	11
TPS8	7/20/91	2"-16"	GW	591	14	28	ND	41	7.5	ND	12
TPS9	7/21/91	2"-12"	ML	670	12	26	ND	32	7.5	ND	15
TPS10	7/21/91	2"-18"	GW	336	13	10	ND	38	3.9	ND	10
TPS10	duplicate			339	9	5	ND	ND	2.6	ND	5
TPS11	7/21/91	4"-12"	sw	427	22	10	3	22	9.7	ND	14
TPS12	7/21/91	2"-6"	ML	1770	51	26	4	107	13	1	15
TPS13	7/21/91	0-8*	GW	250	6	29	ND	ND	15.3	ND	8
TPS14	7/21/91	2"-8"	ML	1230	34	66 😁	ND	120	8.3	ND	16
TPS15	7/21/91	2"-8"	SM	1270	28	48	ND	58	14.1	ND	18
TPS16	7/21/91	2"-7"	GW	207	7	12	ND	ND	3.6	ND	5
TPS17	7/21/91	2"-6"	GW	1350	29	5	14	28	6.3	1	33
TPS18	7/21/91	2"-6"	GW	205	31	5	19	ND	2.2	ND	20
TPS19	7/21/91	2"-6"	ML	3500	162	65	7	251	51.8	2	118
TPS20	7/21/91	0-6"	ML	1690	95	26	11	336	30.9	1	31
TPS20	duplicate			1610	109	22	9	94	15.4	3	70
TPS21	7/21/91	2"-8"	ML	263	74	7	14	37	7.3	ND	6
TPS22	7/21/91	2"-6"	Cobbles	3530	20	2	ND	25	27.3	2	6
TPS23	7/21/91	NR	GP	639	9	5	ND	ND	6.7	ND	5
TPS24	7/21/91	duplicate of T	PS10 - see at	ove							
TPS25	7/21/91	duplicate of T	PS20 - see at	ove							
TPS26	5/21/92	2"-10"	GP	619	18	20	ND	36	5.1	ND	5
TPS27	5/21/92	2"-10"	SP	3981	50	37	ND	58	5.7	ND	33
TPS28	5/21/92	2"-10"	GP	557	23	15	8	25	2.8	ND	6
TPS29	5/21/92	2"-10"	GP	880	19	70	ND	82	9.9	ND	14
TPS29	duplicate			942	20	198	ND	70	7.4	ND	9
TPS30	5/21/92	duplicate of T	PS29 - see at								
Method				7060	6010	6010	6010	6010	7471	7740	6010
Method Reporting	a Lippit			1	1	1	2	20	0.2		2

Abbreviations: ND - not detected at the MRL

NR - not recorded

				Leac	hable M	etals (m	(g/l)		
	Total Sulfide	Ag	As	Ba	Cd	Cr	Hg	Pb	Se
Sample	mg/kg						_		_
TPS1	ND	ND	ND	ND	ND	ND	ND	ND	ND
TP\$2	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS3	ND	ND	ND	0.2	ND	ND	ND	ND	ND
TPS4	ND	ND	ND	0.2	ND	ND	ND	ND	ND
TPS5	ND	ND	ND	0.3	ND	ND	ND	ND	ND
TPS6	ND	ND	ND	0.3	ND	ND	ND	ND	ND
TPS7	ND	ND	ND	0.2	ND	ND	ND	ND	ND
TPS8	ND	ND	ND	0.1	ND	ND	ND	ND	ND
TPS9	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS10	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS10 duplicate	ND	ND	ND	ND	ND	ND	ND	ND	NE
TPS11	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS12	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS13	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS14	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS15	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS16	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS17	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS18	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS19	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS20	ND	ND	ND	ND	ND	ND	0	ND	ND
TPS20 - duplicate	ND	ND	ND	ND	ND	ND	ND	NÐ	ND
TPS21	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS22	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS23	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPS24	duplicate of TPS10								
TPS25	duplicate of TPS 20								
TPS26	NA	ND	ND	ND	ND	ND	ND	ND	ND
TPS27	NA	ND	ND	ND	ND	ND	ND	ND	ND
TPS28	NA	ND	ND	ND	ND	ND	ND	ND	ND
TPS29	NA	ND	ND	ND	ND	ND	ND	ND	ND
TPS29 - duplicate	NA	ND	ND	ND	ND	ND	ND	ND	ND
TPS30	duplicate of TPS29								
Method	9030	1312	1312	1312	1312	1312	1312	1312	131
URL	25	0.01	0.1	0.1	0.1	0.01	0	0.05	0.1
		5	5	100	1	5	0.2	5	1

TABLE 19. TAILINGS SURFACE SOIL SAMPLES - TOTAL SULFIDE AND SYNTHETIC PRECIPITATION LEACHATE PROCEDURE, LEACHABLE METALS

Abbreviations:

MCL - Maximum Contaminant Level MRL - Method Reporting Limit

NA - Not Analyzed

ND - Not Detected at MRL

Location	Surface Elevation (ft. a.m.a.l.)	Tailings Thickness (ft.)	Top of Till Elevation (ft. a.m.s.l.)	Till Thickness (ft.)	Top of Basait Bedrock Elevation (ft. a.m.s.l.)
VES - 1	2,185.4	12.6	2,172.8	36.0	2,136.8
VES - 2	2,167.0	5.5	2,161.5	12.3	2,149.2
VES - 3	2,172.7	8.7	2,164.0	18.0	2,146.0
VES - 4	2,177.1	6.2	2,170.9	14.0	2,156.9
VES - 5	2,168.6	8.5	2,160.1	20.7	2,139.4
VES - 6	2,140.5	6.0	2,134.5	11.7	2,122.8
VES - 8	2,128.7	8.2	2,120.5	17.2	2,103.3
VES - 9	2,170.9	6.2	2,164.7	10.6	2,154.1
VES - 12	2,189.7	7.0	2,182.7	13.6	2,169.1
VES - 13	2,166.6	8.7	2,157.9	21.0	2,136.9
VES - 14	2,147.1	9.9	2,137.2	25.1	2,112.1
VES - 15	2,137.2	4.5	2,132.7	7.3	2,125.4
VES - 16	2,116.2	5.4*	Tailings overlie basalt	0	2,110.8
VES - 17	2,106.0	3.9 '	Tailings overlie basalt	0	2,102.1
VES - 18	2,102.1	7.2	2,094.9	14.4	2,080.5
VES - 19	2,060.8	7.7 •	2,053.1	11.4	2,041.7
VES - 20	2,081.4	4.8 •	Tailings overlie basalt	0	2,076.6

TABLE 20. TAILINGS GEOPHYSICAL SURVEY SUMMARIZED RESULTS

Teilings reworked by National Creek.

.

TABLE 22. LEACHING PLANT FUEL TANKS - RESIDUAL OIL VOLUMES

Tank	Depth of Oil (inches)	Volume of Oil (gailons)
1	1	445
2	2	890
3	1/2	220
4	1/2	220

(The cross-sectional area of the tanks is approximately 713 square feet. For these estimates, it is assumed that the tank bottoms are flat and level.)

kennecot\1100401\t22lp-t.821/j:1

Sample	Date Sampled	Тура	Location	Arsenic mg/kg	Cadmium mg/kg	Chromium mg/kg	Lead mg/kg	PCBs	Total Halogens	Flash Point	Calorific Value
BF1	7/27/91	Fuel oil	Fuel tank-4(2)	ND	1.1	ND		mg/kg	mg/kg	F	BTU/Ib
BF2	7/27/91	Fuel oil	Fuel tank-4(1)	ND			10.2	ND	ND	>160	16,400
BF3	8/17/91	Fuel oil			1.3	ND	9.1	ND	166	>160	17,600
CG1	7/26/91	Black grease	Leaching Plant	3.3	ND	ND	40	ND	2,000	>160	13,800
CG2	8/17/91		Bonanza	11.4	ND	ND	1.7	ND	ND	>160	16,500
		Black grease	Mill town	9.8	4.3	ND	22.8	ND	368	>160	14,800
CG3	8/17/91	Yellow grease	Mill town	ND	ND	ND	ND	ND	139	>160	-
CG4	8/17/91	Yellow grease	Mill town	ND	1.9	ND	ND	ND ¹	ND		17,200
CG5	8/17/91	Black grease	Mill town	ND	2.5	ND	1	ND		>160	17,200
CO1	7/30/91	Transformer oil	Angle Station	4.1	ND	1.7	13.5		315	>160	15,400
CO2	8/17/91	Shaking table oil	Mill building	ND	ND			ND	130	>160	NA
CO3	8/17/91	Transformer oil	Mill town	ND		ND	ND	ND	ND	>160	18,500
C04	8/17/91	Transformer oil			ND	ND	ND	ND	105	>160	18,900
ethod			Mill town	ND	ND	ND	ND	ND	ND	>160	18,800
				EP40CFR266	4						
	orting Limit			1	0.5	1	1	1	100		
CRA Allow	vable Limits		1	5	2	10	100	50	4,000	100 minimum	

2

TABLE 23. OIL BURNING SPECIFICATIONS AND CALORIFIC VALUES

T.

ND - Not Detected

PCBs - Polychlorinated biphenyls

Sample	Date Sampled	Sample Location	Specific Gravity	Viscosity Centipoise
BF4	5/22/92	Tank 4(1)	0.97	4,300
BF5	5/22/92	Tank 4(2)	0.92	8.360

TABLE 24. FUEL OIL VISCOSITY AND SPECIFIC GRAVITY MEASUREMENTS

Source	Volume (gelions)	55-gallon Drum Number
Plat-O slime tables and James Simplex tables	36	1
Leaching and Flotation Plant circuit breakers, transformers in the Mill Building and Transformer House	103	6, 7
Aachine Shop, Leaching and Flotation Plant: black grease	15	2, 5
eaching and Flotation Plant: yellow grease	65	3, 4

TABLE 25. CONSOLIDATED OIL AND GREASE

.

Sample	Date Sampled	Location	Sample Depth	5ой Туре	Visible Oil Stain?	TPH mg/kg	Diesel mg/kg	Benzene	Toluene	Ethylbenzene	Xylenes	PCBe
PH1	7/23/91	W of fuel tank-4(2)	1"-12"	GW	Yes	2,970		mg/kg	mg/kg	mg/kg	ing/kg	mg/kg
PH2	7/24/91	W of bldg 38	2"-8"	SM	No	3,600	NA	ND	ND	ND	ND	NA
PH3	7/24/91	W of bldg 38	NR	GW	No	170	NA	NA	NA	NA	NA	NA
PH4	7/24/91	W of fuel tank-4(2)	2"-6"	sw	Yes	61,000	NA	ND	ND	ND	/ ND	NA
PH5	7/24/91	W of sewer pipe	2"-10"	GW	Yes	9,900	30,000	ND	ND	ND	ND	NA
PH6	7/24/91	W of bldg 38	2"-8"	GW	No	•	NA	NA	NA	NA	NA	NA
PH7	7/24/91	S of bldg 38	2"-10"	Pt	Yes	2,600	NA	ND	ND	ND	ND	NA
PH8	7/24/91	W of Power Hse	4"-12"	GW	Yes	110,000		NA	NA	NA	NA	NA
PH9	7/24/91	W of Power Hse	3"-10"	GW	Yes	490	NA	ND	ND	ND	ND	NA
PH10	7/24/91	W of oil pools	NR	SM	• = =	28,000	NA	NA	NA	NA	NA	NA
PH10	7/24/91	duplicate	NR	SM	No	97	NA	NA	NA	NA	NA	NA
PH11	7/24/91	W of fuel tank-4(3)	NR		No	91	NA	NA	NA	NA	NA	NA
PH12	7/24/91	W of fuel tank-4(3)	NR	SM	No	118	NA	NA	NA	NA	NA	NA
PH13	7/24/91	W of oil pools	NR	SM	No	97	ND	ND	ND	ND	ND	NA
PH14		No sample taken	INA	Oily sludge	Yes	620;000	270,000	ND	ND	ND	ND	NA
PH15		duplicate of PH10 - see	abaua									
PH16	7/26/91	Bonanza mine, Transf.	NR									
PH17	7/29/91	Nr fuel tank-4(1)	2"-6"	SM	Yes	37,200	NA	NA	NA	NA	NA	ND
PH18	7/29/91	Nr fuel tank-4(1)	2"-6"	Pt	Yes	28,000	NA	NA	NA	NA	NA	NA
PH19	7/29/91	Nr fuel tank-4(1)	2"-6"	Pt	No	3,500	NA	NA	NA	NA	NA	NA
PH20	7/29/91	Utilidor	2 -0 2"-12"	Pt	Yes	120,000	54,000	ND	ND	ND	ND	NA
PH21	7/29/91	Utilidor		Pt	Yes	320,000	250,000	ND	ND	ND	ND	NA
PH22	7/29/91	Utilidor	2"-8"	Pt	No	240	NA	NA	NA	NA	NA	NA
PH23	7/29/91	Utilidor	4"-8"	Pt	Yes	37,000	NA	NA	NA	NA	NA	NA
PH24	7/29/91	Nr bldg 13c	2"-12"	Pt	Yes	110,000	NA	NA	NA	NA	NA	NA
PH30	6/19/92	•	2"-6"	Pt	No	940	NA	NA	NA	NA	NA	NA
PH31	6/19/92	North of mill building	surface sample	GM	Yes	100,000	PH30 hydrod	carbon scan	57,000 mg	/kg lube oil		110
PH32		North of mill building	surface sample	GM	Yes	/ 55,000	PH31 hydrod	carbon scan	30.000 ma	/ka luba oil		
PH33	6/19/92	North of mili building	surface sample	GM	Yes	500						
1 133	6/19/92	North of mill building	surface sample	GP +	Yes	500	Method 801	5M, MRL =	10 mg/kg		_	
thod						418.1	2550/9100	5030/0050	F000 100			
L						variable	Variable	0.05	5030/8020	5030/8020 5		1540/80
						40110010	Aguaniq	0.05	0.05	0.05	0.05	1

Abbreviations MRL - Method Reporting Limit

TPH - Total Recoverable Petroleum Hydrocarbons

PCBs - Polychlorinated Biphenyls

ND - Not Detected at MRL

NA - Not Analyzed

NR - Not Recorded

Vio hydrocarton to soil

TABLE 26. BOILER ASH: TOTAL RCRA METALS CONCENTRATIONS

	· 1	×	Concentrations (mg/kg)								
Sample	Location	Arsenic	Barlum	Cadmium	Chromium	Lead	Mercury	Selenium	Silver		
BA1	Ash pile west of Power House	NA	NA	NA	NA	NA	NA	NA	NA		
BA2	Ash pile west of Power House	145	170	ND	107	18900	2.6	ND	59		
BA3	Ash pile west of Power House	77	222	100	113	8650	3.5	ND	403		
Method		7060	6010	6010	6010	6010	7471	7740	6010		
Method Re	porting Limit	1	10	10	20	200	0.2	1	20		

Abbreviatio NA - Not Analyzed

ND - Not Detected

.

Concentrations (mg/L)									
Areenic	Barium	Cadmium	Chromium	Lead	Marcury	Selenhum	011		
ND	0.9	0.1	ND				Silver		
ND	1.1	0.1	ND				ND ND		
ND	1	0.12	ND	45.8			0.01		
5	100	1	5	5		1	E		
0.1	0.1	0.01	0.01	0.05		0.1	<u> </u>		
3010	3010	3010	3010	3010	7470	3010	0.01 3010		
	ND ND ND 5 0.1	ND 0.9 ND 1.1 ND 1 5 100 0.1 0.1	ND 0.9 0.1 ND 1.1 0.1 ND 1 0.12 5 100 1 0.1 0.1 0.01	Arsenic Barium Cadmium Chromium ND 0.9 0.1 ND ND 1.1 0.1 ND ND 1 0.12 ND 5 100 1 5 0.1 0.11 0.01 0.01	Arsenic Barium Cadmium Chromium Lead ND 0.9 0.1 ND 72.4 ND 1.1 0.1 ND 71.3 ND 1 0.12 ND 45.8 5 100 1 5 5 0.1 0.01 0.01 0.05	Arsenic Barium Cadmium Chromium Lead Mercury ND 0.9 0.1 ND 72.4 ND ND 1.1 0.1 ND 71.3 ND ND 1 0.12 ND 45.8 ND 5 100 1 5 5 0.2 0.1 0.1 0.01 0.05 0.001	Arsenic Barium Cadmium Chromium Lead Mercury Selenium ND 0.9 0.1 ND 72.4 ND ND ND 1.1 0.1 ND 71.3 ND ND ND 1 0.12 ND 45.8 ND ND S 100 1 5 5 0.2 1 0.1 0.11 0.01 0.05 0.001 0.1 3010 3010 2010 2010 2010 2010		

TABLE 27. BOILER ASH - TCLP RCRA METALS

.

Abbreviations:

ND - Not Detected at MRL

		Location	Concentrati	one (mg/kg):
Sample	Color	(building no.)	Cedmium	Lead
8P1	white	9	112	276,000
BP2	red	9	11	7,980
BP3	e red	15	4	1,270
BP4	white	48	2	11,900
BP5	rød	48	3	336,000
BP6	white	20	ND	11,900
BP7	yeilow	7	282	268,000
BP8	white	14	59	249,000
BP9	red	6	6	50
ximum Allowable Lev	ol		•••	600 *
thod Reporting Limit			1	20
othod			6010	6010

14

1

TABLE 28. LEAD AND CADMIUM CONTENT OF BUILDING PAINTS

Abbreviations:

+--Not Applicable

ND - Not Detected at MRL

- 29 CFR 1025

TABLE 29. CONDITION OF THE EXTERIOR PAINT ON BUILDINGS AT KENNICOTT

		Perc	entage of Area i (B - Body Color		
Building Number	Building Color (B - Body Color, T - Trim Color)	North	South	West	50 B
1	B - Red T - White	10 B 70 T	70 B 70 T	80 B 80 T	
2, 3	B - Red	60 B	65 B	70 B	50 B
	T - White	100 T	80 T	80 T	50 T
5	B - Red	65 B	91 B	92 B	20 B
	T - White	36 T	60 T	86 T	41 T
7	B - Red	64 B	91 B	80 B	64 B
	T - White	72 T	84 T	58 T	72 T
8 B - Red		40 B	40 B	40 B	40 B
T - White		40 T	40 T	40 T	40 T
9	B - Red	10 B	15 B	10 B	30 B
	T - White	100 T	10 T	100 T	30 T
13a to 13 f	3a to 13 f B - Red		20 B	10 8	20 B
	T - White		50 T	40 T	30 T
14	4 B - Red		90 B	60 B	60 B
	T - White		95 T	90 T	70 T
15	B - Red	60 B	50 B	60 B	70 B
	T - White	100 T	80 T	90 T	60 T
18	B - Red	30 B	40 B	60 B	38 B
	T - White	68 T	91 T	98 T	74 T
19	B - Red	52 B	65 B	73 B	51 B
	T - White	97 T	72 T	98 T	85 T
20	B - Red	24 B	37 B	52 B	10 B
	T - White	70 T	85 T	82 T	70 T
23	B - Red	74 B	29 B	53 8	28 B
	T - White	90 T	82 T	86 T	80 T
26	B - Red T - White	97 B 100 T	NA*	93 B	76 B 84 T
27	B - Red	0 B	0 B	О В	0 B
	T - White	0 T	0 T	О Т —	0 T
28	B - Red	6 B	81 B	30 B	10 B
	T - White	40 T	99 T	88 T	68 T
29c	B - Red	37 B	20 B	20 B	10 B
	T - White	88 T	94 T	91 T	75 T

kennecot\1100401\t29co-t.821/j:1

10

Rev. 0, 08/21/92

TABLE 29.	CONDITION OF	THE EXTERIOR PAINT	ON THE BUILDINGS
	AT KENNICOTT	(continued)	

		Perc	entage of Area (B - Body Colo	Peeling or Bare r, T - Trim Colo	Wood r)	
Building Number	Building Color (B - Body Color, T - Trim Color)	North	South	West	East	
1	B - Red	10 B	70 B	80 B	50 B	
	T - White	70 T	70 T	80 T	100 T	
30a	B - Red	5 B	52 B	20 B	10 B	
	T - White	0 T	19 T	10 T	35 T	
305	B - Red	24 B	60 8	40 B	80 B	
	T - White	85 T	88 T	92 T	88 T	
30c	B - Red	20 B	60 В	40 B	10 B	
	T - White	90 T	70 Т	80 T	61 T	
32a	B - Red	10 B	10 B	15 B	10 B	
	T - White	60 T	90 T	90 T	60 T	
32b	B - Red	90 B	10 B	10 B	10 B	
	T - White	60 T	100 T	100 T	65 T	
32c	B - Red	10 B	15 B	10 B	90 B	
	T - White	75 T	80 T	85 T	60 T	
32d	B - Red	25 B	10 B	20 B	25 B	
	T - White	90 T	85 T	90 T	85 T	
34	B - Red	10 В	70 B	76 B	10 B	
	T - White	79 Т	65 T	68 T	44 T	
36	B - Red	10 B	10 B	60 B	13 B	
	T - White	70 T	40 T	50 T	40 T	
37	B - Red	30 B	20 B	5 8	30 B	
	T - White	70 T	40 T	70 T	35 T	
47	B - Red	4 B	22 B	42 8	0 B	
	T - White	80 T	36 T	80 T	55 T	
48	B - Red	28 B	20 B	34 B	10 B	
	T - White	72 T	28 T	52 T	49 T	

Abbreviations: NA - Not Accessible

Building		Facin	g Wall		
Number	North	South	West	East	Total
1	1,102	669	1,015	1,130	3,916
2,3	13,340	13,340	14,981	0	41,661
5	1,504	1,504	580	560	4,128
7	3,520	3,520	2,016	2,016	11,072
8	280	280	120	120	800
9	1,132	1,132	3,048	3,048	8,360
12	380	380	1,440	1,440	3,640
13a to 13f	248	248	336	336	7,008
14	1,504	1,504	560	560	4,128
15	3,120	2,880	6,144	6,144	18,288
18	320	320	400	400	1,440
19	960	960	800	1,200	3,920
20	2,850	2,850	1,463	975	8,138
23	720	720	360	360	2,160
28	480	480	1,328	1,328	3,616
29a to 29c,29f	240	240	336	336	4,608
30a to 30c	240	240	336	336	3,456
32a to 32d	248	248	200	200	3,584
34	120	120	240	240	720
36	780	780	1,488	1,488	4,536
37	375	375	270	270	1,290
39a to 39c	320	320	248	248	3,408
47	192	192	256	128	768

TABLE 30. ESTIMATED AREA OF LEAD PAINT COVER

Total Square Feet

144,645

kennecot\1100401\t30ea-x.730/j:1

TABLE 31. ESTIMATED AREA OF PEELING PAINT

.

٣

Building		Facin	g Wali		
Number	North	South	West	East	Total
1	110	468	812	565	1,955
2,3	6,670	8,671	10,486	210	26,037
5	978	1,369	515	112	2,974
7	2,253	3,203	1,290	1,613	8,359
8	112	112	48	48	320
9	113	170	305	914	1,502
13a to 13f	150	300	204	402	1,056
14	902	1,354	336	336	2,928
15	1,872	1,440	3,686	4,300	11,298
18	96	128	240	152	616
19	500	624	584	612	2,320
20	684	1,055	761	497	2,997
23	532	209	191	83	1,015
28	29	389	398	133	949
29a to 29c,29f	356	192	268	136	952
30a	12	125	67	34	238
30b	58	144	134	269	605
30c	48	144	134	34	360
32a	25	25	30	20	100
32b	223	25	20	20	288
32c	25	37	20	180	262
32d	62	25	40	50	177
34	12	84	182	24	302
36	78	78	893	193	1,242
37	113	75	14	81	283
47	8	42	128	107	285

Total Square Feet

69,420

	Date		Sample	Soli	Total Lead Content		
Sample	Sampled	Location	Depth	Туре	mg/kg		
BPS1 5/21/92 1 ft. from south side bldg 1		1 ft. from south side bldg 19	2"-6"	GP	465		
BPS2	5/21/92	1 ft from south side bidg 14	2"-6"	GW	766		
BPS3	5/21/92	1 ft from south side bldg 1	2"-12"	PT	1,170		
BPS4	5/21/92	1 ft from west side bidg 3	2*-5*	GW	557		
BPS5	5/21/92	1 ft from west side bldg 9	2"-8"	PT	1,340		
BPS6	5/21/92	duplicate sample of BPS5			3,040		
BPS7	8/3/92	3 ft from south side bldg 1	2"-6"	PT	161		
BPS8	8/3/92	6 ft from south side bldg 1	2"-6"	PT	1236 /		
BPS9	8/3/92	9 ft from west side bldg 1	2"-6"	PT	56 /		
BPS10	8/3/92	3 ft from west side bldg 9	2"-6"	GW	183		
BPS11	8/3/92	6 ft from west side bldg 9	2"-6"	GW	249		
BPS12	8/3/92	9 ft from west side bidg 9	2"-6"	GW	608		
BPS13	8/3/92	duplicate sample of BPS12			856		

TABLE 32. LEAD CONTENT OF SOILS NEAR SELECTED BUILDINGS

TABLE 33. AMMONIA TANK SOLUTION ANALYSES

		mple	Method Reporting	RCRA Allowable	Analytical	
	NH1	NH2	Limit (MRL)	Limit	Method	
Location	Tank #2	Tank #3	0		_	
Date Sampled	7/22/91	7/22/91				
Ammonia Concentration (mg/L)	1676	1069	0.05		EPA 350.3	
Metals in Solution (mg/L):						
Arsenic	0.606	0.243	0.005	5	7060	
Barium	0.041	0.03	0.005	100	6010	
Cadmium	ND	ND	0.003	1	6010	
Chromium	ND	ND	0.005	5	6010	
Lead	0.065	0.017	0.002	5	7421	
Mercury	ND	ND	0.0005	0.2	7470	
Silver	ND	ND	0.01	5	6010	
Conductivity, uS/cm	1300	1500			Hydac meter	
DH State	9.32	9.5	<i>8</i> 1	<12.5	Hydac meter	
Tank Headspace Ammonia Concentration ippm)	>700	400			Draeger tube; approx. values only	
				RCRA limit = TCLP limit		

.

Abbreviation:

ND - not detected at MRL

.

					Concent	rations (mg/kg)				
Sample	Location	Sulfide	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silve
0C1	Mother Lode mine	NA	5200	216	24	12	43	58.8	5	56
OC2	Main ore bin, Mill Bidg.	1490	3130	98	23	5	78	40.6	8	34
OC3	Hancock Jig, Mill Bldg.	444	2490	104	23	ND	140	33.5	3	54
OC4	Dorr Thickener, Mill Bldg.	300	3080	124	32	3	60	31.7	2	27
° OC5	High grade bin, Mill Bldg.	68	6570	254	35	2	255	66.3	6	108
OC6	Ore bin, Mill Bldg.	656	11300	180	ND	13	173	131	9	193
007	Leach Plant tailings.	ND	350	8	13	ND	15	5.1	ND	8
0C8	Dorr Thickener, Leach Plant.	272	3740	118	37	4	96	20.9	2	20
0C9	Dorr Thickener, Leach Plant.	965	4280	122	50	3	121	31.6	2	30
0C10	Dorr Thickener, Leach Plant.	54	7030	154	44	5	211	155	8	144
Aethod Reportin	ng Limit	20	20	1	1	2	20	0.2	1	2
lethod (EPA)		9030	6010	6010	6010	6010	6010	7471	7740	601

Abbraviations: NA - Not Analyzed

ND - Not Detected

÷

TABLE 35. CHALCOCITE ORE ANALYSIS

	Metals (mg/kg)										······································	
	Date										Sulfide	
Sample	Sampled	Location	Arsenic	Berium	Cadmium	Chromium	Copper	Lead	Mercury	Solenium	Silver	(ppm)
<u>0C11</u>	7/26/91	Glacier Mine	29	ND	2	ND	773,000	58	148	ND	245	>100,000
Method			7060	6010	6010	6010	6010	6010	7471	7740	6010	SW-846/9030M
Method Re	porting Limit		1	1	1	2	2	20	0.2	1	2	•

Abbreviations: ND - Not Detected

1

				Concentration	s (mg/L):			
<u> </u>	Arsenic	Berlum	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
0C1	ND	ND	ND	ND	ND	ND	ND	ND
OC2	ND	ND	ND	ND	ND	ND	ND	ND
0C3	ND	ND	ND	ND	ND	ND	ND	ND
OC4	ND	ND	ND	ND	ND	ND	ND	ND
OC5	ND	0.1	ND	ND	ND	ND	ND	ND
OC6	ND	ND	ND	ND	ND	ND	ND	ND
0C7	ND	ND	ND	ND	ND	ND	ND	ND
0C8	ND	0.1	ND	ND	ND	ND	ND	ND
0C9	ND	ND	ND	ND	ND	ND	ND	ND
0C10	ND	ND	ND	ND	ND	0.007	ND	ND
gulatory Limit (RCRA)	5	100	1	5	5	0.2	1	5
thod Reporting Limit	0.1	0.1	0.01	0.01	0.05	0.001	0.1	0.01
ethod	3010/6010	3010/6010	3010/6010	3010/6010	3010/6010	7470	3010/6010	3010/601

TABLE 36. ORE CONCENTRATES: SYNTHETIC PRECIPITATION LEACHATE PROCEDURE, LEACHABLE METALS (EPA METHOD 1312)

Abbreviation:

ND - Not detected at method reporting limit

1

4.24

TABLE 37. FIREBRICK CHROMIUM CONTENT

- 1		÷1		Chromium (mg/kg):	
Sample	Location	Туре	Total	Hexavelent	Trivalent
FB-1	Outside north and	Firebrick, non-specific	3	NA	NA
FB-2	of	Leclede-King firebrick	7	ND	7
FB-3	Power House	Evens-Howard firebrick	2	ND	2
Method			6010	3060/7195/	Difference
				6010	
Method Reporting Lim	it:		1	0.05	1

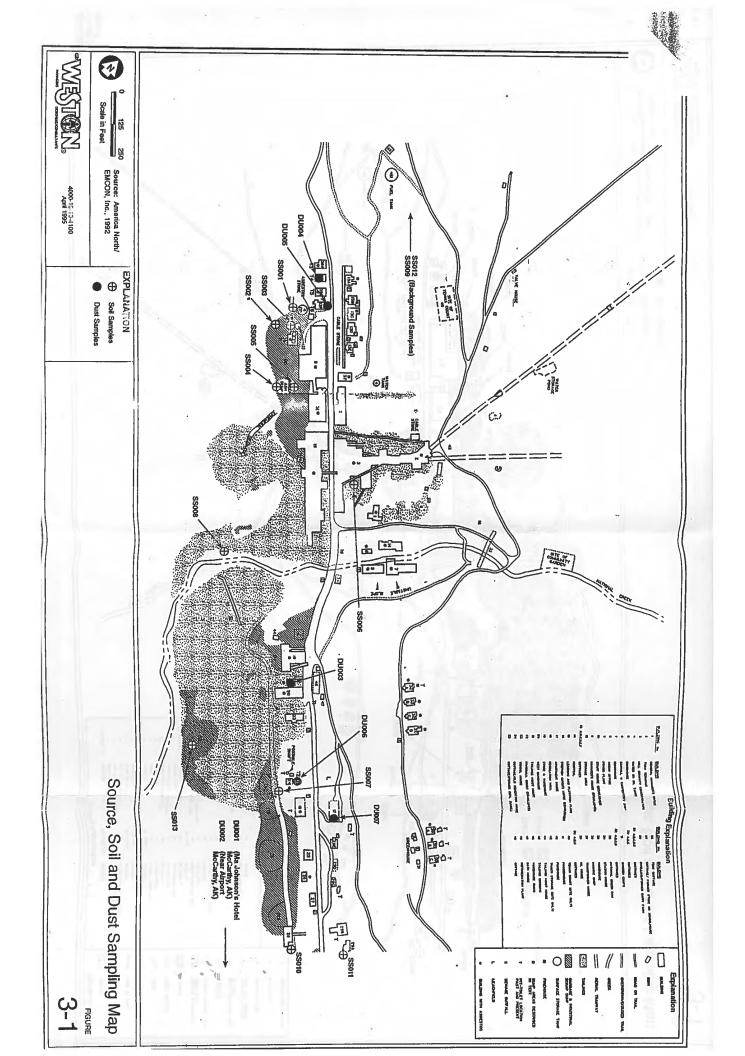
Abbreviations: NA - Not Analyzed

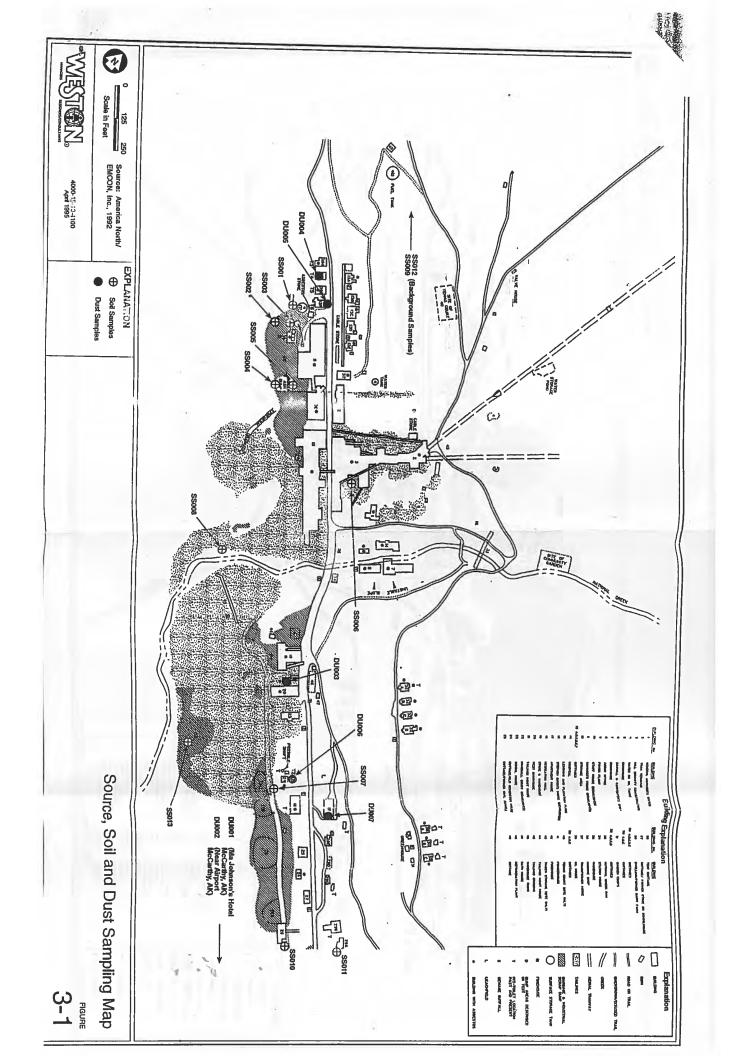
ND - Not Detected at method reporting limit

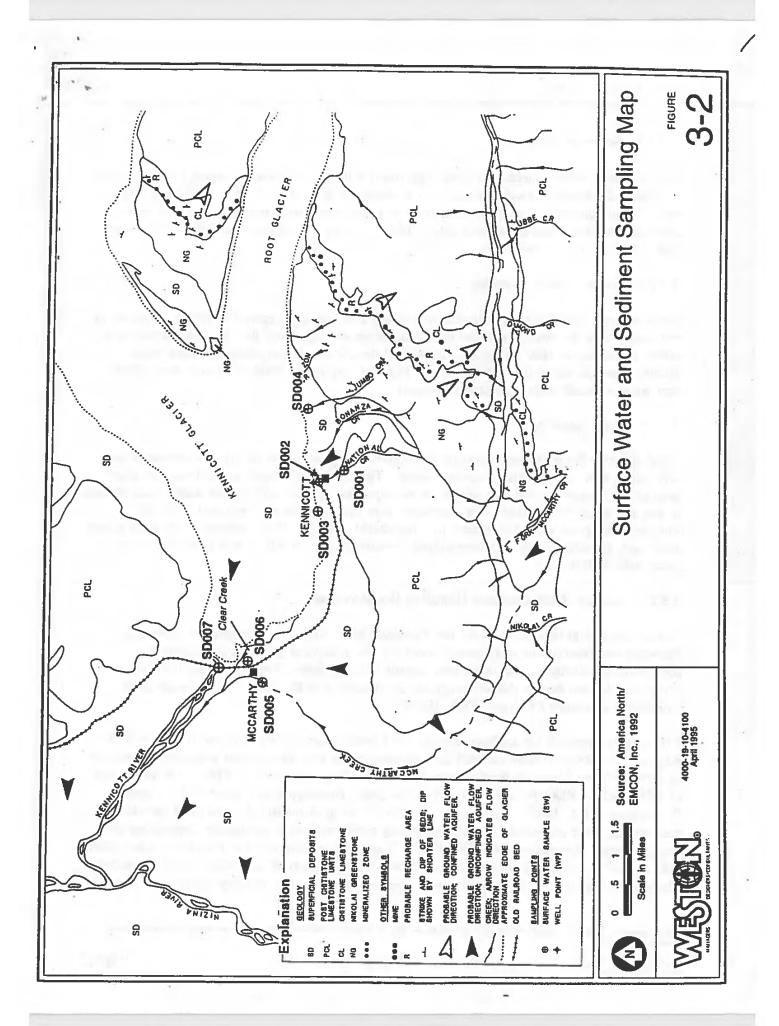
TABLE 38. WASTE PRODUCTS PACKAGED AND SHIPPED

Waste Product Questionnaire	Waste Product Description	Quantity of	Origin of
(WPQ) and Drum Number	or Drum Contents	Waste Product	Waste Product
Wastes shipped off site:			
AK2138, drum K1	White powder - quinine sulfate	10 lb	Building 14
AK2140, drums K3, K4	Multicolored powders	50 lb	Buildings 8, 14, 19
AK2143, drums ANI-2, ANI-5	Black grease	200 lb	Buildings 2/3, 15, 36
AK2688, drum K9	Sulfur powder and rust	150 lb	Building 15
AK2689, drum K12	🔆 Phenol	5 gallons	Building 19
AK2690, drum K17	Waste flammable liquids	2 galions	Building 15
AK2691, drums K2, K11, K16	Corrosive solid powders	200 lb	Buildings 15, 19, 36
AK2694, drum K14	Lead-acid batteries	300 lb	General site
AK2695, drum K13	Zinc-air batteries	275 ib	Dump
Wastes remaining on site:			
Drum ANI-1	Lube oil	36 galions	Building 2/3
Drum ANI-3	Yellow grease	50 gailons	Buildings 2/3, 15
Drum ANI-4	Yellow grease	15 gallons	Buildings 2/3, 15
ANI-6	Electrical oils	55 gailons	Mill town
ANI-7	Electrical oils	48 galions	Mill town

See text for explanation of terms.


4-


÷ .


-

Appendix C-3 – Data from Roy F. Weston, Inc. 1995. Site Inspection Report, Kennicott Mine, Kennicott, Alaska.

12 April 1995 PR10/SEA

95-416.TBL DCN 4000-19-10-AAAY

This document was prepared by Roy F. Weston. Inc. expressly for the EPA. It shall not be disclosed in whole or in part without the express, written permission of the 1-1/A

Assess potential migration from source(s)	Kennicott River	One 0 to 6 inch grab sample		
Assess potential releases to surface water near intakes	Clear Creek surface water intakes (Includes one duplicate)	Two 0 to 6 inch grab samples		
Establish background conditions	McCarthy Creek background location	One 0 to 6 inch grab sample		
Assess potential migration from mines along Bonanza Ridge	Jumbo Creek	One 0 to 6 inch grab sample		
Establish background and downgradient conditions to assess potential migration from source areas	National Creek including one background sample above mitt town, one in the tailings pite, and one below the tailings pite	Three 0 to 6 inch grab samples	œ	Seament
Assess potential for particulate migration	Two off-site locations south of the mill town	Six hand auger boring intervals at 0"-2", 2"-6", and 6"-12"		
Characterize tailings pile as a potential source	Three locations in the tailings pile	Five soil surface and subsurface intervals (only five out of six actually taken due to shallowness of tailings at Station SS006)		-7
Characterize background conditions	Background locations north of the mill town	Two surface (0-12") grab samples		
Characterize potential sources	Power plant oil spill (4, including one duplicate), boiler ash pile (2), tailings pile drum dump (1)	Seven surface (0-12") grab samples	20	Soil (including material from wastepiles)
Rationale	Sample Location(s)	Sample Type(s)	Collected	Matrix
			Number of Samples	Sample

Tahla 2-1 0 ÷ , r -

SI Report-Kennicott Mine

Section 3

I

μ L

SI Report-Kennicott Mine

Section 3

Table 3-1—Sample Types, Numbers, Locations, and Rationale

Sample Matrix	Number of Samples Collected	Sample Type(s)	Sample Location(s)	Rationale
Surface Water	U	One grab sample	National Creek background location	Characterize background conditions
	į	One grab sample	McCarthy Creek background location	Characterize background conditions
		Two grab samples	Clear Creek surface water intakes (includes duplicate)	Assess potential releases to surface water near intakes
		One grab sample	Seep below leaching and flotation plant	Assess potential migration to surface water from tailings pile
Dust	8	Eight wipe samples	Mill town and McCarthy buildings (Includes one blank)	Assess potential migration of airborne particulates
QA/QC	ω	Transfer blank	Not applicable	Assess potential contamination of samples from sampling procedures
		Two trip blanks	Not applicable	Assess potential contamination of volatiles during shipping
Total	44			

This document was prepared by Roy F. Weston, Inc. expressly for the EPA. It shall not be disclosed in while or in part without the express, written permission of the 1:1'A

÷

95-416 TBL DCN 4000-19-10-AAAY

3-4

12 April 1995 PR10/SEA

SI Report-Kennicott Mine

Table 3-2—Sample Analytical Requirements

Section 3

1

Sample Matrix	Number of Samples Collected	Sample Location(s)	Analytical Requirements	Analytical Program ^a	Preservation Technique	Maximum Holding Time
Soll (including material from	Ø	Soil from power plant oil spill (4, Including one duplicate) Tailings pile drum dump (1)	VOCs, BNAs, Pesticides, PCBs metals particle size (surface	CLP RAS CLP RAS EPA Lab	ice none none	14 days ^b 6 months none
wast u piles)	1	Tailings plie subsurface sample at road cut (1)	talitings pile sample only)		1	ł
		Background soil north of the mill town (2)			1	-C
	2	Boiler ash pile	BNAs metals	CLP RAS CLP RAS	ice none	14 days ^b 6 months
	10	Surface and/or subsurface intervals from two locations in the tailings pile (3) Tailings pile surface sample at road cut (1)	metals particle size (one surface tallings pile sample only)	CLP RAS EPA Lab	none	6 months none
		0-2",2"-6", and 6"-12" soil sample intervals from two locations south of the mill town (6)	-			
Sediment	4	National Creek background (1)	VOCs, BNAs, Pesticides, PCBs	CLP RAS	ice	14 days ^b 6.months
		McCarthy Creek background (1) Clear Creek surface water intakes (2; including duplicate)	metals	CLP RAS	ылоп	

,

This document was prepared by Roy F. Weston, inc. expressly for the EPA. It shall not be disclosed in whole or in part without the express, written permission of the FPA

3-9

95-416.TBL DCN 4000-19-10-AAAY

12 April 1995 PR 10/SEA

SI Report-Kennicott Mine

Table 3-2—Sample Analytical Requirements

Sample Matrix	Number of Samples Collected	Sample Location(s)	Analytical Requirements	Analytical Program [*]	Preservation Technique	Maximum Hotding Time
Sediment	4	National Creek (2)	metals	CLP RAS	none	6 months
		Jumbo Creek (1)				
		Kennicott River (1)				
Surface Water	ю	National Creek background location (1)	metals (low concentration)	EPA Lab	HNO ₃ to pH < 2; ice	6 months
		McCarthy Creek background location (1)				
		Clear Creek surface water intakes (2; Includes duplicate)				1
		Seep below leaching and flotation plant (1)			*	
Dust	œ	Mill town and McCarthy buildings (includes one blank)	priority pollutant metals (excluding mercury)	EPA Lab	none	6 months
QA/QC (surface water)	-	Transfer blank	metals (low concentration)	EPA Lab	HNO ₃ to pH < 2; ice	6 months
QA/QC (soil/ sediment	8	Trip blanks	VOCs	CLP RAS	HCL to pH < 2; ice	14 days

.

Labs are specified in the following manner: EPA Lab: Analysis performed by EPA Region X Lab CLP RAS: Analysis performed under CLP contract, Routine Analytical Services For volatiles, extraction and analysis must be performed within 14 days; for BNAs, pesticide, and PCBs, extraction must occur within 14 days and analysis within 40 days. م

This document was prepared by Roy F. Weston, Inc. expressiy for the EPA. It shall not be disclosed in whole or in part without the express, written permission of the FIPA

3-10

12 April 1995 PR10/SEA

95-416.TBL DCN 4000-19-10-AAAY

Section 3

SI Report-Kennicon Mine

Section 4

- Inorganics (mg/kg)"
sh Pile
id Boiler A
Dil Spilt an
Power Plant (
Characteristics:
able 4-1—Source (
Ē

AnalyteSS009-0Antimony0.52 UJArsenic5.2Barlum28.5 JbBeryllium0.2 UCadmium0.2 U	0 0000						
2 5 5 5						Boiler /	Boiler Ash Pile
> = = = =	0.92000	SS001-0	SS002-0	SS002-1 (dup.)	SS003-0	SS004-0	SS005-0
E E E	0.78 UJ	479 J	0.55 UJ	0.42 UJ	1.3 UJ	165 J	10.6.1
EEE	6.4 J	50.7 J	5.3	9.6	47.7	59	104
	31.9 J ⁶	316 J	31.1 J ^e	36.4 J ^d	209	104	RA 4
	0.33 J ^e	0.25 U	0.2 U	0.2 U	0.21 U	0.21 U	0.42.1
	0.21 UJ	4.5 J	0.2 U	0.2 U	1.8	2.6	5.1
	17.6	20.1	12.3	12.7	18.1	96.7	10.2
Cobalt 10.6	10.1 J*	68.7	8.6 J ⁴	8,2 J ^d	34.1	29.9 J [¢]	6.8 J ^c
Copper 74.5 J	35.6 J	1,690 J	48 J	61.1 J	1,660 J	2,940 J	3.140 J
Lead 2.4	6.1 J	359 J	13.5	14.3	351	4,000	557
Manganese 303 J	330 J	306 J	234 J	269 J	215 J	L 980 J	205.1
Mercury 0.05 U	0.05 U	1.3	0,05 U	0.05 U	0.44	0.4	2.6
Nickel 20.9	19.5 J	1,500 J	29	34.3	758	118	37.2
Selenium 0.82 UJ	0.86 UJ	3.5	0.81 UJ	0.81 UJ	9.4	0.85 UJ	°L 0,1
Silver 0.61 U	0.64 U	0.76 U	0.61 U	0.61 U	0.62 U	6.3 U	1, B J
Thalium 1.4 UJ	1.5 UJ	1.8 UJ	1,5 J ^d	1.4 UJ	1.4 UJ	1.5 UJ	1.6 UJ
Vanadium 38.7	23.4 J	1,800 J	35.6	43.8	1,010	84 J ^c	42.7
Zinc 35,9 J	27.7 J	185 J	35,7 J	36.5 J	266 J	608 J	353 J

All source samples were collected from 0 to 1 foot below the surface. Where no background values were detected above the contract-required detection limit (CRDL), the lower CRDL from the CLP, adjusted for percent solids, was used

Value positively identified but the concentration is below the CRDL. Values positively identified but at concentrations below the CRDL were not used to determine areas of observed contamination.

indicates that the value was not detected. Indicates that the contaminant was positively identified but the associated numerical value is an estimated quantity because quality control criteria were not met Bold values qualify as areas of observed contamination. U indicates that the value was not detected. J indicates that the contaminant was positively Identifie

This document was prepared by Roy F. Weston, Inc. expressly for the EPA. It shall not be diveloped in whole or in part without the express, written pennission of the FPA.

HUV-OF-61-0805 N.XI

1-4 7

Table 4-2--Source Characteristics: Power Plant Oll Spill - Organics (ug/kg)

Section 4

	Background		Power Plant Oil Spill*	XI Spill*	1	
Analyte	SS009-0	SS012-0	SS001	SS002-0	SS002-1	SS003-0
Volatile Organic Compounds						
1,1,2,2-Tetrachloroethane	10 U	11 U	1 J ^b	ءل 1	بر م	10 U
Xylene (total)	10 U	11 U	ەل 1	1 J ^c	10 U	10 U
Toluene	10 U	11 U	11 U	2 J	10 U	10 U
Semivolatile Organic Compounds				2		
Phenanthrene	330 U	360 U	7300 J⊳	10000 U	51000 U	11000 J ⁶
Pyrene	330 U	360 U	8700 J ^b	44000	75000	14000 J ^b
Chryseno	330 U	360 U	57000 U	32000	43000 J ^b	d 1700 J
Fluoranthene	330 U	360 U	57000 U	3100 J ^b	9500 J ^e	52000 U
Benzo(a)anthracene	330 U	360 U	57000 U	16000	21000 J ^b	52000 U
Benzo(a)pyrene	330 U	360 U	57000 U	12000	51000 U	52000 U
Benzo(b)fluoranthene	330 U	360 U	57000 U	10000 U	8100 J ⁶	52000 U
Benzo(k)fluoranthene	330 U	360 U	57000 U	10000 U	12000 J [®]	52000 U

All source samples were collected from 0 to 1 foot below the surface. Value positively identified below CROL.

This analyte was not detected when this sample was reanalyzed. Organic analytical results from the Power Plant Oil Spill samples were not used for source characterization. U indicates that the value was not detected above its CROL.

indicates that the contaminant was positively identified but the associated numerical value is an estimated quantity because quality control criteria were not met.

This document was prepared by Roy E. Weston, Inc. expressity for the EPA. It shall not be doclosed in whole or in part without the express, written permission of the FPA.

95-535,THL JAYN JINNI, 19-10-AANH

P2 April 1995 PR p0/SEA

4-5

Table 4-4--Source Characteristics: Tailings Pile - inorganics (mg/kg)

Section 4

128 J	3./ UJ	סימים	20.00	202	2	2
				1 001	01 4 1	Zinc
8.4 J	6.0 J*	6.7 J ^a	4.0 J*	20.2	6.8 J"	Vanadium
11.6	3.0 U	3.4 J [*]	16	16.6	13.1	Silver
B.3 J	7.1 U	7.0 U	7.2 U	9.4	7.1 U	Nickel
5.5	1.8	1.7	6.5	3.6	4.6	Mercury
392 J	113 J	116 J	105 J	L 171	144 J	Manganese
539 J	2.8	4.5	15.8	31.6	166	Lead
6,240 J	3,410 J	2,920 J	5,460 J	29,400 J	17,800 J	Copper
11.1 U	11.2 U	11.1 U	11.4 U	5.3 J ^a	11.2 U	Cobalt
10.9	°, 79.0	1.9 J	1.6 J ^a	8.1	3.7	Chromium
16.9 J	15.2	12.9	11.8	13	6.7	Caomium
65.2 J	7.6 J*	4.7 J°	12.8 J*	13.6 J*	80	Barium
515 J	372	186	530	705	477	Arsenic
3.3 J*	0.76 UJ	0.47 UJ	0.76 UJ	1.7 UJ	. 6.8 J°	Antimony
SS013-0 drum dump 0-1'	SS008-0050 roadcut below L&F plant 5'(grab)	SS008-0010 roadcut below L&F plant 0-1'	SS007-0040 near cottage 24 4-5'	SS007-0010 near cottage 24 . 0-1	SS006-0010 S. of mill bldg. 0-1'	Analyte

Value positively identified below CRDL.
 See Table 4-1 for background sample results.
 U indicates that the value was not detected.
 J indicates that the contaminant was positively identified but the associated numerical value is an estimated quantity because quality control criteria were not met.

Note: Beryllium, selenium, and thallium were not detected (qualified U) in any sample.

This document was prepared by Roy F. Weston, Inc. expressly for the EPA. It shall not be disclosed in whole or in part without the express, written permission ut the f.PA.

95-416.TBL DCN 4000-19-10-AAAY

12 April 1995 PR10/SEA

4-9

Section 4

Table 4-5-Inorganics In Sediment - National Creek and Kennicott River (mg/kg)

Analyte	SD001-0 National Creek background	SD004-0 Jumbo Creek background	SD002-0 National Creek (tallings pile)	SD003-0 National Creek (below tailings)	SD007-0 Kennicatt River
Antimony	1.0 UJ	1.6 W	0.87 UJ	0.53 UJ	0.7511.1
Arsenic	12.4	16.2	129	103	6.0
Barium	116	45.6 J ^a	136	48.9 J*	31.0 1
Cadmium	0.26 U	0.26 U	5.5	15.7	0.2511
Chromium	13.6	21.8	12.5	10.2	12.4
Cobalt	10.4 J*	23.9	12.6 J*	6.9 J°	7.0.1
Copper	33.9 J	113 J	1.100 J	1 050 1	1 6 66
Lead	5.1	0.78 U	11.3	8.3	10
Manganese	864 J	448 J	982 J	311 J	I GPC
Mercury	0.17	0.06 U	0.41	0.84	0.08.1
Nickel	23.5	36.2	22.1	12.3	13.6
Silver	0.78 U	0.78 U	0.8 U	1.0 J	0.74 U
Vanadium	6 6	97.6	46	21.6	32.3
Zinc	64.4 J	51 J	78.4 J	38.2 J	32.2 J

Values positively identified below CRDL were not used for observed release determination.
 Bold values qualify as observed releases.
 Indicates that the value was not detected.
 Indicates that the contaminant was positively identified but the associated numerical value is an estimated quantity because quality control criteria were not met.

Note: Beryllium, selenium, and thalitum were not detected (qualified U) in any release sample.

This document was prepared by Roy F. Weston, Inc. expressly for the EPA. It shall not be disclosed in whole or in part without the express, written permission of the EPA.

95-416.TBL DCN 4000-19-10-AAAY

Table 4-6-Inorganics In Clear Creek Sediment (mg/kg)

Analyte	SD004-0 Jumbo Creek background	SD005-0 McCarthy Creek background	SD006-0 Clear Creek	SD006-1 Clear Creek (duplicate)
Antimony	1.6 UJ	0.96 UJ	2.0 UJ	1.9 UJ
Arsenic	16.2	5.7	21.1	22.8
Barium	45.6ª	93.5	97.3 J ^a	90.4 J ⁿ
Cadmium	0.26 U	0.27 U	0.92 J*	0.49 U
Chromium	21.8	22.1	37.7	32
Cobalt	23.9	9.4 J*	15.5 J*	16.1 J*
Copper	113 J	29.7 J	475 J	278 J
Lead	0.78 U	3.9	111	0.6
Manganese	448 J	375 J	526 J	511 J
Mercury	0.06 U	0.07 U	0.29 J°	0.16 J*
Nickel	36.2	22.5	34.4	27.3
Vanadium	97.6	48.4	66.3	64.1
Zinc	51 J	62.4 J	94.6 J	81.5 J

Value positively identified below CRDL.
 Data from Clear Greek samples were not used to determine observed releases.
 Indicates that the value was not detected.
 Indicates that the contaminant was positively identified but the associated numerical value is an estimated quantity because quality control criteria were not met or because the concentration is below the CRDL.

Note: Beryllium, selenium, silver, and thallium were not detected (qualified U) in any sample.

This document was prepared by Roy F. Weston, inc. expressly for the EPA. It shall not be disclosed in whole or in part without the express. written permission of the F.P.A. 4-12

95-416.TBL DCN 4000-19-10-AAAY

12 April 1995 PR10/5FA

Section 4

Analyte (µg/L)	10-SW-SD001-0 National Creek Background	10-SW-SD005-0 McCarthy Creek Background	10-SW-SD006-0 Clear Creek	10-SW-SD006-1 Clear Creek Duplicate	10-SW-SP001-0 Tailings Pile Seep
Arsenic	1.0 U	1.0 U	1.1 J	1.0 J	8.34
Barium	29.4	31.8	23.3	24.3	43.6
Copper	3.0 U	3.0 U	5.7*	• 5.9*	74.8
Lead	0.82 J	0.61 J	0.98 J*	0.50 U	0.99 J*
Manganese	1.6 J	15.3	1.0 U	1.0 U	1.0 U
Zinc	12.0 J	12.0 J	5.4 J*	4.0 U	20.4*

Table 4-7—Surface Water Sample Results

* indicates that the concentration was below 5 times the transfer blank, and is treated as an undetected value. Bold values qualify as observed releases.

Data from Clear Creek samples were not used to determine observed releases.

Analytes not listed were not detected (qualified U) in the samples from Clear Creek or the seep.

U indicates that the value was not detected above its SQL.

J indicates that the contaminant was positively identified but the associated numerical value is an estimated quantity because quality control criteria were not met or because the concentration is below the SQL.

4.2.3 Discussion of Surface Water and Sediment Sample Results

Surface water and sediment results can be summarized as follows:

- In National Creek, metals characteristic of the tailings pile were elevated in sediment and seep surface water flowing into the creek. There are no human or ecological receptors in National Creek, but it is the main pathway for metals to reach Kennicott River and Clear Creek.
- There were no significant elevated concentrations in the sediment sample collected from Kennicott River.
- Arsenic was elevated in surface water samples from Clear Creek near the McCarthy surface water intakes, slightly above its cancer screening level (EPA, 1991a).
 Copper was elevated in sediment. There are no applicable health-based standards for evaluating elevated concentrations of copper in sediment. Although copper was detected above background in Clear Creek surface water samples, detected concentrations were below five times that detected in the transfer blank. Therefore, these data could not be used to determine observed releases.

• A clear connection between the spring feeding Clear Creek and National Creek has not been established. However, the dye test performed for the 1992 SI (America North/EMCON, 1992) established a hydraulic connection between National Creek

This document was prepared by Roy F. Weston, inc. expressly for the EPA. It shall not be disclosed in whole or in part without the express, written permission of the EPA.

Section 4

SI Report-Kennicott Mine

Table 4-8-Wipe Sample Results (µg/10 cm²)

Acolute	DU004-0 Cottage 39B	DU005-0 Cottage 13F	DU003-0 Refrigeration Plant	DU006-0 Cottage 24	DU007-0 Kennicott Lodge	DU002-0 McCarthy Airport	DU001-0 Hotel In McCarthy
aliany	50 F	1 97	8.58	0.1 U	0.24 J	3.11	0.912
Arsenic	001	121					
Cadmium	0	0	0.394	0.097 J	0		
					258	16	7.52
Conner	18.2	21.8	241	-		and the second s	
inddoo		000	003	18.2	0.59 U	24.8	6.09
1 aad	97.4	R/'I	9.00				
Cilitar	L 260.	0.05 J	L 880.0	0.015 J	0.02 J	0.042 J	0.026 J

Samples are arranged in table in a general north (upwind) to south (downwind) orientation.

.

J Indicates that the associated numerical value is an estimated quantity because quality control criteria were not met.
U Indicates that the value was not detected. The qualifier without an associated numerical value indicates that concentration was less than five times the concentration detected in control sample (DU008) and cannot be considered positively identified.

Note: Antimony, beryllium, selenium and thalfium were analyzed for but not detected in any sample. Chromium and nicket were not detected at concentrations greater than 5 times concentrations detected in control sample and cannot be considered positively identified.

This document was prepared by Roy F. Weston. Inc. expressly for the EPA. It shall not be disclosed in whole or in part without the express. written permission of the EPA

÷

11 May 1995 PR10/SEA

Analyte	SS010-0001 dairy 0-1"	SS010-0005 dairy 1-6"	SS010-0010 dairy 6-12"	SS011-0001 cottage 29A 0-1*	SS011-0005 cottage 29A 1-6"	SS011-0010 coltage 29A 6-12"
Antimony .	LU 80.0	0.61 UJ	0.64 UJ	1.0 UJ	1.1 UJ	1.7 UJ
Arsenic	39.9	5.6 J	5.8 J	11.8 J	<u> </u>	19.2 J
Barium	170	48.5 J	40.6 J*	189 J	123 J	222 J
Beryllium	0.27 U	0.38 J ^a	0.46 J*	0.28 U	0.27 U	0.23 U
Cadmium	0.71 J [*]	0.22 UJ	0.21 UJ	0.89 J*	0.27 UJ	0.32 J
Chromium	8.1	10.5	6.2	13.3	9.6	13.6
Cobalt	6.4 J ^e	9.7 J*	7.5 J*	9.3 J*	5.0 J*	8.2 J*
Copper	385 J	75.7 J	46.9 J	231 J	131 J	554 J
Lead	135	14.3 J	9.4 J	328 J	121 J	342 J
Manganese	372 J	452 J	L 074	686 J	575 J	549 J
Mercury	0.58	0.11 J ^a	0.05 U	0.19	0.18	0.15
Nickel	10 J"	11.1 J	7.6 J ^e	10.3 J [*]	8.9 J°	L 7.11
Vanadium	19.5	27.5 J	21.5 J	27.7 J	23.9 J	29.6 J
Zinc	124 J	48.5 J	38.4 J	225 J	74.7 J	187 J

.

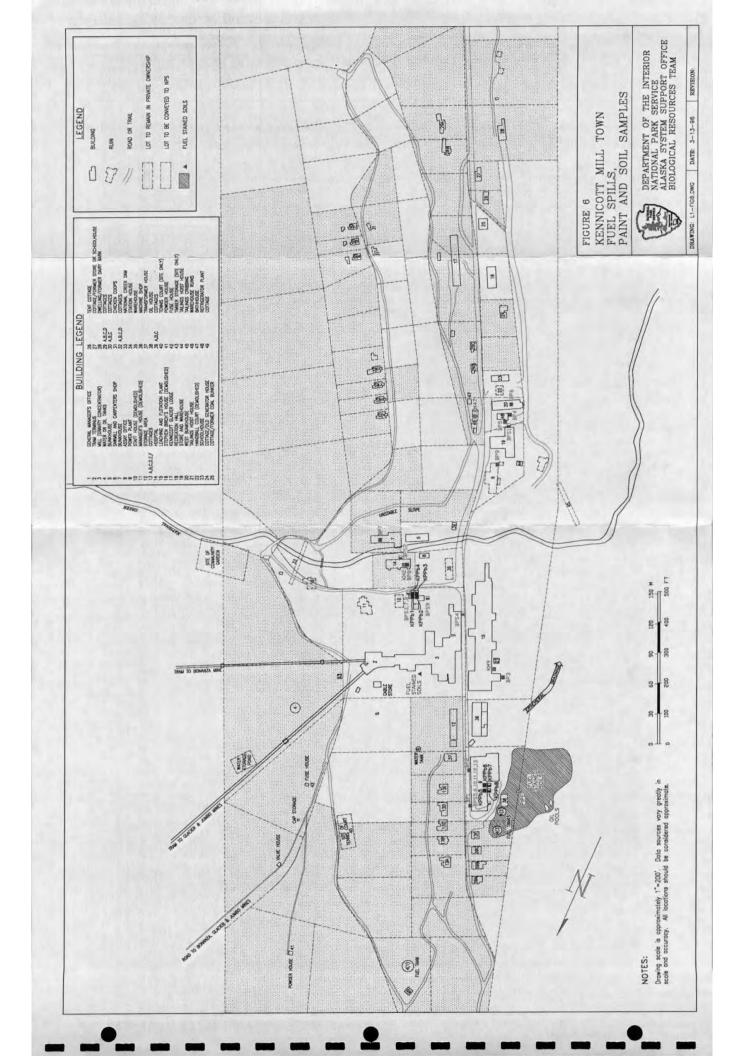
Table 4-9—Inorganics in Downwind Surface Soli (mg/kg)

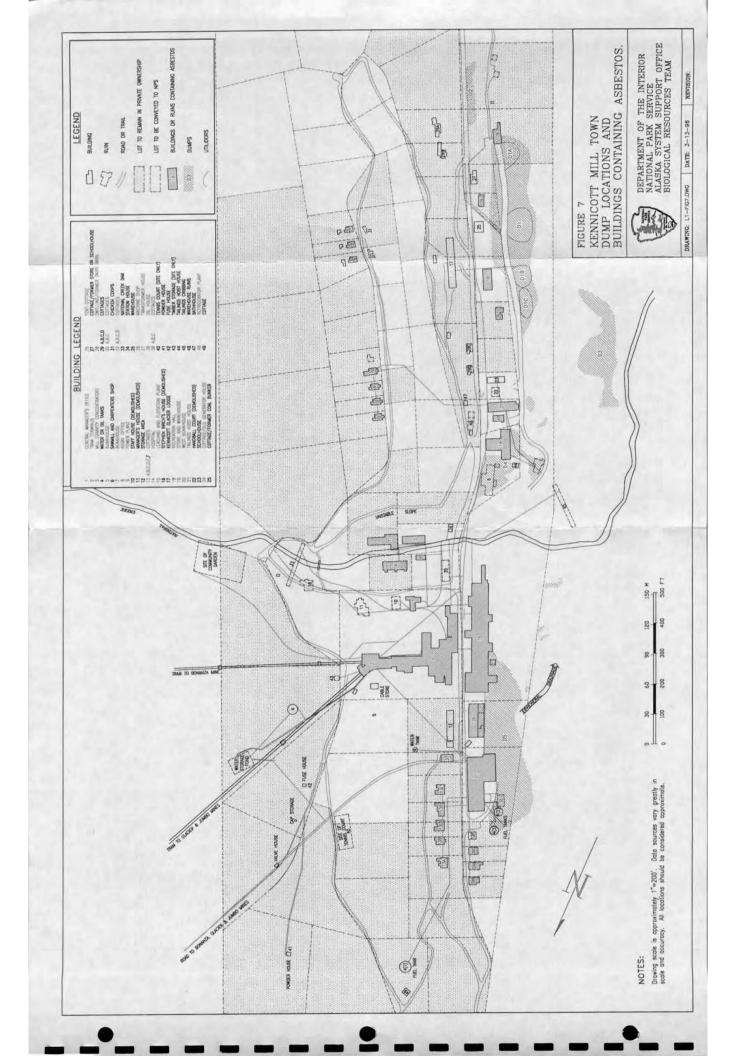
Values positively identified below the CRDL were not used for observed release determination.
 Bold values quality as observed releases (see Table 4-1 for background concentrations).
 Indicates that the value was not detected.
 Indicates that the contaminant was positively identified but the associated numerical value is an estimated quantity because quality control criteria were not met.

Note: Selenium, silver, and thalilum were not detected (qualified U) in any sample.

This document was prepared by Roy F. Weston, Inc. expressly for the EPA. It shall not be disclosed in which or in part without the express. written permission of the LJA

95-416.TBL DCN 4000-19-10-AAAY


12 April 1995 -- PR10/SFA


Section 4

Appendix C-4 – Data from National Park Service. 1996. Kennicott Pre-Acquisition Environmental Site Assessment. U.S. Department of the Interior, National Park Service, Wrangell-St. Elias National Park and Preserve.

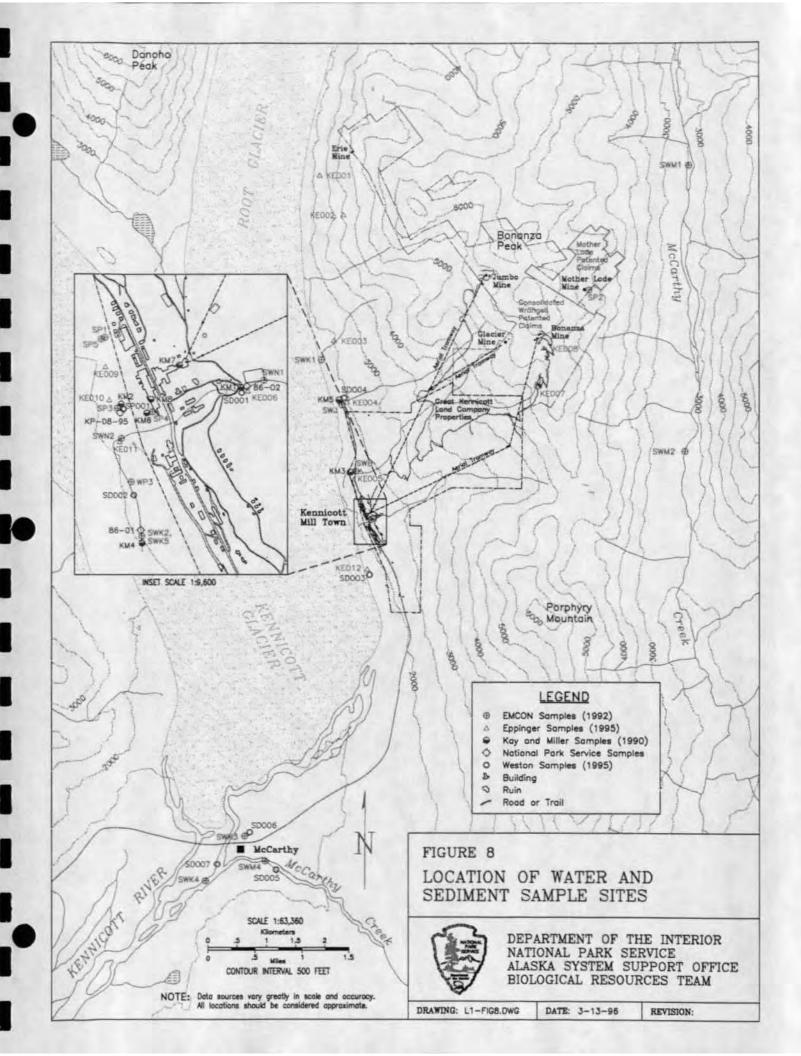


Table 2. Compilation of Kennicott mill tailings and background samples. All units are ppm.

Sample ID	Sampler	Location	As	cq	ວັ	Cu	Pb	Hg	Ag	Zn
KE007R	Eppinger	Background; below Bonanza Mine, rock	k15	<0.75	230.00	120.00	<8>	0.17	<1.2	150.00
KE009R1	Eppinger	Background; Nickolai basalt near mill tails	4.20	4.20<0.75	81.00	62.00	8.00	0.11<1.2	<1.2	46.00
KE009R2	Eppinger	Background; Nickolai basalt near mill tails	3.40	<0.05	130.00	92.00<8	89	0.13	0.13<0.08	64.00
KE010R1	Eppinger	Background; Nickolai basalt near mill/leach	5.30	0.41	100.00	170.00<8	80	0.08	0.08<0.08	65.00
KE011R1	Eppinger	Background; Quartz along National Crk, below mill	2.30	2.30<0.05	5	4.00	19.00<.02		<0.08	9.50
KE011R2	Eppinger	Background; siltstone, National Crk, below mill	18.00<0.05	¢0.05	41.00	56.00<8	8	0.15	0.18	74.00
ss009-0	Weston	background, soil	5.20	0.20	21.00	74.50	2.40	0.05	0.61	35.90
ss012-0	Weston	background, soil	6.40	0.21	17.60	35.60	6.10	0.05	0.64	27.70
		Background Mean	6.40	0.19	77.70	76.76	6.44	0.09	0.34	59.01
KE013R	Eppinger	Background, mineralized; Bonanza Mine Dump	7,900.00	73.00	5.00	377,000.00<8	8	520.00	640.00	260.00
KE014R	Eppinger	Background, mineralized; Erie Mine Dump	640.00	5.00	5.00	10,000.00<8	<8	7.00	9.00	12.00
ss006-0010 Weston	Weston	Tails, S of mill/ 0-1' deep	477.00	6.70	3.70	17,800.00	166.00	4.60	13.10	21.40
ss007-0010 Weston	Weston	Tails, near bldg 24/0-1'	705.00	13.00	8.10	29,400.00	31.60	3.60	16.60	103.00
ss007-0040 Weston	Weston	Tails, near bldg24/ 4-5' deep	530.00	11.80	1.60	5,460.00	15.80	6.50	16.00	3.30
ss008-0010 Weston	Weston	Tails, roadcut below l&f plant/0-1'	186.00	12.90	1.90	2,920.00	4.50	1.70	3.40	6.90
ss008-0050 Weston	Weston	Tails, roadcut below I&f/5'	372.00	15.20	0.97	3,410.00	2.80	1.80	3.00	3.70
ss013-0	Weston	Tails, drum dump	515.00	16.90	10.90	6,240.00	539.00	5.50	11.60	128.00
TPS01	EMCON	Tails, 2-10"deep	353.00	7.00	3.00		<20	2.60	12.00	
TPS02	EMCON	Tails, 2-12" deep	456.00	27.00<2	2		49.00	7.10	20.00	
TPS03	EMCON	Tails, 2-14" deep	283.00	11.00<2	2		21.00	6.90	11.00	
TPS04	EMCON	Tails, 2-10" deep	244.00	30.00<2	2		<20	5.10	5.00	
TPS05	EMCON	Tails, 2-10" deep	594.00	9.00<2	2		k20	5.10	4.00	
TPS06	EMCON	Tails, 2-8" deep	961.00	14.00<2	2		27.00	4.40	5.00	

Table 2. Continued.

Sample ID	Sampler	Location	As	Cd Cr	Си	Pb	Hg	Ag	Zn
TPS07	EMCON	Tails, 2-10 " deep	596.00	19.00<2		27.00	11.50	11.00	
TPS08	EMCON	Tails, 2-16" deep	591.00	28.00<2		41.00	7.50	12.00	
TPS09	EMCON	Tails, 2-12" deep	670.00	26.00<2		32.00	7.50	15.00	
TPS10	EMCON	Tails, 2-18" deep	336.00	10.00<2		38.00	3.90	10.00	
TPS24	EMCON	Tails, dup. of #10	339.00	5.00<2		<20	2.60	5.00	
TPS11	EMCON	Tails, 4-12" deep	427.00	10.00 3.00	00	22.00	9.70	14.00	
TPS12	EMCON	Tails, 2-6" deep	1,770.00	26.00 4.00	00	107.00	13.00	15.00	
TPS13	EMCON	Tails, 0-8" deep	250.00	29.00<2		<20	15.30	8.00	
TPS14	EMCON	Tails, 2-8" deep	1,230.00	66.00<2		120.00	8.30	16.00	
TPS15	EMCON	Itails, 2-8" deep	1,270.00	48.00<2		58.00	14.10	18.00	
TPS16	EMCON	Tails, 2-7" deep	207.00	12.00<2		<20	3.60	5.00	
TPS17	EMCON	Tails, 2-6"	1,350.00	5.00 14.00	00	28.00	6.30	33.00	
TPS18	EMCON	Tails, 2-6"	205.00	5.00 19.00	loc	<20	2.20	20.00	
TPS19	EMCON	Tails, 2-6"	3,500.00	65.00 7.00	00	251.00	51.80	118.00	1
TPS20	EMCON	Tails, 2-6"	1,690.00	26.00 11.00	00	336.00	30.90	31.00	
TPS25	EMCON	Tails, dup of TSP20	1,610.00	22.00 9.00	00	94.00	15.40	70.00	
TPS21	EMCON	Tails, 2-8"	263.00	7.00 14.00	00	37.00	7.30	6.00	
TPS22	EMCON	Tails, 2-10"	3,530.00	2.00<2		25.00	27.30	6.00	
TPS23	EMCON	Tails,	639.00	5.00<2		<20	6.70	5.00	
TPS26	EMCON	W of Leach plt/dischg gully, 2-10"	619.00	20.00<2		36.00	5.10	5.00	
TPS27	EMCON	Tails, W of leach plt/by Natl Crk	3,981.00	37.00<2		58.00	5.70	33.00	
TPS28	EMCON	Tails, under flume S side Natl Crk	557.00	15.00 8.00	00	25.00	2.80	6.00	
TPS29	EMCON	Tails,	880.00	70.00<2		82.00	9.90	14.00	
TPS30	EMCON	Tails, dup of TPS29	942.00	198.00<2		70.00	7.40	9.00	
	Kay&Miller	1kay&Miller Tails, W of bldg #19	0.14	0.18<0.05		<0.05	<0.0002	<0.05	

D	Sampler	Location	Media	Descr1	Cd (mg/kg)	Pb (mg/kg)	Pb/ tclp
KPPb2	Hovis/NPS	Bldg 01	paint	red	<u>(</u>		3.910
BP9	EMCON	Bldg 06	baint	red	6	50	+
BP2	EMCON	Bldg 09	paint	red	11		
KPPb6	Hovis/NPS	Bldg 09, west side	paint	red	[7.310
KM9	Kay&Miller	Bldg 15	paint	red		8,200	
BP3	EMCON	Bldg 15	paint	red	4	1	
BP5	EMCON	Bidg 48	paint	red	3		
KM47	Kay&Miller	Bldg 46	paint	red powder		4,800	
			1	1		59716.667	
KPPb1	Hovis/NPS	Bldg 01	paint	white			734.000
BP1	EMCON	Bldg 09	paint	white	112	276,000	
KPPb5	Hovis/NPS	Bldg 09, west side	paint	white			663.000
KM2	Kay&Miller	Bldg 14	paint	white		525,000	
BP8	EMCON	Bldg 14	paint	white	59	249,000	
BP6	EMCON	Bldg 20	paint	white	<1	11,900	
BP4	EMCON	Bldg 48	paint	white	2	11,900	
BP7	EMCON	Bidg 07	paint	yellow	282	268,000	
KPPb3	Hovis/NPS	Bidg 01, base wall	soil				0.819
KPPb4	Hovis/NPS	Bldg 01, base wall, 2"	soil				5.120
BPS03	EMCON	Bldg 01, 1' from S side	soil	2-12"		1,170	1
BPS07	EMCON	Bldg 01, 3 ft frm SE side	soil	2-6"		161	
BPS08	EMCON	Bldg 01, 6 ft frm SE side	soil	2-6"		123	,
BPS09	EMCON	Bldg 01, 9 ft frm W side	soil	2-6"		56)
BPS04	EMCON	Bldg 03, 1 ft from W side	soil	2-5"		557	
KPPb7	Hovis/NPS	Bldg 09, N side, 8' base	soil				3.660
KPPb8	Hovis/NPS	Bldg 09, W side. 8' base	soil				3.880
BPS10	EMCON	Bldg 09, 3 ft frm W side	soil	2-6"		183	,
BPS11	EMCON	Bldg 09, 6 ft from w side	soil	2-6"		249	ł
BPS12	EMCON	Bldg 09, 9 ft from w side	soil	2-6"		608	
BPS13	EMCON	Bldg 09, dup of 12	soil	2-6"		866	
BPS05	EMCON	Bldg 09, 1 ft from W side	soil	2-8"		1,340	1
BPS06	EMCON	Bldg 09, dupl of 5	soil	dup of 5		3,040	1
BPS02	EMCON	Bldg 14, 1 ft frm S side	soil	2-6"		766	i l
BPS01	EMCON	Bldg 19,,1 ft frm S side	soil	2-6"		465)
RCRA		tclp limits, method 3010	soil	limits	<1		<5

Table 3. Compilation of paint and paint-impacted soil samples, Kennicott mill town.

Table 4. Compilation of selected water quality attributes in the Kennicott Site. Values are averaged over each sample site. Minerals are in ppm.

SAMPLEIDS	DRAINAGE/LOCALE	e#	Hd	As	Ca	g	້ວ	Си	Fe	Hg	Чu	Pb	ц
EPA/ADEC standards		io i	5- 8.5	0.0500		0.0100	0.0500	1.0000	0.0500	0.0020	0.0500	0.0500	5.0000
	Background: Kennicott Crk/stream sample above small snowfield		7.95	0.009	0.02	<0.001 <	<0.002	<0.0006	0.0600		1.2000<0.0001		<0.002
KF003W2	Backaround: Amazon Crk	ļ	7.88	0.0032	21.00<0.001		<0.002	0.0006	0.0200		0.2000	<0.0001 ×	<0.002
	Background: Kennicott Crk below confluence with Amazon Crk.	~	8.07	0.0016	28.67	<0.0005	0.0039	<0.05	2.1633	<0.0002	0.0468	0.0043	<0.013
SWJ KF004 KM5	Backaround: Jumbo Crk	۵	8.07	0.0020	21.67<	<0.001	<0.005	0.0010	0.0313	<0.0002	0.1418	0.0002	<0.013
Τ	Background: Bonanza Crk.	6	7.64	0.0016	21.40	0.0002	<0.002	0.0024	0.0430	<0.0002	0.0484	<0.005	<0.013
	Bonanza Crk, stream just below Bonanza mine	.=	8.15	0.0020	19.00<	<0.001	<0.002	0.0038	Ϋ́Ι		0.3000	ò	<0.002
KF007W2	Bonanza Crk, sample from spring	÷-	8.00	<0.0008	16.00k	<0.001	<0.002	< 0.0006	0.0700		1.3000	0.0001	8
e006, KM1, 2€, 10-SW-	Background: National Crk, abv mill town	10	7.92	0.0007	15.21	0.0001<0.005	<0.005	0.000			0.1040	0.0014	
RIMN2 KEN11	National Crk. below Kenn. mill	4	8.14	0.0014	17.25	<0.0005	<0.005	0.0213	0.0177	<0.0002	0.2395	0.0000	0.0020
KE012, M4	National/ Kenn. Cr., below tails, just above olacier		7.70	0.0021	16.17	<0.0005	<0.005	0.0383	0.0732	<0.002	0.1083	<0.005	0.0108
	National Crk. tails well/ adjacent to Kenn Crk	6	7.90	0.0690	30.67	0.0033	<0.005	1.3667	11.5333	0.0010	0.1883	0.0223	2.3667
SP5	National Crk, tails seep, downslope and W. of power house	<u> </u>	7.54	0.0130	54.67	0.0005	0.0027	0.1577	10.0800	0.0001	0.1977	0.0637	0.4933
SP4	National Crk, tails seep, near leach plant flumet	<u>م</u>	8.13	0.1773	72.67	0.0021	<0.005	4.2533	0.2800	0.0007	<0.05	57	<0.5 ·
SD3	National Crk. tails seep. near leach plant	۵	8.12	0.0072	65.00	<0.0005	<0.005	0.0653		0.0073×0.0002	<0.05	<0.005	<0.5
NPS-KP-08-95	National Crk. tails. seep below power plt		7.75	0.0140	×	<0.0001	<0.001	0.1210		<0.0002		<0.002	
10-SWI-SP001-0"		╞╾		0.0083	72.00	<0.0003	<0.0050	0.0748		0.0242<0.0002	<0.0010	0.0010	0.0204
KE010W2DS	National Crk, tails seep	-	7.92	0.0078	71.00	<0.001	<0.002	0.0660	0.0200		0.2500	0.2500<0.0001	<0.002
KM2	National Crk, tails seep	E	8.10	0.0120		0.0008		0.1000		<0.0002			
KM6	National Crk, tails seep	-	8.20	<0.025	66.00	<0.025	<0.025	0.1500			<0.025		0.0500
KM7	National Crk, ore bin	-	7.20	<0.025	200.00	<0.025	<0.025	0.6700			0.1600		0.3000
KM8	National Crk, mill, leach plant	-	7.90	<0.025	65.00	<0.025	<0.025	0.1100			<0.025		<0.025
KE009WZ	National Crk, ponded rainwater, just below Kenn mili	<u> </u>	7.85	0.0010	18.00	<0.001	<0.002	0.0110	0.1000		5.8000		V
SP7	McCarthy Crk. seep-Mother Lode mine portal	-	7.60	0.0460	20.00	<0.0005	<0.005	0.0330	0.0420	<0.002	<0.013	<0.005	<0.013
SWM1	McCarthy Crk, below Lubbe Crk	-	7.70	<0.001	28.00	<0.0005	<0.005	<0.13	1.6000	<0.002	0.0320	<0.005	0.0130
SWM1, SWM2	McCarthy Crk, below Greene Butte/near East Fork	<u>ن</u>	7.16	0.0058	45.50	<0.0005	0.0055	<0.020	1.1795	<0.002	0.0330	<0.001	<0.013
SWMA 10-SW-SD-005	SWM4 10-SW-SD-005 McCarthy Crk. above town of McCarthy	۵	8.15	0.0067	52 2R	52 28KD 0003	<0.005	<0.020	1 100	1 1000 <0 0002	0 0227	0.0059	0 0135

Continued.	
Table 4.	

SAMPLE IDS	DRAINAGE/LOCALE	#	ΗЧ	As	Ca	cd	ŗ	Cu	Fe	Hg	uW	Ъb	zn
SWK4	Kennicott Crk, below. McCarthy Crk 3	~	7.83	0.0031	51.00	51.00 <0.0005	<0.005	<0.13	0.9433	0.9433 <0.0002		0.0315 <0.005	<0.013
SWK3, 10-SW-SD006	SWK3, 10-SW-SD006 Kennicott Crk, Clear Creek		7.85	0.0009	57.88	57.88<0.0003	<0.0050	0.0058		0.0316<0.0002	2 <0.0010	0.0010	0.0037

- #-number of observations per sample site. Within each sample site, there was often unequal number of observations between each parameter. Means with missing values are bases only on cases where value was measured. If values were below the Method Detection Limit (MDL), ½ the MDL was used for calculating means if the MDL was within the range of observed values. In cases where the MDL was greater than the observed value, the value was treated as missing.
- Sample numbers beginning with KE are from Eppinger et al. 1995
- Sample numbers beginning with SW, SP, or WP are from EMCON 1992a.
- ^d Sample numbers beginning with KM are from Kay and Milter 1990.
- Sample numbers beginning with NPS are either from Deschu (park files) or were gathered during the current survey.
- ^F Sample numbers beginning with 10 are from Weston 1995.

ID	location	As	Ba	Ca	Cd	Cr	Cu	Pb	Mn	Hg	Ni	Ag	Zn
KE001 ^a KE002	Up valley	19.50	96.75	107,000	0.09	352.50	137.50	1.35	1207.50	0.11	88.25	< 0.08	71.00
KE003	Amazon Creek	50.00	170.00	105,000	0.15	135.00	150.00	1.55	925.00	0.29	53.00	< 0.08	74.00
KE004 SD004 ^ь	Jumbo Creek	52.64	201.12	88,250	0.22	202.36	178.60	2.12	857.60	0.11	69.44	0.18	73.20
KE005	Bonanza Crk	55.50	445.00	44,000	0.45	185.00	940.00	8.75	955.00	0.26	65.00	0.61	109.50
KE008	Bonanza Mine, below tails	118.00	96.50	175,000	1.35	60.50	4850.00	15.00	425.00	0.54	26.50	3.25	52.50
KE006 SD001	National Crk, above mill	20.13	635.33	17,000	0.18	71	70	11	658	0.13	40	0.34	95
KE011 SD002	National Crk, below mill	76.00	645.33	33,500	2.93	74.17	843.33	46.77	987.33	0.52	38.37	0.71	109.47
KE012 SD003	National Crk, below mill, near glacier	217.67	146.30	285,000	9.47	15.40	3683.33	14.43	200.33	2.35	9.77	1.16	37.73
KE010	Tails seep, mill	235.00	382.50	192,250	8.95	52.75	3497.50	28.75	445.00	2.25	21.25	1.95	64.50
KE009	Tails, ponded rainwater	17.00	520.00	38,000	0.36	72.50	170.00	28.50	685.00	0.10	36.50	0.24	75.50
SD006	Clear Creek	21.95	93.85		0.71	34.85	376.50	10.05	518.50	0.23	30.85	u	88.05
SD007-0	Kennicott Crk	9.30	31.20		0.25	12.40	33.30	1.90	242.00	0.08	13.80	0.74	32.20
SD005-0	McCarthy Crk	5.70	93.50		0.27	22.10	29.70	3.90	375.00	0.07	22.50	μ	62.40

Table 5.	Compilation	of sediment of	data from	the Kennicott Site.
----------	-------------	----------------	-----------	---------------------

^a Sample numbers beginning with KE are from Eppinger 1995.

^b Sample numbers beginning with SD are from Weston 1995.

and Bonanza Creeks) and are almost identical to sediments found in a seep in the tails. Consequently, it appears that the tails have eroded into National Creek and are constituting a substantial portion of its substrate. The higher concentration of contaminants at the downstream sample site is most likely due to the fact that that sample site has a lower gradient, and thus it is an accretion zone. It also has full exposure to tails and Dump #3.

There are no drinking water intakes in the lower portion of National Creek, or any wells down gradient. Consequently, there are no potential human receptors. By the time National Creek resurfaces below the glacier, it is greatly diluted. Water and sediment samples in the upper reaches of Kennicott River show no signs of contamination, and the waters of Clear Creek meet drinking water standards (Table 4).

Water quality at the mine sites has been less well documented, but there appear to be no concerns. There are no mine openings that are discharging water on the property.

The adit at the Mother Lode mine is weeping water; however the water there met drinking water standards (Table 4). Water and sediments were sampled immediately below the Bonanza Mine; As and Cu appear slightly elevated in the water, but the water meets drinking water standards. Sediments immediately below the Bonanza mine also have elevated levels of As, Cd, Cu, Pb, Hg, and Ag, similar to what was observed in the mill town, but these levels diminish to background levels further downstream (Table 5).

}	biton of unitor data I luito for matche and
	-
B	
ļ	
ļ	at date
_	- marte
	ion of
	Ĩ
ľ	Ċ
j	nendix 2a C
	Juan

₹

	ppm.
J	are
	r metals
	for
	Units
	data.
,	water
	٦
	atior

١

SAMPLE ID Co		ē		Ya	S N	2			-	ī		1			
		<1.00		<0.05	<0.05	<0.002		<0.01	<0.05	=	>	<5 00	2001 ×	SOA	PCB's
		0.1210		<0.002		<0.0002	<0.017	0.002	_	<0.001		2		22	
	·	<0.05		0.05 10.05	<0.01	<0.1	<0.05	<0.05	<0.05		<0.05	0.05			
	+	500		9.0 2	0.01	.	40.05	<0.05 50 50 50 50 50 50 50 50 50 50 50 50 5	0.05 15		0 8 1	0.06			
\square		8		20107	0.07	2	50.04	60·0×	8.02		S.	<0.05			
V		<0.0030		0.0008	0.0016	0.0016 <0.0002	<0.0100	<0.0020	<0.0030	<0.0010	<0.0030	0.0120			
4		<0.0030		0.0006	0.0153	<0.0002	<0.0100	<0.0020	<0.0030	<0.0010	<0.0030	0.0120			
¥١	<0.010	0.0057		0.0010	<0.0010	<u><0.0002</u>	<0.0100	<0.0020	<0.0030	<0.0010	<0.0030	0.0054			
Ч	<0.010	0.0059		<0.005	<0.0010	< 0.0002	<0.0100	<0.0020	<0.0030	<0.0010	<0.0030	<0.0040			
₹	<u><0.010</u>	0.0748		0.0010	0.0010 <0.0010	<0.0002	<0.0100	<0.0020	<0.0030	<0.0010	<0.0030	0.0204			
1×		50 004		20002	50007		100 01		1000 01	10000					
Í	<0.002	<0.004		2000×						<0.004	<0.02	<0.002	v, r	12.00	
-		1000		20.002					1000.02	20.004	\$0.02	<0.002	n, I	14.00	
KE004W3DS <0	<0.002	<0.004		20.05	40 002						200.02	<0.002	0. 4 V	6.30	
		<0.004		<0.005			1000					200.02		201	
Į₹	4	<0.004		<0.005	40.002		AD0.02						000	00.0	
18	<0000>	2000		5000	2000					×0.004	<0.002	<0.002	0.84	8	
19		0.0060					20.004			<0.004	0.0020	<0.002	v. v	15.00	
ľ۶		0.0100			20.02		0.0		100.02		<0.002	<0.002	0.50	9	
18		0.0800					20.004			<0.0004	<0.002	<0.002	×.5	6.10	
4		070000			200.02		\$0.004		-000.0>	<0.0004	<0.002	<0.002	8	9.70	
4		0.000		50.05	2000		\$0.00 0.004		-000 -000	<0.000 40.000	<0.002	<0.002	1.8	9.80	
4				50.0v	20.002		<0.004		<0.0001	<0.0004	<0.002	<0.002	1	6.10	
1		0210.0		600.0 >	<0.002		<0.004		<0.0001	<0.0004	<0.002	<0.002	,	6.20	
		<0.05		<0.005	₽	<0.0002		<0.001	<0.0001			0.6100	0.14	200	
4		0.0230	<0.01	0.0110		<0.002		<0.001	<0.001			<0.013		8.20	<.5ua/l
\downarrow		0.0330		<0.005	<0.013	<0.002		<0.001	<0.001			<0.013	\$ 1.0 2	5.60	
\downarrow		0.0660		<0.005 <0.005	<0.05	<0.0002		<0.001	<0.0001			<0.5	1 40	16.00	
4		0.0660	<0.01	<0.005	<0.013	<0.002		<0.001	<0.001			<0.013	2.00	13.60	
_		0.0640		<0.005	<0.013	<0.0002		0.0008	<0.001			<0.013	1.80	17.00	
4		2.6000		<0.005 <	<0.05	0.0004		<0.001	<0.0001			<0.5	1.98	200	
		10.0000	<0.01	0.0170	<0.013	0.0017		<0.001	0.0010			<0.013	2.40	10 10	
		0.1600		<0.005	v	<0.0002		<0.001	<0.001			<0.013	2.40	14 00	
4		0.4500		0.1800	-			0.0047	0.0010			0.8700	∀	13.00	
4	-	<u><0.05</u>		<0.005	<0.05	<0.0002		<0.001	<0.0001			<0.5	1	800	
4	-	<0.13		<0.005	<0.013	<0.002		<0.001	<0.001			<0.013	0.20	6.60	
_	-	<0.013		<0.005	<0.013	<0.0002		ଞ				<0.013	0.23	8.40	
_	•	<u><0.13</u>		<0.005	<0.013	<0.002		<0.001	<0.001			0.0210	<u>\$0.1</u>	₽	
4	-	<0.05		<0.005	<0.05	<0.0002		<0.001	<0.0001			<0.5	\$ 1.0 2	⊽	
-	-	<u>60.05</u>		<0.05 0.005	<0.05	<0.0002		<0.001	<0.0001			<0.5	0.85	9.00 6	
_	-	0.13		<0.05	<0.013	<0.002		<0.001	<0.001			<0.013	<0.1	10.80	
4	•	<0.013		<0.005	М	<0.0002		<0.001	<0.001			<0.013	0.25	13.00	
\downarrow	•	<0.0>		0.0080		<0.0002		<0.001	<0.0001			<0.5	0.16	14.00	
\downarrow	+	<0.13		<0.005	0.0420			<0.001	<0.001			<0.013	0.70	11.50	
_		<0.013		<0.05	<0.013	<0.0002		<0.001	<0.001			<0.013	<0.1	₽	
1		0.1100		<0.005	<0.05	<0.0002		<0.001	<0.0001			<0.5	1.40	10.00	
4		Q	<0.01	<0.005	<0.013	<0.002		<0.001	<0.001			<0.013	0.20		<.5ug/l
\downarrow	<u>*</u>	<0.013	T	\$0.02 \$0.00	<0.013	<0.0002		<0.001	<0.001			<0.013	0.22	7.60	
				<0.005	<0.05 0.05	<0.0002		<0.001	<0.0001			<0.5	0.73	2.10	
1	*	<0.13	\$0.0 10	0002	<0.013	<0.002		<u><0.001</u>	<0.001			<0.013	0.40	19.10 <	<.5ug/l
_		0.013		<00.0>		<0.0002		0.0007	<0.001			1 10 013	20	13.00	
_												20.02	5	3.	

	<0.05	<0.001	<0.05	<u>6</u> .8	8.0 V	0050	<0.0050	<0.0050	<0.0050	<0.0050		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.00	<0.002	200.02			3	20.02	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0080	<0.005	<0.05	<0.005	<0.05	<0.005	-0.0 <u>0</u>	<u>60.05</u>	<0.005	0.0066	<u>60.05</u>	¢0.005	<0.005 201	<0.005 0.005	<0.005	<u>60.05</u>	<0.005 20.005	-0.005
<u>r</u>		5		T	2	Г		Т	+	t	1	Γ		Γ	Γ				T	Τ	Τ		Т			Т	9			T		0.0014 <0	0.0050 <0	¥	0.0009	Т		_		_		Т	₹	-	1			+		1	-1-	
Cd	<0.01	<0.0001	<0.01	<u>\$0.01</u>	20.00 <0.01	<0.0003	<0.0003					<0.001	<0.001	<0.001	<0.001 001	<0.001	100.001	<0.001	00 00 00 00 00 00 00 00 00 00 00 00 00	<pre>0000></pre>					3.02	<0.0005	1	<0.005			<0.005		0.0	<0.0005			€000.0>	<0.005	9 ₽	80 9								<0.005	<0.005		<0.005	65.00 <0.0005
Ca			13.00	12.00	20.02				62.20	72.00		19.00	21.00	19.00	19.00	24.00	14.00	16.00	19.00	18.00	71 00	2012	20.4		<u>3.</u>	27.00			52.00		67.00	59.00		68.00	57.00	24.00		18.00		29	27.00		23.00	26.00		3.00	20.00		15.00	39.00		65.00 A6.00
Be		<0.0005				0.0005	0.005	0.005	0.0005	0.0005		0.001	<0.001	0.001	<0.001	0.001	0.001	0.001	0.001	<0.001	0.001		300		0.00																											
	<1.00	420	<0.05	<u>6.05</u>	<0.05	0.0294 <0.0005	0.0318 <0.0005	0.0233 <0.0005	0.0243 < 0.0005	0.0436 < 0.0005		0.0010 <0.001	0.0050		0.0100	0.0360 < 0.001	0.0280 <0.001	0.0020 <0.001	0.000 <0.001	0.000	0.0400 <0.001			2000	0.0310 40.001	<0.05	0.0310	0.1300	<0.05	0.0340	0.0330	<0.05	0.0400	0.0260	0.1300	<0.05	0.0270	0.0250	<0.013	<u><0.05</u>	<0.05	<0.013	0.0120	0.0530	0.0310	<0.013	<0.05	0.0280	0.0290	<0.05	0.0220	0.0220
Ba	<0.05 <1	6			€0002	<0.001	<0.001	0.0011	0.0010	0.0083		6000.0	0.0032	0.0020	0.0020	0.0008	<.0008	< 0008	0,000,0	0.0010	2.000	0.000		200	0.00.0	<0.001 <(-	8			0.0074		0.5000	0.0190	0.0390	v		13	1				0.0022	0.0022	20		₹		0.00	=	<0.001	0.0008
As				<u>Ş</u>	8	Т		-	+-	╞	\vdash	+	+	┞	┢	┝	V	1		+	╀	╀	ľ	1	+	Ş	ĉ									-	-	-	ç	Ŷ	_	-	-	_	-	Ş	-	+	-	-	<u>0</u>	+
Sb		<0.003				<0.005			<0.005	<0.005		<0.0002	<0.0002	0.0002	0 < 0.0002	<0.0002	<0.0002	<0.0002		١¥					2000.0> 0.000																						_					_
Aikaii nity				54.0								60.0									1				0.00																											
D.O.			12.0		10.0							11.0	10.0	10.0	10.0	11.0	10.0	0.6		80	200				0.11	12.9	La la		12.2	na		11.4	na			13.4	11.4	12.1	B	na	12.6	12.6	11.8	13.2	12.2	12.6	11.6	11.4	11.4	10.2	10.8	11.4
condu ctivity		257	110	<u>5</u>	3	T		T				145	160	144	144	188	133	145	147	Ę	254	3154	451	2	6	247		Γ	413	2	409 409	462		394	270	189	8 <u>8</u>	192		-	8	8	217	33	500	27	193	540	152	301	530	446
ь Н	6-8.5	7.8	<u>6.00</u>	-	9		-		T	ľ		7.95	7.88	7.97	7.95	8.12	7.66	800	8 15 8	7.85	30	8: r	70.7	8	<u>8.U8</u>	7.6	7.66 08	7.6 na	8 05	8.19 na	8.11	7.96	8.32 n	8.11	7.37	8.25	1.7	8.05	6.04 na		8.5	Ø	.	8.9	8	7.3	8.1	8	8	8.02	2.9	7.63
Temp C		18	4.0	5.5	6.0							4	5	~	~	6	4	9		5	2 4		0 0		2	-	Bu		25	na		2	na			-	5.1	4.2	na	na	0	4.5	4	0	2,6	0.3	5	6.1		1		2.8
Descr1		unfiltered				unfiltarad	unfiltered	unfittored	unfiltered	unfittered		unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unilitered			untiltered	unfiltered						unfiltered		unfiltered	unfiltered	unfiltered	unfiltered				unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered	unfiltered
a	-			P	ы Т	T.	1.	1.	t.	1.		T.	1	1	1	1	1.	T.		T	T			T		\uparrow	T				1									-							-					
med		water	water	water	water	water	water	water	water	water		water	water	water	water	water	water	water	water	water	water	- Add	Waler	Maler	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water
location	Limits	Tails, seep below power plt	National Crk, below tails	National Crk, 0.5 miles above tails	Bonanza Crk	National Crk	McC Crk	Clear Creak	Clear Creek-dup	Tails Seen		Above Snowfield	Amazon Crk	Jumbo Crk	Jumbo Crk-dup	Bonanza Crk	National Crk	Bonanza Mine spring, bel	Ronanza Mine, hal taile	Tails nonded rainwater	Taile Soon will	Toile Seep, mill dun	I alls Seep, mill-qup		National Crk, above glacier	Tails Seen dwnslo of Pwr hs	Tails Seen dwnsip of Pwr hs	Seep-mother lode mine portal	Tails Seen near leach blant	Tails Seep.near leach plant	Tails Seep, near leach plant	Tails Seep, flume/leach plt	Tails Seep, flume/leach plt	Tails Seep, flume/leach plt	Tails Seep,W. of pwr hse	Bonanza Crk	Bonanza Crk	Bonanza Crk	blank	blank	Jumbo Crk	Jumbo Crk	Jumbo Crk	Kennicott Crk, S of Amazon	Kennicott Crk, S of Amazon	Kennicott Crk, S of Amazon	Kennicott Crk, S of National	Kennicott Crk, S of National	Kennicott Crk, S of National	Clear Creek	Clear Creek	Clear Creek
sampler(a)		NPS	NPS	SdN	NPS	07/94 Weston(b)	07/94 Weston(h)	Weston(h)	Weston(b)	07/94 Weston(b)		Eppinger(c)	Eppinger(c)	Eppinger(c)	Eppinger(c)	Eppinger(c)	Eppinder(c)	Eppinder(c)	Encineer(c)	Enninger(c)	Entinger(c)	Eppinger(c)	Contraction (c)		Eppinger(c)	EMCON(d)	FMCON(d)	EMCONID	FMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d,e)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)	EMCON(d)
date		07/95	07/86	07/86	07/86	07/94	07/94	17/04	07/94	07/94		08/94		+		—			_	_	_	_	_		08/94	05/92	_		-		T	05/92	<u> </u>	16/60	09/91			_	_				-	_		09/91	_	-			07/91	16/60
SAMPLE ID	EPAVADEC		Π	NPS-86-02		sw-sd001-0		T		Γ		KE002W3		Γ	20	T	Ī				T	ľ	T	Τ	KE012W3	sn1											swb			swbk3	swj	swj	swj	swk1	-	swk1			swk2			swk3

SAMPLE ID	date	sampler(a)	location	media	Descr1	Temp C	D Ha	ctivity D.	D.O. nitv	ab Sb	Ās		4		2	č
swk4	07/91	EMCON(d)	Kennicott Crk, Bel. McC Crk	water	unfiltered	4	Ø.	t	5.5		<0.001	0.0400		1	500	2002
SWK4	16/60	EMCON(d)	Kennicott Crk, Bel. McC Crk	water	unfiltered	2.9	7.63	394	14.2		0.0072			58.00 <	T	2000
CYMS	16//0	EMCON(d)	Kennicott Crk, S of National	water	unfiltered	na	8.04 na	81	-		0.0010				5000	
CXMS	16/60	_	dupl of swn1	water	unfiltered										8	222.2
Imms	16//0	-+-	McC Crk, Below Lubbe Crk	water	unfiltered	4.8	7.7	26	12.6	 	<0.001	0.0260			<0.0005	<0.05 <0.05
swm2	16//0	_	McC Crk, below Green butte	· water	unfittered	5.1	7.7	26	12.7		<0.001	0.0340			-	<0002 002 002 002 002 002 002 002 002 002 002 002 002
swm3	16//0	-	McC Crtk, S of Bonz rdge	water	unfiltered	5.5	7.7	29	12.8		<0.001 AD 001				Т	0 DED
swm4	05/92	_	McC Crk, abv McCarthy	water	unfiltered	9	8.2	334	11.0		0.0016	Ĭ		46.00	╈	
swm4	07/91	-	McC Crk, abv McCarthy	water	unfiltered	4	œ	005	11 1				T	3	+	
swm4	09/91		McC Crk. abv McCarthy	water	unfiltered		200	500	12.0		100.04				Т	90.02
swn1	05/92	-	National Crk. abv mill town	water	unfiltered	1	4.) a C a	747	2.0			Ľ		8.5	Т	90.02 V
swn1	07/91	+	National Crt. aby mill town			_	07.0	147	12.3		\$0.W	S.		ZU.00 <		\$0.02 0002
swn1	09/01	-	Notional Crk aby mill town	water		_	<i>P</i> .	ß	11.9		<0.001	0.0270		v		<0.005
sum1	10/00				untritered		7.84	_	13.4		<0.001	0.0310		14.00 ≤		<0.005
= 9	10/20	EMCONU	National Crk, apy mill town-duplicate		untiltered		7.84	165	13.4		<0.001	0.0310		14.00 <		<0.005
SWILZ	76/00		National Crk, below mill	water	unfiltered	1.4	8.69	610	12.5		0.0036	6 < 0.05		21.00 <	Γ	<0.05
SWIZ	181/0	EMCON(d)	National Crk, below mill	water	unfiltered	5.8	7.9	590	11.3		<0.001	0.0280		V	T	
swn2	09/91	EMCON(d)	National Crk, below mill	water	unfiltered	6	7.99	144	12.2		0 0012			17 00 1	Т	
swn3	05/92	EMCON(d)	dupi of swn1	water	unfiltered	-	8.2	150 na			<0.01	V			Т	
wbk1	09/91	EMCON(d)	blank	water	unfittered		5 49				100.07	500				50.0
wbk2	09/91	EMCON(d)	blank	water	unfittered		2 4 7				300	210.0		N7.0		9.02 9.02
wp3	05/92	EMCON(d)	Tails Well/ Adi Kenn Crk	water	unfiltered	t	100	300			20.001	7				0000 00000 00000
wb3	07/91	EMCON(4 0	Taile Well/ Adi Kenn Crt	AVOID		-	8.1	-			0.0940			37.00		\$ 8 8
win 3	00/01	EMCOND	Tollo Mally Auf Marili CIN	water). 	7.99	134 na		_	0.0910				0.0015	<0.05
	10ion	EINICUNICI	I BIIS VVBIV AQ. KENN CIK	water	untiltered		7.85	181			0.0220	0.1600		15.00	0.0033	<0.05 <0.05
2011	10001	V	_					-		-	-					
	0881	1990 Nay&Miller(g)	- 1	water			7.7				0.0030	0 0.0450			0.0008 <0.001	<0.00 0
NMZ	0661	1990 Kay&Miller(g)		water			8.1				0.0120				0.0008	40 00 100 00
KM3	1990	1990 Kay&Miller(g)	-	water			7.7				0.0030				0000	\$0.00 \$0.001
KM4	1990	1990 Kay&Miller(g)	Kennicott Crk	water			7.8				0.0060				0000	
KM5	1990	1990 Kay&Miller(g)		water			7.9	150	74.0	0	<0.025	18		21 M	<0.075	0.025
KM6	1990	1990 Kay&Miller(g)) Tails	water			8.2	370	194.0	0	<0.025	<0.025		RE ON A	Τ	20.02
KM7	1990	1990 Kay&Miller(g)		water			7.2	000.1	50.0	0	<0.025	<0.025		200 00	T	0.025
KM8	1990	1990 Kay&Miller(g)	Mill, Leach Plant	water			7.9	400	195.0	0	<0.025	0.2700		65 00 v		300
										2	0.40.0	8		3	╈	20.02
KE002W3	08/94	Eppinger(c)	Above Snowfield	water	filtered		-	-		<0.000	A0 00 0 0	1000	1004		Τ	
KE003W3	08/94		Amazon Crk	water	filtered		╞	╞	╞		+	0000		20.00	T	200.0
KE004W3	08/94	Eppinger(c)	Jumbo Crk	water	filtered						╀	0.000		N 10	1	
KE004W3DS	08/94		Jumbo Crk-dup	water	fittered		╞				+-	0.0100		3.6	T	
KE005W3	08/94	Eppinger(c)	Bonanza Crk	water	filtered		╞				+	00000			1	200.02
KE006W3	08/94	Eppinger(c)	National Crk	water	filtered						ľ			N.47		20.02
KE007W3	08/94		Bonanza Mine spring, bet	water	filtered		-	╞	-		+	100.02 0000 0		N.C. 4	Τ	
KE008W3	08/94	Eppinger(c)	Bonanza Mine. bel tails	water	fittered		╞				+		3	00.02 00.01		
KE009W3	08/94		Tails bonded rainwater	water	filtered		╞				ļ	\perp	3.0	N.81	T	-0.0Z
KE010W3	08/94		Taile Seen mill	10401	5Horod		+	$\left \right $		1000 C	4	0600.0	10.0	18.UU <	Т	<0.002
KE010W3DS	08/94	Encincer(c)	Taile Seen mill-dun	water			╉		+	<0.002	+	0.0390	<0.001	<u>√</u> 2.00 <		<0.002
KE0111/1/3	DB/DA	Enninger(e)		Maler			╉			<0.0002	-	0.0390	0.001	72.00 <(<0.001	<0.002
CAN IN	10/00	Eppinger(c)		water	tiltered		-	-	_	<0.0002	2 <0.0008	0.0290 <	<0.001	16.00 <(<0.001	<0.002
VENIZVUS	100/34	Eppinger(c)	National Crk, above glacier	water	filtered		┥			<0.0002	2 0.0008	3 0.0310 <0.001	0.001	17.00 <(<0.001	<0.002
	05/92	05/92 EMCONIA	Taile Soon dunch of Bur he				+									
				Т							<0.001	<0.05		▼	<0.0005	<0.005
303			Tails Seep, near leach plant	Т	filtered						0.0063	3 <0.05		V	<0.0005	<0.005
513	_	EMCON(I)	I alls Seep, near leach plant		filtered					_	0.0080	0.0340			2	<0.005
	02/01	EMCON(II)	Tails Seep, near leach plant		filtered			+			0.0080	0.0340		V	<0.0005	<0.05
	78/00		I alls Seep, flume/leach pit	-1	filtered						0.0110	¥		V		<0.005
	18/10		I alls Seep, flume/leach plt	water	filtered					_	00700			Ľ	Г	100
				Γ			┥			-	0.0460	0.0330	-	V	<0.0005	<0.005

Į,

Ì

Appendix 2a. Contained at a contained at contained at a contained at a contained at a contained

e ppm.
netals are
Inits for r
r data. L
n of wate
Compilation
Appendix 2a.

013 0006 0007 0007 0001 0001 0001 0001 0001 0013 0003 0013		5	5	Cyani	4	2	2	1		20	Ĩ	>	2	ŝ	2	
1 0013 0.005 0.033 <th0.033< th=""> 0.033 0.033</th0.033<>	swk4	3	<0.13	3	<0.05	0.0250	<0.002		0.0010	0000		>	<0.013	ľ	62 30	
0.0144 0.005 0.013 0.005 0.013 0.014 0.014 0.015 <t< td=""><td>swk4</td><td></td><td><0.013</td><td></td><td><0.005 <0.005</td><td>0.0380</td><td><0.0002</td><td></td><td>0.0011</td><td><0.001</td><td></td><td></td><td><0.013</td><td>0.26</td><td>63.00</td><td></td></t<>	swk4		<0.013		<0.005 <0.005	0.0380	<0.0002		0.0011	<0.001			<0.013	0.26	63.00	
4 113 4 0005 0 0330 4 0003 0 0330 4 0013 0 013	swk5		0.0140		<0.005	<0.013			<0.001				0.0150	0.20	6.20	
0 0113 0.0005 0.0017	swłć5															
(1)3 (1)3 <th< td=""><td>swm1</td><td></td><td><0.13</td><td></td><td><0.005</td><td>0.0320</td><td><0.002</td><td></td><td><0.001</td><td><0.001</td><td></td><td></td><td>0.0130</td><td><0.1</td><td>30.80</td><td></td></th<>	swm1		<0.13		<0.005	0.0320	<0.002		<0.001	<0.001			0.0130	<0.1	30.80	
(-1)3 (-1)3 <th< td=""><td>swm2</td><td></td><td><0.13</td><td></td><td><0.005</td><td>0.0390</td><td><0.002</td><td></td><td><0.001</td><td>60.001 100</td><td></td><td></td><td><0.013</td><td><u>6</u>0.1</td><td>54.10</td><td></td></th<>	swm2		<0.13		<0.005	0.0390	<0.002		<0.001	60.001 100			<0.013	<u>6</u> 0.1	54.10	
405 4008	swm3		<0.13		<0.005	0.0270	<u>60.002</u>		0.0001				<0.013	0.20	62.20	
4(13) 0.0006 0.0006 0.0006 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0013 0.0001 0.0013 0.0001 0.0013 0.0001 0.0013 0.0001 0.0013 0.0013 0.0013 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0111 </td <td>swm4</td> <td></td> <td><0.05</td> <td></td> <td><0.005</td> <td><0.05 <</td> <td><0.0002</td> <td></td> <td>0.0013</td> <td></td> <td></td> <td></td> <td><0.5</td> <td></td> <td>44.00</td> <td></td>	swm4		<0.05		<0.005	<0.05 <	<0.0002		0.0013				<0.5		44.00	
1 0.0013 0.0003 0.0013 0.0003 0.0013 0.0001 0.0011 0.0013 0.0013 0.0011 0.0013 0.0013 0.0011 0.0013 0.011 0.0113 0.011 0.0113 0.011 0.0113 0.011 0.0113 0.011 0.0113 0.011 0.0113 0.011 0.0113 0.011 0.0113 0.011 0.0113 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 <td>swm4</td> <td></td> <td><0.13</td> <td></td> <td>0.0060</td> <td>0.0300</td> <td></td> <td></td> <td>0.0020</td> <td></td> <td></td> <td></td> <td>0.0150</td> <td></td> <td>54.40</td> <td></td>	swm4		<0.13		0.0060	0.0300			0.0020				0.0150		54.40	
1 0.005 0.005 0.005 0.005 0.000 0.0001 0.0001 0.001 0.013 0	swm4		<0.013		<0.005	<0.013	<0.0002		0.0019				<0.013	0.33	108.00	
(13) (000) (001) (000) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (001) (011)	swn1		<0.05			<0.05	<0.0002		<0.001	<0.0001			<0.5	1.60	10.00	
(0013) (0006) (0013) (0002) (0001) (0001) (0011) (0113)<	swn1		<0.13			<0.013	<0.002		<0.001	<0.001			<0.013	0.10	5.60	
0103 01010 01010 0101 <	swn1		<0.013			<0.013	<0.0002		<0.001	<0.001			<0.013	0.19	7.20	
0.0540 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.013 0.011 <t< td=""><td>swn1</td><td></td><td><0.013</td><td></td><td>8</td><td><0.013</td><td><0.0002</td><td></td><td><0.001</td><td><0.001</td><td></td><td></td><td><0.013</td><td>0.17</td><td>7.20</td><td></td></t<>	swn1		<0.013		8	<0.013	<0.0002		<0.001	<0.001			<0.013	0.17	7.20	
(013) (011) (001) (0001) (0001) (0001) (0001) (0011) (0113) <td>swn2</td> <td></td> <td>0.0540</td> <td></td> <td>Γ</td> <td><0.05 0.05</td> <td><0.000</td> <td></td> <td><0.001</td> <td><0.0001</td> <td></td> <td></td> <td><0.5 20.5</td> <td>140</td> <td>10.00</td> <td></td>	swn2		0.0540		Γ	<0.05 0.05	<0.000		<0.001	<0.0001			<0.5 20.5	140	10.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	swn2		<0.13	<0.01	—	<0.013	<0.002		<0.001	<0.001 <			<0.013	0.20	6.60	< 5uall
0000 0000 <th< td=""><td>swn2</td><td></td><td><0.013</td><td>Τ</td><td>Г</td><td><0.013</td><td><0.000</td><td></td><td><0.001</td><td><0.001</td><td></td><td></td><td><0.013</td><td>0.01</td><td>7 20</td><td></td></th<>	swn2		<0.013	Τ	Г	<0.013	<0.000		<0.001	<0.001			<0.013	0.01	7 20	
0103 0103 0103 0103 0103 0103 0113 <th< td=""><td>swn3</td><td></td><td>20.02</td><td></td><td>T</td><td>20.05</td><td>0000</td><td></td><td>1000</td><td>0001</td><td></td><td></td><td>202</td><td>1 80</td><td>11 00</td><td></td></th<>	swn3		20.02		T	20.05	0000		1000	0001			202	1 80	11 00	
0101 0.010 0.010 <th0< td=""><td>unbl/1</td><td></td><td>10.02</td><td></td><td>T</td><td>T</td><td>0000</td><td></td><td>100.01</td><td></td><td></td><td></td><td>0.00</td><td>3</td><td></td><td></td></th0<>	unbl/1		10.02		T	T	0000		100.01				0.00	3		
1 0000 00020 00000 00020 0000	who		0.03							100.02			2002	2	35	
1 1 1 0000 0.0001 <th0< td=""><td>and a</td><td></td><td>1 5000</td><td></td><td>0000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td><td>1</td><td>200</td><td></td></th0<>	and a		1 5000		0000								0000	1	200	
1 1,000 0.0320 0.2300 0.0301 0.0001	2011		0000		0.0420	1	10000		20.02				0007.0		30	/ E
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	wpo		00001		0.0100				100.02	100.02			3.700			i/Bnc·v
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	wps		0000.1		0.0320				-00.02	<0.001			2.2000	75.0	8.40	
0 0.000 0.0000	KM1		<0.02				<0.000		<0.00					010	4 80	
0.002 0.000 0.002 0.000 <th< td=""><td>KM2</td><td></td><td>0.1000</td><td></td><td></td><td></td><td><0.000</td><td></td><td><0.002</td><td></td><td></td><td></td><td></td><td>) </td><td>12.00</td><td><0.001</td></th<>	KM2		0.1000				<0.000		<0.002) 	12.00	<0.001
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	KM3		<0.02				<0.0002		<0.002					0.20	4.90	
(0.025) (0.025) (0.025) (0.025) (0.11) (0.025) (0.11) (0.025) (0.11) (0.025) (0.11) (0.025) (1.80) <th< td=""><td>KM4</td><td></td><td>0.0900</td><td></td><td></td><td></td><td><0.0002</td><td></td><td><0.002</td><td></td><td></td><td></td><td></td><td>0.20</td><td>4.50</td><td></td></th<>	KM4		0.0900				<0.0002		<0.002					0.20	4.50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	KM5		<0.025			<0.025							<0.025		6.20	
0.6700 0.1600 0.1600 0.1600 0.1600 0.1600 0.1600 0.3000 401 50.00 0.0102 0.0103 0.0105 0.0025 0.002 0.0025 1.80 9.10 0.0102 0.004 0.005 0.002 0.002 0.002 0.002 0.002 1.80 9.10 0.002 0.004 0.005 0.002 0.002 0.002 0.002 0.002 1.80 9.10 0.002 0.004 0.005 0.002 0.004 0.002 0.002 0.002 1.80 9.10 0.002 0.004 0.005 0.002 0.004 0.002 0.002 1.80 9.10 0.002 0.004 0.005 0.002 0.004 0.002 0.002 1.80 9.10 0.002 0.005 0.002 0.002 0.002 0.002 0.002 1.80 9.10 0.002 0.004 0.002 0.002 0.002 0.002 0.002	KM6		0.1500			<0.025							0.0500			<0.001
0.1100 0.0100 0.025 1.80 9.10 <0.002	KM7		0.6700			0.1600							0.3000	60.1	630.00	
(-0.02 $(-0.004$ $(-0.005$ $(-0.004$ $(-0.005$ $(-0.002$ $(-0.001$ $(-0.001$ $(-0.002$ (-0.002) <	KM8		0.1100			<0.025							<0.025	1.80	9.10	<0.001
< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <																
<0.002 <0.004 <0.005 <0.002 <0.004 <0.002 <0.004 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002<	KE002W3	<0.002	<0.004		<0.005	<0.002		<0.004		<0.0001	<0.0004	<0.002	<0.002			
< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << << <<<	KE003W3	<0.002	<0.004		<0.005	<0.002		<0.004		<0.0001	60.000 4	<0.002	<0.002			
S C(002 C(004 C(002 C(001 C(002 C(002 <thc(02< th=""> C(002 C(002</thc(02<>	KE004W3	≤0.002	<0.004			<0.002		<0.004		<0.0001	<0.0004	<0.002	<0.002		1	
< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	စ္ဆ	<0.002	<0.004			<0.002		<0.004		<0.0001	<0.004	60.002	<0.002			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<0.002	<0.004			<0.002		<0.004		<0.0001	<0.0004	<0.002	<0.002			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<0.002	<0.004		<u><0.005</u>	<0.002		<0.004		<0.000	<0.0004	<0.002	<0.002			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		20.02	<0.004		T	<0.002	T	<0.004		1000.02	<0.0004	200.02	<0.002			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	KE008W3	<0.002	<0.004			<0.002		<0.004		<0.001	<0.0004	<0.02	<0.002			
	KE009W3	<0.002	0.0120			<0.002		<0.004		<0.0001	<0.0004	<0.002	<0.002			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	KE010W3	<0.02 0.002	0.0760			<u><0.002</u>		<0.004		<0.0001	<0.0004	<0.002	<0.002	1		
TWW CUMA CUMA <thc< td=""><td>KEUTUW3DS</td><td><0.002</td><td>0.0/60</td><td></td><td>Τ</td><td><0.002 60002 6002 6002 6002 6002 6002 600</td><td></td><td><0.004</td><td></td><td>1000.02</td><td><0.0004</td><td><0.002</td><td><0.002</td><td></td><td></td><td></td></thc<>	KEUTUW3DS	<0.002	0.0/60		Τ	<0.002 60002 6002 6002 6002 6002 6002 600		<0.004		1000.02	<0.0004	<0.002	<0.002			
112W3 <0.002 0.0090 <0.005 <0.002 <0.004 <0.0001 <0.0002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.001 <0.0004 <0.002 <0.002 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.001 <0.02 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <0.0490 <t< td=""><td>KE011W3</td><td>\$0.00Z</td><td><0.004</td><td></td><td>T</td><td><0.002</td><td></td><td><0.004</td><td></td><td><0.0001</td><td><0.0004</td><td><0.002</td><td><0.002</td><td></td><td></td><td></td></t<>	KE011W3	\$0.00Z	<0.004		T	<0.002		<0.004		<0.0001	<0.0004	<0.002	<0.002			
0.0550 <0.005 <0.002 <0.001 <0.001 <0.001 <0.001 <0.05 0.0550 <0.005	KE012W3	<0.002	0600.0			<0.002		<0.004		<0.0001	<0.0004	<0.002	<0.002			
0.0550 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.05 <0.035 <0.035 <0.035 <0.035 <0.001 <0.035 <0.035 <0.035 <0.035 <0.035 <0.001 <0.001 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.031 <0.036 <0.031 <0.036 <0.036 <0.035 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 <0.031 </td <td>11</td> <td></td> <td></td> <td></td> <td>Τ</td> <td>T</td> <td></td> <td></td> <td>100 01</td> <td>10000</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td>	11				Τ	T			100 01	10000			4			
0.0720 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.01490	spi		0110				2000.02		10.02	1000.02			0.0			
0.0720 0.01200 0.01800 0.0200 0.01800 0.01800 0.01800 0.01800 0.01800 0.01800 0.01800 0.01800 0.01300 0.01300 0.01800 0.01800 0.01300 0.01800 0.013000 0.013000 0.01300<	sp3		0000		18	6			-00.00	-0.001			<0.05 0.00 0.00 0.00			
0.0000 <0.003 <0.0012 <0.0011 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.001 <0.013 <0.003 <0.003 <0.003 <0.003 <0.001 <0.013 <0.003 <0.003 <0.003 <0.003 <0.003 <0.013 <0.003 <0.003 <0.003 <0.001 <0.003 <0.013 <0.003 <0.003 <0.003 <0.013 <0.003 <0.013 <0.003 <0.003 <0.013 <0.003 <0.013 <0.003 <0.001 <0.013 <0.013 <0.013 <0.013 <0.013 <0.001 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.01	503		0.0720		3	2	200.02		7				0.0450			
0.4700 0.0610 <0.03 <0.001 <0.011 <0.011 <0.011 <0.010 <0.010 <0.013 <0.013 <0.020 <0.011 <0.013 <0.013 <0.012 <0.011 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 </td <td>503</td> <td></td> <td>0.0000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>20.012</td> <td></td> <td></td> <td></td>	503		0.0000						2				20.012			
0.1600 <0.055 <0.013 <0.002 <0.001 <0.001 <0.001 <0.001	Para Para		0.4700		10	T	<0.002		Т	×0.001			0.0800	8		
	504		0.1600	Ī	2	1	<0.0002			<0.001			<0.013	!		

.

swb		sampler(a)	location	media	Descr1	Temp C	ы На	ctivity D.O.	O. nitv	ll Sh	Å	E B	4	<u> </u> č	2	č
		EMCON(h)	Bonanza Crk	water	filtered		Γ	· · ·	1		<0.001	<0.05	8	5	20005	
swb	_	EMCON(h)	Bonanza Crk	water	filtered						0.0010	_	c			2000
swb	16/60	EMCON(h)	Bonanza Crk	water	filtered						0 0013	1				
swbk	16/20	EMCON(h)	blank	water	filtered						40.001	12	2		5000	
swbk1	- 1	EMCON(h)	blank	water	filtered						40.00	<0.013				
swbk2			blank	water	filtered						<0.001	<0.013				
swbk3	_		blank	water	filtered						<0.001	<0.05 CO 05 CO 05				
swj	_	EMCON(h)	Jumbo Crk	water	filtered				-		0.0015					
swj	07/91	EMCON(h)	Jumbo Crk	water	filtered				╞							
SW	09/91	EMCON(h)	Jumbo Crk	water	filtered						0.0020	7			\$0.000 0	\$00.02 0
swk1	05/92	EMCON(h)	Kennicott Crk. S. of Amazon	water	filterod				+		0.0022		5		€000 ©	\$ 8 8
swk1		EMCON(h)	Kennicott Crk. S of Amazon	water	filtered				+	+	<0.001	Ŷ			<0.005 0.0005	\$0.095 \$0.005
swk1	<u> </u>	EMCON(h)	Kennicati City S of Amazon	water	Eltered		╈		+		0.0020	-	0		<0.005 ≤0005	\$0.0 20.00
swk2		EMCON(h)	Kennicott Crk S of National	water	fillered filtered		╏		+		<0.001				€0002 <0	<0.05 ≤0.05
swk2		EMCON(h)	Kannicott Crk S of National	water	Lilleron d						0.0018	٧			€0.00 00 00 00 00	\$0.0 00.00 00.00
swk2		EMCON(h)	Kennicott Crk S of National	water	filtorod						<0.001	0.0260	0		<0.0005 <pre>CO</pre>	<0.05 <0.005
swk3	_	EMCON(h)	Clear Creek	water	filtered	 		$\left \right $			-00.02	_	0		<0.005 <0.005	€0.09 005
swk3	-	EMCONIN	Clear Creek	water	Line d						0.0011	۷	-		<0.005	<0.05 0.055
swk3	· · · ·	EMCON(h)	Clear Creek	water	Ellorod	ł			+		<0.001		0		<0.005	6 89 95
swkd	1-	FMCONIN	Kennicott Crb Bal Nac Cut	Maler							0.006		0		<0.0005	<0.005
swid	_	EMCONIN	Kennicott Crk, Bel, MCU CIK	water	nitered	-			_		<0.001	\$0.65 \$			<0.0005	<0.005
swkd	_	ENCONIN	Ventilicati City, Bell. McC. City	water	filtered				_		<0.001		0		<0.0005	<0.05
	10/00	EMCON(II)	Nennicott CIK, Bel. McC. CIK	water	filtered		-				0.0035	5 0.0310	0		<0.0005	<0.05
CXMS	-	EMCON(h)	dupl of swn1	water	filtered											
swm1		EMCON(h)	McC Crk, Below Lubbe Crk	water	filtered						<0.001	0.0140	0		<0.005	
SWIN2	-	EMCON(h)	McC Crk, below Green butte	water	filtered						<0.001	0.017	0		<0.005	<0.05 200.05
CITIWS		EMCUN(n)	MCC CIK, S of Bonz rdge	water	filtered						<0.001	0.0260	0		<0.0005	<0.05
SWITH4	76/20		McC Crk, aby McCarthy	water	filtered						<0.001	<0.05			<0.0005	\$0.00 05
- HIMA	_	EMCONIT	MCU UK, aby McCarthy	water	filtered			-		_	<0.001	0.0250	0		<0.0005	<0.005
Sum 1	_			Т	filtered						0.0005	5 0.0390	0		<0.0005	<0.05
			National Crk, aby mili town	Т	filtered				_		<0.001	<0.05			<0.0005	<0.05
SWI1	_		National Crk, aby mill town	Т	filtered				-		<0.001	0.0240	0		<0.0005	<0.05
SWILL	19/90		National CrK, aby mill town-dupl	water	filtered				-		<0.001	0.0280	0		<0.0005	<0.005
Curre				T	filtered					-	<0.001	0.0290	0		<0.0005	<0.005
711/10	_		National Crk, below mil		filtered						0.0013	V			<0.0005	<0.005
SWIL	-		National Crk, below mill	water	filtered						<0.001	0.0260	0		<0.0005	<0.005
SWIZ	-+-	EMCON(n)	National Crk, below mill	water	filtered						<0.001	0.0280	0		<0.005	<0.05
CIWS			dupi of swn1	water	filtered	_					<0.001	<0.05			<0.005	<0.005
Cdw C	78/00		I alls well/ Adj. Kenn Crk	water	filtered				_		0.0025	5 <0.05			<0.0005	<0.005
cdw 2	-		I ails Well/ Adj. Kenn Crk	water	filtered						0.0040		0		0.0015	-
wpo	18/80	EMCOND	I alls Well/ Adj. Kenn Crk	water	filtered						0.0011		0		<0.0005	-
	(a) Samp	ler NPS-data in	(a) Samoler NPS data in park files WESTON from Weston 1006: Eminate from E	Lan Co.	sinces of all 4005.				: - -				-			
	(b) Also r	(b) Also ran Al, Fe, K, Na.					INCON 18	NAZA, KAY6M	ller-trom Ka	/ and Miller 1	086					•
	(c) Also r	an Al, Au, B, Bi,	(c) Also ran Al, Au, B, Bi, Ce,Cl, Cs, Dy, Er, Eu, F, Fe. Ga. Gd. Ge. Hf. Ho. Ir. K. La		LiMa MoNa Nh Nd Os P Ed Er Er Er Be	d Pd d SO PN			0 0 0 0 10	Cm Cn Cr T						
	(d) also a	inalyzed for turbic	(d) also analyzed for turbidity and fecal coliforms. Cl.color. corrosive foaming Fe. po	mina.Fe. odo	lor Na Tds								YB, ZT			
	(e) ran to	t pet HCO's (mg/	(e) ran tot pet HCO's (mg/l) and diesel @6.9 ppm													
	(1) 10Ug/	(f) 10Ug/l of Bis(2-ethylhexyl Phthalate)	xyl Phthalate)						-							
	(g) Also r	an Al, Fe, K, Mg,	(g) Also ran Al, Fe, K, Mg, Na, P, Si, Cl and F								-					
	(h) also s	ampled FL turbid	(h) also sampled FL turbidity fecal coliform CL color correctivity framine Ea adar													_

Ì

Appendix 2a. Completion of water data. Units for metals are ppm.

ppm.
are
metals
for
Units
data.
water
°
Compilation
2a.
Appendix

swb <0.05	60 60.05 60 60.013 60	40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002 40.0002	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	60.001 60.001		0.0130 na 0.0130 na 0.0133 na 0.0133 na 0.0133 na 0.013 na 0.0133 na 0.0133		
	60 <0.013	40.002 40.002 40.00	12	00000000000000000000000000000000000000				
	<0.013 <0.013	 40,0002 /ul>	12 00	0.00 0.00				
	<0.013 <0.013	60.002 60.0	5	0.001 0.				
	<0.013	6,0002 60,00002 60,0000 60,0000 60,0000 60,0000 60,0000 60,0000 60,0000 60,0000 60,0000 60,0000 60,000	2	0.001 0.				
	<0.013	60.0002 60.000	5	6001 60000 60001 6000000 600000 600000 600000000				
	0.05 0.05 0.05 0.05 0.013	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	12	0.001 0.				
	<0.05 <0.013	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	5	0.001 0.				
	<0.013	0.002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	2	6001 6001 6001 600001 600000000 60000000000				
	<0.013	0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002	2	6 001 6 000 6 0000 6 0000 6 0000 6 000 6 000 6 000 6 000 6 000 6 000				
	<0.05 20 <0.013	0.0002 0.002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	2	60001 600001 600001 60001 60001 60000000000				
	20 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013	0.002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	12	6001 6001 6001 600000 60001 6000000 600000 600000 6000000 6000000 6000000 6000000 60000000 60000000 600000000				
	 <0.013 <0.05 <0.05 <0.013 	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	2	6001 60001 60001 600001 600001 600001 600001 600001 600001 600001 600001 600001 600001 600001 6000000000 60000000000				
	 <0.05 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	5	60.001 60.0010000000000				
	00 <0.013 <0.013 <0.05 <0.013 <0.013 <0.013 <0.05 <0.05	0.002 0.0002 0.0002 0.0002 0.0002 0.0002	5	6001 6001 600001 60001 600001 600000000				
	<0.013	0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	12	6001 600000000				
	 <0.05 <0.013 <0.013 <0.013 <0.05 <0.05 	0.0002 0.002 0.0002 0.0002 0.0002	12	40,0001 40,001 40,001 40,001 40,001 40,001 40,001 40,001 40,001				
	 <0.013 <0.013 <0.05 <0.013 	0.002 0.0002 0.0002 0.002	12	60.001 60.001 60.001 60.001 60.001 60.001		3 3 3 3 3 3 3		
	<0.013 <0.05 <0.013	0.0002 0.0002 0.002	12	 40.001 40.001 40.001 40.001 40.001 40.001 		333		
	<0.05 <0.013	:0.0002 :0.002	12	40.0001 40.001 40.001 40.001		33		
	<0.013	±0.002	12	 40.001 40.001 40.001 40.001 		8		
			12	<0.001 <0.001		0.0150	_	
	<0.013	<0.0002	<0.001	<0.001				
		-	<u>60.0</u>	<0.001	_			
	70 <0.013	<0.002				8	<0.1	
	<0.013	<0.002		<0.001	-		_	
	<0.013	<0.002		<0.001	-	<0.013 na	_	
	<0.05	<0.0002		<0.0001	-	<0.5		
	<0.013	<0.002		<0.001	-	<0.013 na		
	<0.013	<0.0002	12	<0.001		<0.013		
	<0.05	<0.0002		<0.0001	-	<0.5		_
	<0.013	<0.002		<0.001	-	<0.013 na		
	80 < 0.013	<0.0002		<0.001	-	<0.013		
	<0.013	<0.0002	1	<0.001	-	<0.013		
	70 <0.05	<0.0002		<0.0001	-	<0.5		
	<0.013	<0.002	1	<0.001		<0.013 na		_
	<0.013	<0.000Z	1	<0.001		<0.013	-	
	<0.05	<0.0002		<0.0001	-	<u>60.5</u>		_
2	60·02	<0.002	1	1000.02		c.0>		
	<u>90 <0.013</u>	<0.002		<0.001		1.1000 na		
	0.0210	<0.0002	<0.001	<0.001	-	<0.013		_
-							-	
						-		
•		_						

Q

	F	802			<0.7		1.80	1.50	1 40				_					140				=			1 50	
		an or		n c	6.23		0.76	0.61					13	16.60	18.00		300		3						0.64	ľ
	9	8 V		<1 A 1.00			3.50	0.81			0.85		 =	=			n	0.82	_		=	=	=		0.86	-
	1	111	9.00	17.5	13.2		1500.00	29.00	34 30	758.00	118.00	37 20	7 10	1 UP B	7 20 U	1002	7 10	20.90	10.00	11.10	7.60	10.30	R PO	11 70	19.50	
	5	800	2002	43.40	184		1.30	80	0.05	44	0 4D	0.0	4 60	3.60	6.50	1 20	180	0.05	0.58	0.11	0.05	0 19	0.18	0.15	0.05	5
	5	505	-	1120	64.7		306.00	234.00	269.00	215 00	1980.00	205.00	144.00	171 00	105.00	116.00	113.00	303.00	372.00	452.00	470.00	686.00	575.00	549.00	330.00	2000
1	6	31.0	2 410.0	683	125.0		359.00	13.50	14 30	351.00	4000 00	557 00	168.00	31 60	15.80	4 50	280	2.40	135.00	14 30	9.40	328.00	121.00	342.00	6.10	000
		527	4 410 0	5 840 0	1.240.0		1690.00	48.00	81.10	1660.00	2940.00	3140.00	17800.00	29400.00	5460.00	2920.00	3410.00	74.50	385.00	75.70	46.90	231.00	131.00	554.00	35.60	0000
	8	-	53	15	0.0		68.70	8.60	8.20	34.10	29.90	6.80	11.20 1		9	11.10	11.20	10.60	6.40	9.70	7.50	8 30	5.00	8.20	10,10	44 40
		78	g	240	3.82		20.10	12.30	12.70	18.10	02,98	10.20	3.70	8.10	1.8	1.00	0.97	21.00	8.10	10.50	6.20	13.30	9.60	13.60	17.60	5
	5	0 23		13.30	0.71	Η	4.50	0.20	0.20	1.80	2.60	5.10	6.70	13.00	11.80	12.90	15.20	0.20	0.71	0.22	0.21	0.89	0.27	0.32	0.21	10 00
	 	l	-				0.25	0.20	0.20	0.21	0.21	0.42						0.20	0.27	0.38	0.46	0.28	0.27	0.23	033	
					32.4		316.00	31.10	36.40	209.00	104.00	88.40	80.00 U	13.60 U	12.80 U	4.70 U	7,60 U	28.50	170.00	48.50	40.60	189.00	123.00	222.00	31.90	R 20 11
		26.70	58.00	662.00	288.00		50.70	5.30	9.60	47.70	59.00	194.00	477.00	705.00	530.00	186.00	372.00	5.20	39.90	5.80	5.80	11.80	7.80	19.20	6.40	£15 00
	8	2.40	48.30	┢			479.00	0.55	0.42	1.30	165.00	10.60	6.80	1.70	0.78	0.47	0.78	0.52	0.98	0.61	0.64	8	1.10	1.70	0.78	3 30
	Description	under winch building/stain	under winch building/stain	by power house pilings/stai	3' from painted bunkhouse		power plt oil spill	power pit oil spill	power pit oil spill	power pit oil spill	boiler ash pile	boiler ash pile						background	wind	wind	wind	wind	wind	wind	background	
	Desc	under	under	by po	3' fror		bowe	ewod	powe	powe	boiler	boiler	tails	tails	tails	tails	tails	backg	downwind	downwind	downwind	downwind	downwind	downwind	backg	tails
	media	soil	soil	soit	soil		soil	o soil	soil	soil	ash	ash	soil	soil	soil	1 soil	soil	soil	soil	soil	soil	soil	soil	soil	soil	soil
olled soil data. Units are ppm.	Location	Glacier Mine, 1' deep	Glacier Mine, 1-3" deep	Erie Mine, 1-3" deep	Jumbo Mine, 1-3" deep		pwr pint oil spillfink 4(3)	pwr pint oil spil/down slop soil	Weston pwr pint oil spill/down slop soil	Weston pwr płt oil spill/tank 4(2)	Weston(i) ash/W side	Weston(i) ash/E side	Weston(i) S of mil/ 0-1' deep	Weston(i) near bidg 24/0-1'	Weston(i) near bidg24/ 4-5' deep	Weston(i) roadcut below i&f plant/0-1 soil	Weston(i) roadcut belowi&//5		dairy. 0-1"	dairy, 1-6"	dairy, 6-12"	bldg 29a, 0-1"	bldg 29a, 1-6"	bldg 28a, 6-12"		Weston I drum dumb
biled soil	Sampler Location		NPS		NPS			Weston	Weston	Weston	Weston(i)	Weston(i)	Weston(i)	Weston(i)	Weston(i)	Weston(i)	Weston(i)		Т	T	Т	- 1			Weston	Weston
	Date				07/85								1													07/94
Appendix 2b. Oil				KP-03		T	T					ss005-0	ss006-0010 (ss007-0010	ss007-0040 07/94		ଛ	ss009-0	55010-0001 01/94	SS010-0005 07/84	SS010-0010 07/94	SS011-0001 07/94	SS011-0005 07/94	90		ss013-0 (

-		Т	Т	Т	Т	T	Т	Т	T	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	T	Т	Т	Т	Т
Clorinated	cmpdas	80.07	80		8.7																					
Benzo(a)an Benzo(b)fiu Benzo(k)fiu Ciorinated	oranuane						CUULS						3					120	3						360	
Benzo(b)flu							67000	1000	54000	52000	2200	510	222					330	3						360	
Benzo(a)an							67000		00010	52000	030		3					330	8						360	
Fluoranthe	2						67000	3100	800	52000	ARD	APC -	222					330	3						380	
Chrysene							57000	32000	12000	0022	1800	1100	2					330	8						360	
							A700	AADOD				000						1055							360	
Phenanthre Pyrene							1300	10001	51000	11000	1201	810	2					330							360	
toluiene							ŧ	0	Ę	9								10							11	
xytene							F	-	ę	10								9							F	
1,1,2,2-tetra xylene chloroetha	ne						Ŧ	•	•	9								10							11	
	RRO	8	35.000	14.700																						
		17,000	118.000		L																					
TotHCO Diesel	66	13,500	163,000	16,900																						
	units	mg/kg dry	ma/kg dry 163,000	mg/kg dry														ug/kg								
	PCB's	<0.025	<0.489	<.290																						
	Pb/tcip				0.107																					
	Zn	10.7	649.0	98.9	21.7		185.00	35.70	36.50		608.00	353.00	21.40	103.00	3.30	6.90	3.70	35.90				225.00		187.00		128.00
	>				-		1800.00	35.60	43.80	1010.00	84.00	42.70	6.80	20.20		6.70	6.00	38.70	19.50	27.50	21.50	27.70	23.90	29.60	23.40	8.40
	Q	KP-01	KP-02	KP-03	KP-05		ss001-0	ss002-0	ss002-1	ss003-0	ss004-0	ss005-0	ss006-0010	ss007-0010	ss007-0040	ss008-0010	ss008-0050	ss009-0	SS010-0001	SS010-0005	SS010-0010	SS011-0001	SS011-0005	SS011-0010	ss012-0	ss013-0

(i)no pesticides or PCB's detected

Appendix 2c. Oil and grease data. Units are ppm.

L

		Г	1	Т	T	Т	Т	Т	Т-	T	1	T	Г	1	Т	1	T-	<u> </u>	1	T-			Т	T-	Т	1	<u> </u>	Γ-	1	
	RRO																				90,200									
DRO/	Diesel																				209,000									
TPH/	TotHCOs Diese																				290,000									
est Vol 1	-											293	26655	235	9	4	4	160	97									21	25	25
Flash	Ъ	<u>+160</u>	>160	>160			>160	×160	>160	>160		>160	>160	>160	>160	>160	>160	>160	>160			150	>160	>160	>160	>160		>160	>160	>160
PCB's		₹	V	⊽			V	v		v		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10	1.0		<3.882	V	- -		₽	<u>۲</u>		<1.0	<1.0	<1.0
	S		18	2000 <1		T	130		105 <1			119				T							368 <1	139 <1		315 <1			Ē	Ĥ
	Halogens	10.2 <100						<100		8			<100 <	9.7 <100	<100 <100	<100 <100	<100 <100	₹ 100	<100			17 <100	2		<100 ≤100			2.1 <100	4.5 <100	8.6 <100
	Po	10.2	9.1	4		Γ	13.5	v	v	₹ V		9.6	9.7	9.7	۲	v	¥	÷	۲			1	22.8	v	₹ V	-		2.1	4.5	8.6
	ს ს	¥	v	v		1	-	v	T	Ţ		⊽	1.2	 Ţ	v	Ť	v	Ţ	v			T		5	v	2		₹	<u>د</u> ا	⊽
	5		1.3	<0.5			<0.5	1		-		<. 5. 5.	<.5 5			۰.5 ۲	<.5 .5	<.5 •	<.5 .5				10	<0.5	1.9	2.6		۰ 5	<.5	
	As	ŗ	v	3.3			4	v	Γ	v		4	\$ 5	0.8 <.5	s.s	\$ \$	<.5 <	ŝ	۰. ۲			11 4 <0 5	9.8		v	₹ V		2.1 -	11.7 -	2.4 <.5
	Description						transformer	Iubricating	Itransf/circ. brkr	transf/circ. brkr		fuel	leul	fuet	transformer	sump	switchgear	transformer	transformer		floor boards/power house	hlack	black	yellow	yellow	black			black	yellow
:	media	oil	oil	oll	oil	lio	lio	ol	oils	oils		oil/water	oil	oil	oil	oil	oil	oil	oil		oil	drease	grease	grease	grease	grease		grease/water	grease	grease
•	Location	in tank 4(2)	in tank 4(1)	spill in leach plant	tank 4(1)	tank 4(2)	Angle Station	plat-o and james tables	mill bldg etc	mill bidg etc		power house	fuel tank	fuel tank	nill	Kay&Miller mill, James Table	Kay&Miller Leaching plant	Kay&Miller Transformer house	Junction Station		Jumbo Mine, 0-1" deep	tram term bonz mine	mill bldgs	mill bldgs	milli bidgs	mill bldgs		mill	mill	mil
	Sampler	EMCON	EMCON			EMCON	EMCON	EMCON	EMCON	EMCON		Kay&Miller	Kay&Miller fuel tank	Kay&Miller fuel tank	Kay&Miller	Kay&Miller	Kay&Miller	Kay&Miller	Kay&Miller		SdN	EMCON	EMCON			EMCON		Kay&Miller mill	1990 Kay&Miller mill	Kay&Miller
_	Date	07/91	07/91	08/91	05/92	05/92	06/92		08/91	08/91						- 1		_ I	1990	1	07/95	07/91	08/91	08/91	08/91	08/91	- 1	1990	1990	1990
	Τ		Τ			BF5			ő	ğ			- 1		_	- 1	_	Т	KW20		KP-06	0 0 0	CG2 (CG5	- 1	- 1		KM38 1

Î

Ű.

5

Ĵ

Ĵ

Appendix 2d. Oiled soil data. Units are ppm.

		Location	media	Description	PCB's	TPH/ DRO/ TotHCOs Dlesel	DRO/ Diesel	Benzene	Toluene	Ethidhensene		
		W of fuel tank 4(2)	soil	vis oil stain		2.970		<0.05			A DE	u-xyiene
-		W of bldg 38	soil	no oil stain		3,600		20.2	20.0	00.07	50.01	
		W of bidg 38	soil	no oil stain		170		<0.05	40 05 20 05	<0.05	<0.05	
		W of fuel tank 4(2)	soil	oil stain		61.000	30.000		60.02	<0.05	20 02 20 05	
		W of sewer pipe	soil	oil stain		006'6				2.2	20.2-	
Т		W of bldg 38	soil	oils stain		2,600		<0.05	<0.05	<0.05	<0.05	
	_	S of bidg 38	soil	oil stain		110.000				2002	NNN	
		W of power house	soil	asphalt stain		490		<0.05	<0.05	<0.05	40 DS	
- 1	· · •	W of power house	soit	oil saturated	 	28.000		2012	20.2	20.0-	50.02	
- T	- 1	W of oil pools	soil	no oil stain		97						
T		W of fuel tank 4(3)	soil	no oil stain		118						
		W of fuel tank 4(3)	soil	no oil stain		97		<0.05	<0.05	20.05		
		W of oil pools	soil	oil sludge		620.000	270,000	<0.05	50.02	50.00	50.02	
- 1		Dup of ph10	soil	dup of ph10	-	6	T	22.2	22.2-	00.07	60'D-	
	1	Bonanza mine, transf	soil	oil stain	<u>د</u>	37,200						
	-	Nr fuel tank 4(1)	soll	oil stain		28,000						
- 1	- T	Nr fuel tank 4(1)	soil	no stain		3.500						
- [T	Nr fuel tank 4(1)	soil	oil stain		120.000	54,000	<0.05	<0.05	<0.05	<0.05	
1		Utilidor	soil	oil stain		320,000	250,000	<0.05	<0.05	<0.05	20.02	
- 1		Utilidor	soil	no stain		240			2	00.0-		
		Utilidor	soil	oil stain		37,000						
		Utilidor	soil	oil stain		110.000						
		Nr bldg 13c	soil	no stain		940						
1		N of mill bidg	soil	oll stain		100,000						
		N of mill bldg	soil	oil stain		55,000						
	-	N of mill bldg	solt	oil stain		500						
PH33 06/92	92 EMCON	N of mill bldg	soil	oil stain		500						
	-		-									
		Kay&Miller(j) Bldg #4. oil tank	soil	soaked in oil leak		121,000		<0.05	0.1	0.292	0.421	0.451
	Т		soil	soaked in oil leak		52,900	-	0.16				101
KM19 1990	Τ	Bidg#46	soil	1" depth	<0.02	115					2	
KM20 1990	-	Adj. bldg #24	soil	6" depth	<0.02	15						
KM49 1990	90 Kay&Miller	adi. bldg#37	soil		۲	454						
i nan nah	Chlorohomoton 4	A also ron Oblarateurana 1 4 Diatizzati zue 12 21 21					Í					

Appendix 2e. Miscellaneous Samples

ι

	Date Sampler	Location	media	Description	Į	cond units		sb	As	Ba	8	ß	5	5 C	4	Ha	Ż	ŝ	P	F
1			ash	tcip metals	—	Ē	1/Bm	ľ	<0.1	0.900		0.100 <0.01	<u>60.01</u>		72.4	72.40 <0.001		ŝ	€0.09	
രി	09/91 EMCON		ash	total metals			mg/kg		145.000	170.000	ŀ	₽	107.00		18900.00		2.8	v	59.000	
8	09/91 EMCON		ash	tcip metals			ng/l	ľ	<0.1	1.100	H	0.100 <0.01	<0.01		71.3	100.001		¢0.1	<0.01	
3	09/91 EMCON		ash	total metals		-	mg/kg	-	77.000	222.000	F	100.000	00.000 113.00		8650.0	8650.00 3	3.5	£	403.000	
3	09/91 EMCON		ash	tclp metals			hgm	V	<0.1	1.000	F	0.120 <0.01	\$0.01		45.80	100.001		ê.	0.010	
X.	1990 Kay&Miller	Kay&Miller W of Bldg #9	ash	ep tox	7.10	-	уðш	Ý	<0.01 <	6.6 8	ŕ	•	<0.05		<0.05	<0.002		<u>60.01</u>	ê.	
							-													
No.	06/92 EMCON(k) Leach plant	Leach plant	ammonia		9.32	1300		-	0.608	0.041	ľ	<u>\$0.003</u>	<u><0.05</u>		0.0	0.07 <0.0005	9		<u>60.01</u>	
0	06/92 EMCON(I) Leach plant	Leach plant	ammonia		9.50	1500			0.243	0.030	ľ	\$0.003	<u><0.05</u>		0.0	0.02 <0.0005	9		<0.01	
								╞									-			
12	DU001-0 07/94 weston	McCarthy Hotel	Dust wipe			Ĩ	ug/10cm u	-	0.912			-	P	7.52	6.09	8	2	3	0.026	5
2	U002-0 07/94 weston	McCarthy Airport	Dust wipe			3	ug/10cm u	-	3.110		r 1	_	P	16	3 24.80	9	P	3	0.042 u	Б
2	U003-0 07/94 weston	refrig plant	Dust wipe			3	ug/10cm u		8.580		5	0.394 nd	P	247		Q	5	5	0.088 u	3
27	DU004-0 07/94 weston	cottage 39b	Dust wipe			Ĵ	ug/10cm u		1.330		- -	-	P	18.2	97.40	Q	2	3	0.032	5
S	DU005-0 07/94 weston	cottage 13f	Dust wipe))	ug/10cm u	Η	1.970			-	P	21.8	87.7 8	8	5	3	0.050 u	3
S	DU006-0 07/94 weston	cottage 24	Dust wipe			Ő	ug/10cm u		0.100		5	0.097 hd	P	5	18.20	8	2	э	0.015	3
15	DU007-0 07/94 weston	Kennicott lodge	Dust wipe			3	ug/10cm u	H	0.240		Ľ,		P	2.58		8	P	э	0.020 u	5
18	07/81 FMCON	N of nower house	firahrick	danarat firahrick		1	mafka				+		ď				+	_		
18	T	N of power house	firebrick	laclede-King fb	Ī		mg/kg	-					2	no hexa	no hexavalent Cr was detected at <0.05 MRI	vas detec	teqat	0.05 MR		
s	08/01 EMCON	N of power house	firebrick	Evens-Howard		*	ma/ka	-			1		7	no hexa	2 no hexavatent Cr was detected at <0.05 MRI	vas detec	ted at	0.05 MR		
2	07/12/ NPS	Jumbo Mine	firebrick			3	ma/ka	╞┼			H		<0.92							
18	07/05 NPS	Jumbo Mine	insulation	fiber on nines under building	i P				┢		╈			10, 200	Onk Chrocolite 10% other	Ak other	+	_		
10	ammonia was 1	(k) ammonia was 1676 mg/l, airspace >700 ppm	E					-			\vdash						┝			
	Immonia was 1	(I) ammonia was 1069 mg/l, airspace >400 ppm	F					-												
17	Dan TCI D for	(m) Dan Tri D for An An De Col Cr Un Dh and Cal Albini	ad Co. Albu	are ND event for some Ba All Ba ware 20 4 BCBA limit is 100	Bo A	I Do week		DA IN	it in 100		ŀ									

Č,

ľ

Į

Appendix 2f. Tails and Ore Samples

\$0	۲.	ŝĶ	ŝ K	3 K	ŝ ć	35	240	ŝĶ	3	G R	<u></u>	ç i	<u>8</u> 8	5	g 4	35	25	22	52 52	25	22	25	25	<25	25							54		7/7		965										
5		ľ		Ť	Ť	†	ľ		ľ	Ť	+	Ť	+	<u>, </u>	Ť		ľ		ľ	ľ	ľ			ľ	Ť	┥			+-	+			+		╈	1		150.00	48.00	64.00	65.00	9.50	74.00	280.00	14.14	ł
	Γ	ĺ		t	$\frac{1}{1}$	ł	T	┢	t		Ť	Ť		t	T			ſ					-			+	Ť	┢	t					1		+-				00.06	360.00		8	╧	╎	ł
- -	Γ		╞	┼		+	╞	-	T				╋	+	╎	$\left \right $		┢	-							+	-	-	+					+			+-+		0.25 2	0.10	0.10	0.45 <	0.20	0.75 <4	-	ļ
	5	2	1			rua	ÌŦ	÷	44	2 ç			4 4	2 9	÷	<u></u>	c.	33	ଛ	118	31	20	8	6	2	2	8	•	a	<0.05		44	500	5 50		8	Π	•		-	+	-+;	æ la	000	3	200
V	Γ	1	-		-	v		+-	╞	+			╞	-				-	-	2	-	9		2					-	5		80	ſ	۲		3	$\left \right $	0.10 <1.2	0:30 0:30	0.30	0.20 < 0.08	0.10	8		$\frac{1}{1}$	I
ہ ت												Ŧ	1				V	ŀ	V				4		<u> </u>			1	ľ	V		Т	V.	Ĭ	/ 1				45		2		8	4 4 4 4		;
	2.8	71	88	515	5.5	4.4	115	75	2.4	200	200	0		15.2	200	141	3.6	8.3	2.2	51.8	30.9	15.4	7.3	27.3	6.7	21	0	00	7.4	<0.0002		155	100.02	20.0	2000	31.6		0.17	0.11	0.13	8	1	2 2	802		1000
Mn Hg		╞	F	╞		$\left \right $	$\left[\right]$	-	┢		ł	╀	╉	╞	$\left \right $		-	Η							┥	+	+		┞	Ş	+		₹		10	-		8	850	6 0	20	VI.	1	26		ľ
	₽ R	49	21	8	8	27	27	41	3	5	8	3	10	ŝ	2	58	Ş,	28	8	251	336	94	37	25	Re ¹	8	84	38	2	<0.05		211	0.02	38	38	121		1	8	1		8	╈	+		30 01
	ľ		-	ľ	ľ		$\left \right $	-	┢	T	ľ		╞			$\left \right $	v		v			-		+	V	+				V	_		<u>-</u>	Ī	V			120 <8	62	8		4 9	200	10000 <8	-	
วิ วิ	-						-		-		-	╞							_			_	_		+	+	+	-			+	-	-		-			8	38	51	5 3	2				
	3	L	ŝ	8	₽	<u>2</u>	Ŷ	ç	0		2	1	4		ç	₩	2		19	~	11	8	14	0	2	25	7 8		<2	<0.05	-	0		001	\$0.01	3			5		8	, 1		20		20
8	7	27	:	8	6	14 <2	19	28	8	P	5	P	2	8	8	48	12	5	20	8	8	8	-	2	200	25	5	70 <2	198	0.18	i	4	1.	000	0.01	3		<u>60.75</u>	<u>6.75</u>	9 8			200	28.2	_	1007
Ŝ																																	T					8		220	5.30 0.41	242	10.01	29:00		
8	13	12	8	8	8	14	23	14	12	13	8	3	51	8	Z	28	2	8	3	8	8	8	74	2	2	0 5	33	6	2	2			118		-	122	-	2			2 2	21	2 N	7 22		
ő											ŀ		1	1			1			- 1	- 1	- 1	- 1				557				7030 464	1.1	3740 1	I٧	0	4280 1;	+	-	- 1		-			(40 1
8	_						_						-		1	-		-	-	e e	-	-		m 		ē			_		ŕ	, L C		ő	¢0.1	4		0 10					7800	0 640.00		\$0
g		-	-	-	_		_		_				-			_	-		-	+	+	+	+	+	╀	-				-	+	-	┞									10.4	e u	1.60		
units	mqq	mdd	mdd	mda	mdd	maa	maa	mqq	mqq	mdd	ppm	maa	maa	mqq	ppm	mqq	Edd	mdd	шda	mqq	maa	шdd	mad	mdd	LIAC		maa	DDM	Шdd	mqq	-	a und	maa	maa	maa	mqq		Edd		E da	Eldd	muq	mag	mad		maa
Description	2-10"	2-12"	2-14"	2-10"	2-10"	2.8"	2-10"	2-16"	2-12"	2-18"	dup of TPS10	4-12"	2.6"	0.8"	2-8"	2-8"	2-7	2.6"	2.92		2-6	aup of ISP20	2-0-	Z-10	2.10"	21.4			dup of TPS29	ep tox	total metals	TCLP, method 1312	total metals	TCLP, method 1312	TCLP, method 1312	total metals	Nick Desett/Destantin	INCK DasaryDackgroun	Nick BasarvBackgroun	NICK BASAIVBACKGroun	tert dilarts basalybackgroun ppm	sittstone	mineralized	mineralized		TCLP, method 1312
media	tails	tails	tails	tails	tails	tails	tails	tails	tails	tails	tails	tails	tails	tails	tails	tails	tais	talls			tails	Gal18	1115	-	taile	tails	tils	tails	tails	tails	nock	2 S	rock	rock	rock	Sock	Anck	5	10CK	122	Lock	۲ ور	ock.	Sck		
Location		0	4	4	4	4	4	4	4	#	7	4	1	4	1	4	# . 	#		a .	2	3		4	EMCON(m W of Leach plt/discha aufl ta	EMCON(m W of leach pl/by Natl Crk Ita	EMCON(m under flume S side Nati Cr tails	8		Kay&Miller W of bidg #19 ta	dorr Alot pint			bin/leach plant ro		dorr flot plnt	Ronanza Mine, hel		Tails mill	t millfleach nlant	-					mother lode
_	EMCUNIM	EMCONUM	EMCON(m	EMCON(m)	EMCON(m	EMCONUM	EMCONT	EMCON	EMCONT	EMCON(m	EMCONUM	EMCON(m	EMICON	EMCON(m	EMCON(m	EMCON(m)	EMCONT		EMCONT				EMCONIT	FMCON	EMCON(m)	EMCON(m \	EMCON(m L	EMCON(m	EMCON(m)	Kay&Miller	EMCON	EMCON	П	EMCON	EMCON	EMCON	eppinder F	Τ	Т	Т	Т	eppinger			T	06/92 [EMCON] n
Date		181/0		10/101	18/10				18//0	01/191	07/81	07/01	07/81	07/91	16//0	18/10	IRI/D		10/20	10170	10/101	07/01	07/01	07/01	05/82	05/92	05/92	05/92	05/92	DAAL	06/02	06/92	06/92	06/92	06/92	06/92	KE007R 08/94				1		08/94	08/94		06/92
1D TDEA1		20541	BSdl	Hosal	8		10541	BOSAL	800	IPS10	IPS24	TPS11	TPS12	IPS13	IPS14	11210	11210	TDC4B	TPS40		TDCJE	TDC01	TDC22	TPS23	326	527	TPS28	230	02541	5	010					800	07R	Laon	0082	KE010R1 08/94	1181	KE011R2	KE013R			0001

Samples
e Õ
and
Tails
×
Appendix

Date Sampler Lecation media Description units Sha Be Ca Cu Pb Mn Ma Sha Ma	<u> </u>	Τ		444		Т	Ş	8	8	Т	SS BS		Т	8		Τ	T	Т	ľ	Г	Т	r	Γ
media Description units Sb As Ba Ba Col Cu Pb M Ha NI Sa As Ti V Zi ore total metals ppm -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.1 -0.1 -0.1 -0.1 -0.0	3	5											ŝ	>1000								_	
media Description units Sb As Ba Ba Ca Ca Cu Pb Mn Sa Au T1 V ore total metals ppm -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.01 -0.	5	1				:											2				01		
media Description units Sb As Ba Description Pin Min Min Se Ag Ti ore total meetis ppm -0(1 -0(1 -0(1)																		Γ		Ī			
media Description units Sb As Ba Cal Cr Co Cu Pb Mn Hg Ni Se Ag ore total metals ppm -0.1 -0.1 -0.01 -0.01 -0.05 -0.06 -1 -0.00 -1 -0.01 -1 -0.00 -1 -0.00 -1 -0.00 -1 -0.01 -1 -0.01 -1 -0.00 -1 -0.01 -0.01 -0.01				Î				T	ſ	Ì				-		ľ	T	Ī	ļ	Ì	Ì	ſ	
media Description units Sb As Ba Ba Cd Cr Co Cu Pb Mn Hg Ni Se ore TGLP, method 1312 ppm -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.0 <td>4</td> <td>00</td> <td></td> <td>54</td> <td>001</td> <td>001</td> <td>22</td> <td>108</td> <td>100</td> <td>004</td> <td>197</td> <td>00</td> <td>1</td> <td>245</td> <td>0.01</td> <td></td> <td></td> <td></td> <td>ĺ</td> <td></td> <td></td> <td>6</td> <td></td>	4	00		54	001	001	22	108	100	004	197	00	1	245	0.01				ĺ			6	
media Description units Sb As Ba Cal Cr Co Cu Pb Mn Hg Ni ore fCLP, method 1312 ppm <0.1		Τ	٩	6	ľ		ſ		1	Γ	a	Τ	Γ						ļ	ſ		Г	
media Description units Sb As Ba Ca Cr Co Cu Pb Mn Hg ore 1GLP, method 1312 ppm -0.1 -0.1 -0.01 -0.01 -0.06 -0.001 ore total metals ppm -3130 98 -23 -2 140 -335 ore total metals ppm -0.1 -0.1 -0.01 -0.05 -0.001 ore total metals ppm -0.1 -0.1 -0.1 -0.01 -0.05 -0.001 ore total metals ppm -0.1 -0.1 -0.01 -0.05 -0.001 ore total metals ppm -0.1 -0.1 -0.01 -0.05 -0.001 ore total metals ppm -0.1 -0.1 -0.01 -0.05 -0.001 ore total metals ppm -0.1 -0.1 -0.01 -0.05 -0.001 ore total		Γ	ľ	ſ					ſ	ľ	T				ľ	ſ	0.18	Pu	2	2	12	ſ	
media Description units Sb As Ba Ba Cd Cr Co Cu Pb Mn ore TCLP method 1312 ppm -0.1 -0.1 -0.1 -0.01 -0.01 -0.01 -0.01 -0.05 T8 ore total metals ppm -3130 98 -23 -5 T6 705 ore total metals ppm -0.1 -0.1 -0.01 -0.01 -0.05 -1400 ore total metals ppm -0.1 -0.1 -0.01 -0.01 -0.05	5	1000	40.6	33.5	1000	600	317	6.99	1000	1000	131	1000	5.1		0.00							000	
media Description units Sb As Ba Ba Cd Cr Co Cu Pb ore troll TCLP method 1312 ppm 3130 96 23 5 140 76 ore total metals ppm 3130 96 23 5 140 76 ore total metals ppm 3130 96 23 2 70 705 ore total metals ppm 401 401 401 4001 4005 705 ore total metals ppm 3080 124 32 3 2 255 561 705 ore total metals ppm 3080 124 32 3 2 255 261 705 ore total metals ppm 501 401 601 601 705 705 ore total metals ppm 57 23 32		Γ	ŀ		ľ	ľ			ľ	ľ		ľ		148 <		\mid	0.54					ľ	
media Description units Sb As Ba Ba Cd Cr Co Cu ore TCLP, method 1312 ppm -0.1 -0.1 -0.1 -0.01			78	140	800	900	8	255	8	900	173	900	15	8	800				Ē		Ē	900	
media Description units Sb As Ba Ba Ca Ca <thca< th=""> Ca</thca<>									ľ	ľ			ŀ	73000		\mid			8.7	48.9	25.2		
media Description units Sb As Ba Ba Ca Cd Ca Ca <thca< th=""> Ca</thca<>	0 0		\vdash	-	╞	$\left \right $		╞		-			┝			┝	Pu	-	┞	┝		┢	Η
media Description units Sb As Ba Ba Ca Cd ore TCLP, method 1312 ppm <0.1				ç	\$0.0¥	000	e		000	\$0.01	13	\$0.01	ŝ	ŝ	<u>6.01</u>							\$0 \$0	
media Description units Sb As Ba Ba C. ore TCLP, method 1312 ppm <0.1		5	23	23	<0.01	<0.01	32	35	1		1		13	2								1.8	
media Description units Sb As Ba ore TCLP, method 1312 ppm <0.1	ő																0.34	21.5	33.1	22	22.8		
Date Sampler Location media Description units Sb As Ba 06692 EMCON mill bidg ore TCLP method 1312 ppm <0.1	Be		8	4			4	4	-		0	Ļ	8									-	t is 100
Date Sampler Lecation media Description units Sb As 06692 EMCON mill bldg ore TCLP, method 1312 ppm <0.1	8	\$0.1		L.	ô	<u>6</u>			o	ê.		Å.		₽ 12	ô.	_		_	5		4	6 0.2	RA limi
Date Sampler Location media Description units Sb 06692 EMCON mill bidg ore TCLP method 1312 ppm bpm bbc bpm bbc bpm	As	<u>6</u> 1	313	246	ê.	6 F	ğ	657	<u>6</u> .1	<0.1	1130	6 F	35		<0.1		Pu	P	6.0	2	Ö	1.0	<0.4, RC
Date Sampler Location media Description units 0695 EMCON mill bidg ore TCLP, method 1312 pem 06962 EMCON mill bidg ore total metals pem 06962 EMCON mill bidg ore total metals pem 06962 EMCON harmock Jig ore total metals pem 06962 EMCON don thickener ore total metals pem 06962 EMCON binmill bidg ore total metals pem 06962 E	å																					_	- Mere
Date Sampler Location media Description 06692 EMCON mill bidg ore TCLP, method 1312 06692 EMCON mill bidg ore total metals 06692 EMCON mill bidg ore total metals 06692 EMCON harcock Jig ore total metals 06692 EMCON harcock Jig ore total metals 06692 EMCON birorhibidg ore total metals	untts	mqq	mqq	mqq	mqa	mqa	maa	ppm	mqa	mqo	maa	mqo	mdo	mdo	bm		K6 by wt	6 by wt	6 by wt	6 by wt	6 by wt	Ngr	la. All Ba
Date Sampler Location media Description 06692 EMCON mill bidg ore total methals 06692 EMCON mill bidg ore total methals 06692 EMCON mill bidg ore total methals 06692 EMCON harroxck Jig ore total methals 06692 EMCON harroxck Jig ore total methals 06692 EMCON harroxck Jig ore total methals 06892 EMCON bir/mill bidg ore total methals														. 1	12 1			6	6	6	6	1	some B
Date Sampler Lecation media Description 0695 EMCON mill bidg ore total meta 0695 EMCON mill bidg ore total meta 0695 EMCON mill bidg ore total meta 06952 EMCON hancock Jig ore total meta 06952 EMCON hancock Jig ore total meta 06952 EMCON hancock Jig ore total meta 06952 EMCON bidmill bidg ore total meta 06952 EMCON bin/mill bidg ore total meta 06952	5	othod 13	ls.	ls.	othod 13	othod 13	ls	ls.	thod 13	thod 13	Is	thod 13	ls	s	thod 13								cept for
Date Sampler Lecation media D. 0692 EMCON mill bidg ore to 0692 EMCON mill bidg ore to 0692 EMCON hmill bidg ore to 0692 EMCON harcock Jig ore to 0692 EMCON harcock Jig ore to 0692 EMCON biorntilibidg ore to 0692 EMCON biorntilibidg ore to to 0692 EMCON bin/mill bidg ore to	escripti	CLP, me	tal mets	tal mete	CLP, me	CLP, me	bal meta	tal meta	CLP, me	CLP, me	tal meta	CLP, me	tal meta	al meta	LP. me		agnetite					tox	ND ex
Date Sampler Location mil bidg ore 0692 EMCON mil bidg ore 0692 EMCON mil bidg ore 0692 EMCON hancock Jig ore 0692 EMCON bin/mil bidg ore 06932 EMCON bin/mil bidg ore 06932 EMCON bin/mil b		T	8	Q	Ĕ	Ĕ	to to	2	Τc	ž	с	Ĭ	đ	\$	¥		ε			-		ep	Allwer
Date Sampler Lecation 0692 EMCON mill bidg 0692 EMCON mill bidg 0692 EMCON hencock Jig 0692 EMCON hencock Jig 0692 EMCON hencock Jig 0692 EMCON hencock Jig 0692 EMCON hencek 0692 EMCON hencek 0692 EMCON hencek 0692 EMCON hinrmill bidg 0692 EMCON hinrmill bidg 0692 EMCON hinrifeerb bidg 0692 EMCON binrifeerb bidg 0692 EMCON binrifeerb pidt 0692 EMCON binri	med	ore	5	ore	ore	ore	ore	Đ	ore	ore	ore	OLO	Ore	ele O	Ð	_	ore	ore	ore	ore	ore	ore	and Se.
Date Sampler Location 0692 EMCON mill bidg 0692 EMCON mill bidg 0692 EMCON mill bidg 0692 EMCON mill bidg 0692 EMCON hancock Jig 0692 EMCON don't hickener 0692 EMCON don't hickener 0692 EMCON bin/mill bidg 0692 EMCON bin/mill bidg 0692 EMCON bin/mill bidg 0692 EMCON bin/mill bidg 0692 EMCON bin/methil bidg 0692 EMCON bin/mill bidg 0692 EMCON bin/methil bidg 0693 EMCON bin/methil bidg 06947 EMCON <th></th> <th>bins</th> <th></th> <th>Ha, Pb</th>																					bins		Ha, Pb
Date Sampler Location 0692 EMCON mill bidg 0692 EMCON mill bidg 0692 EMCON mmobil 0692 EMCON mmobil 0692 EMCON hmmobil 0692 EMCON phr/methils 0892 EMCON phr/methils 0892 Kav&Miller leach pint 0892 Kav&Miller hmm phr/methil 0892 Kav&Miller hmm phr/methil 0890 Kav&Miller hmm phr 199				ē	<u>e</u>	ner	ner	9	ģ	ģ	g	olant	olant	ne talus	te talus				tfall pipe	re bins	gh-grd		<u>0</u> ,0,
Date Sampler Lo 06952 EMCON min 06962 EMCON main 06962 EMCON main 06962 EMCON main 06962 EMCON main 06962 EMCON do 06962 EMCON do 06962 EMCON do 06962 EMCON do 06972 EMCON do 08972 EMCON do 08972 EMCON do 08972 Kav&Miller do 08973 Kav&Miller do 08974 Kav&Miller do 08975 Kav&Miller	cation	Il bidg	ll bidg	ncock J	ncock J	rr thicke	rr thicke	/mill blc	/mill blo	<u>/mill blo</u>	/mill bld	/leach p	/leach p	cier mir	cier mir		ch plnt	8	tt pit out	bidg of	i bidg hi	₿ £	\s, Ba, (
Date Same Date Same 06/92 EMC:0 06/95 Kav&M:M 1990 Kav&M:M 071 EMC:0			- 1	1			Γ	Τ									liller lea	iller tail	iller flot	iller mil	iller Mil	'iller Bla	for Ag, A
Date 06/92 00 00 00 000 00 00000000000000000000	Samp	EMCO	EMCO	EMCO	EMCO	EMCO	EMCO	EMCO	EMCO	EMCO	EMCO	EMCO	EMCO	EMCO	EMCO		Kay&M	Kay&M	Kay&M	Kay&M	Kay&M	Kay&M	IN TCLP
	Date	06/92	06/92	06/92	66,62	06/92	06/92	06/92	06/92	06/92	06/92	06/92	06/92	06/92	06/92		1990	1990	1980	1980	1990	8	1 (m) R
DOCOM DOCOM	٥	800	200	ŝ	SCS	200	200	SS	ß	800	80	2002	202	5	5		(MO4	(MOB	(M07	80W	(M10	(M38	

Appendix C-5 – Data from Hart Crowser. 2002. Limited Hazardous Materials Survey, Former Kennecott Mining Town, Kennecott, Alaska.

Table 1 - Lead in Paint Measurements

Sample ID	Site	Floor	Room	Structure	Substrate	Paint Condition	Color	Lead in mg/cm ^{2 (a)}
L23	West Bunkhouse	3	Hall-1	Wall	Wood	Fair	Brown	5.1
L24	West Bunkhouse	3	Room-19	Window Stool	Wood	Fair	White	5.1
L25	West Bunkhouse	2	Hall-2	Wall	Wood	Fair	White	5.1
L26	West Bunkhouse	2	Room-10	Ceiling	Wood	Fair	White	5.1
L27	West Bunkhouse	2	Stairwell-3	Wall Baseboard	Wood	Fair	Gray	1.01
L28	West Bunkhouse	1	Entry	Wall	Wood	Fair	Brown	28.42
L29	West Bunkhouse	1	Entry	Door Casing	Wood	Fair	White	2.33
L30	West Bunkhouse	В	Basement	Wall	Wood	Fair	White	5.1
L31	West Bunkhouse	В	Bath	Wall (Stall)	Wood	Poor	White	5.1
L32	West Bunkhouse	В	Basement	Floor	Wood	Not Painted		0.07
L33	West Bunkhouse	1	Outside	Ext Siding	Wood	Poor	Red	0.8
L34	West Bunkhouse	1	Outside	Ext Siding	Wood	Poor	Red	0.87
L64	Store and Warehouse	Ext	Outside	Wall	Wood	Poor	Red	0.05
L65	Store and Warehouse	Ext	Outside	Wall	Wood	Poor	Red	0.21
L80	Store and Warehouse	1	Retail	Door Casing	Wood	Good	Brown	0.02
L81	Store and Warehouse	1	Retail	Wall	Wood	Cracked	White	5.1
L82	Store and Warehouse	1	Retail	Ceiling	Wood	Peeling	White	5.1
L83	Store and Warehouse	1	Retail	Cabinet Shelf	Wood	Good	White	5.1
L84	Store and Warehouse	1	Office	Wall	Wood	Good	Green	5.1
L85	Store and Warehouse	1	Office	Wall	Other	Peeling	White	25.42
L95	Store and Warehouse	В	Pump Storage	Door	Wood	Cracked	White	5.1
L96	Store and Warehouse	В	Steward's Office	Wall	Other	Peeling	Yellow	5.1
L100	Old School	1	Main	Wall	Wood	Chalking	White	30.64
L101	Old School	1	Cloak Room	Door	Wood	Good	White	5.1
L102	Old School	Ext	Outside	Door	Wood	Good	White	5.1
L103	Old School	Ext	Outside	Ext Siding	Wood	Good	Red	5.1
L104	Old School	Ext	Outside	Window Sill	Wood	Cracked	White	2.38
L123	Leaching Plant	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.03
L124	Leaching Plant	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.09
L125	Leaching Plant	Ext	Outside	Window Sill	Wood	Peeling	White	24.42
L126	Leaching Plant	Ext	Outside	Door	Wood	Peeling	Red	0.09
L127	Leaching Plant	Ext	Outside	Wall	Wood	Peeling	Red	0.03
L128	Leaching Plant	Ext	Outside	Wall	Wood	Peeling	Red	0.07
L129	Leaching Plant	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.41

Table 1 - Lead in Paint Measurements

Sample ID	Site	Floor	Room	Structure	Substrate	Paint Condition	Color	Lead in mg/cm ^{2 (a)}
L151	Machine Shop	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.14
L152	Machine Shop	Ext	Outside	Door	Wood	Peeling	Red	0.05
L153	Machine Shop	Ext	Outside	Window Sash	Wood	Peeling	White	26.27
L154	Machine Shop	Ext	Outside	Door Jamb	Wood	Peeling	White	38.04
L155	Machine Shop	Ext	Outside	Ext Siding	Wood	Peeling	Red	0
L156	Machine Shop	Ext	Outside	Door	Wood	Peeling	Red	0.02
L161	Machine Shop	Ext	Porch-1	Porch Trim (upper)	Wood	Peeling	White	0.01
L174	Power Plant	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.1
L175	Power Plant	Ext	Outside	Door Jamb	Wood	Peeling	White	5.1
L176	Power Plant	Ext	Outside	Window Sill	Wood	Peeling	White	17.91
L177	Power Plant	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.02
L178	Power Plant	1	Main	Ceiling Beam	Wood	Peeling	White	0
L204	Mill	Ext	Outside	Ext Siding	Wood	Cracked	Red	0.85
L205	Mill	Ext	Outside	Ext Siding	Wood	Cracked	Red	0.01
L206	Mill	Ext	Outside	Ext Siding	Wood	Cracked	Red	5.1
L207	Mill	Ext	Outside	Ext Siding	Wood	Cracked	Red	0.02
L208	Mill	Ext	Outside	Ext Siding	Wood	Cracked	Red	0.15
L209	Mill	Ext	Outside	Ext Siding	Wood	Cracked	Red	0.23
L216	Mill	4	Plat-o-table	Rail	Wood	Peeling	Gray	5.1
L217	Mill	5	Wilf Tables	Wall	Wood	Peeling	Red	0.02
L218	Mill	6	Shop	Beam	Wood	Peeling	Gray	20.4
L219	Mill	6	Stair-1	Wall	Wood	Peeling	Gray	5.1
L253	Recreation Hall	1	Entry	Wall	Wood	Chalking	White	22.22
L254	Recreation Hall	1	Entry	Wall	Wood	Chalking	Green	5.1
L255	Recreation Hall	1	Gym	Door	Wood	Chalking	Red	0
L256	Recreation Hall	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.64
L257	Recreation Hall	Ext	Outside	Ext Wall Trim (lower)	Wood	Peeling	White	3.62
L258	Recreation Hall	Ext	Outside	Door	Wood	Peeling	Red	1.43
L275	Refrigeration Plant	1	Hall	Window Casing	Wood	Peeling	Green	2.32
L276	Refrigeration Plant	1	Hall	Door	Wood	Peeling	White	5.1
L277	Refrigeration Plant	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.25
L278	Refrigeration Plant	Ext	Outside	Window Sill	Wood	Peeling	White	5.1
L279	Refrigeration Plant		Outside	Door	Wood	Peeling	Red	0.07
L294	Schoolhouse	1	Class-1	Wall	Wood	Cracked	Gray	5.1

Table 1 - Lead in Paint Measurements

Sample ID	Site	Floor	Room	Structure	Substrate	Paint Condition	Color	Lead in mg/cm ^{2 (a)}
L295	Schoolhouse	1	Class-1	Door	Wood	Cracked	Tan	25.68
L296	Schoolhouse	Ext	Outside	Ext Siding	Wood	Cracked	Red	0.45
L297	Schoolhouse	Ext	Porch	Porch Trim (upper)	Wood	Cracked	White	5.1
L352	Middle Bunkhouse	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.07
L353	Middle Bunkhouse	Ext	Outside	Ext Wall Trim (upper)	Wood	Peeling	White	5.1
L357	General Manager's Office	1	Office-1	Wall	Wood	Cracked	White	22.14
L358	General Manager's Office	1	Office-1	Wall	Wood	Varnish	Brown	0.03
L359	General Manager's Office	2	Office-2	Door Casing	Wood	Poor	Gray	5.1
L360	General Manager's Office	Ext	Outside	Ext Siding	Wood	Poor	Red	0.05
L361	General Manager's Office	Ext	Outside	Window Sill	Wood	Poor	White	5.1
L383	Assay Office	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.14
L384	Assay Office	Ext	Outside	Window Casing	Wood	Peeling	White	27.03
L385	Mill	Ext	Ore chute		Metal	Peeling	Red	0.04
L389	Railroad Depot	Ext	Outside	Ext Siding	Wood	Peeling	Red	0.1
L390	Railroad Depot	Ext	Outside	Window Sill	Wood	Peeling	White	5.1
L391	Railroad Depot	Ext	Outside	Ext Wall Trim (upper)	Wood	Peeling	White	8.91
L392	Railroad Depot	Ext	Outside	Door	Wood	Peeling	Red	0.17
L393	Railroad Depot	1	Interior	Wall	Wood	Peeling	Pink	2.73
L406	Fire Protection Bldg-1	Ext	Outside	Wall	Wood	Cracked	Red	0.02
L407	Fire Protection Bldg-1	Ext	Outside	Door Jamb	Wood	Cracked	White	5.1
L408	Fire Protection Bldg-1	Ext	Outside	Door	Wood	Cracked	Red	0.07
L409	Fire Protection Bldg-1	Ext	Outside	Ext Wall Trim (upper)	Wood	Cracked	White	21.35
L424	Fire Protection Bldg-2	Ext	Outside	Door	Wood	Chalking	White	5.1
L425	Fire Protection Bldg-2	Ext	Outside	Ext Siding	Wood	Cracked	Red	0.05

^(a) Value presented is XRF reading.

				Lead in ug/ft ²	
Sample ID	Site	Floor	Room	XRF	XRF Adjusted ^(a)
LWS46	West Bunkhouse	2	Room-1	4,355	9,025
LWS91	Store and Warehouse	1	Canned Goods	1,283	3,466
LWS114	Old School	1	Main	436	1,933
LWS119	Old School	1	Cloak	1,583	4,009
LWS138	Leaching Plant	1	Sacking Shed	777	2,549
LWS167	Machine Shop	1	Parts	1,188	3,293
LWS172	Machine Shop	1	Rm 17/Main	1,495	3,849
LWS195	Power Plant	1	Generator	3,597	7,652
LWS200	Power Plant	1	Main	4,128	8,614
LWS225	Mill	2	Landing	285	1,660
LWS230	Mill	4	Plat-o-table	1,298	3,493
LWS235	Mill	7	Railroad	593	2,216
			Service Access		
LWS240	Mill	10	West Tram Dec	131	1,381
LWS268	Recreation Hall	1	Ticket Booth	2,762	6,141
LWS273	Recreation Hall	1	Gym	1,448	3,764
LWS287	Refrigeration Plant	1	Butcher Shop	1,420	3,713
LWS292	Refrigeration Plant	1	Hall	1,550	3,948
LWS305	Schoolhouse	1	Class2 - Bath-2	5,344	10,814
LWS310	Schoolhouse	1	Class2 - Bath-2	9,824	18,921
LWS342	Middle Bunkhouse	2	Hall	6,950	13,721
LWS347	Middle Bunkhouse	2	Hall	8,070	15,748
LWS367	General Manager's Office	1	Office-3	3,827	8,069
LWS372	General Manager's Office	2	Drafting Room	6,118	12,216
LWS400	Railroad Depot	1	Main	914	2,797
LWS415	Store and Warehouse	1	Retail	5,773	11,590
LWS420	Store and Warehouse	В	Basement	810	2,610
LWS432	West Bunkhouse	В	Locker	13,427	25,442
LWS437	West Bunkhouse	1	Dining	2,139	5,015
LWS442	West Bunkhouse	3	Room-29	17,920	33,572

Table 2 - Lead in Dust Measurements

^(a) XRF measurements adjusted using calibration formula calculated on Figure D-1. When adjustment resulted in a value less than zero, the actual XRF measurement was retained.

		Leau III IIIy/ky		
Sample ID ^(a)	Site	XRF ^(b)	XRF Adjusted (c)	
LS53	West Bunkhouse	4,880	8,302	
LS60	West Bunkhouse	4,480	7,550	
LS68	Store and Warehouse	2,200	3,265	
LS69	Store and Warehouse	2,989	4,747	
LS76	Store and Warehouse	1,500	1,949	
BPS1	Store and Warehouse			
LS106	Old School	152	152	
LS107	Old School	123	123	
LS131	Leaching Plant	975	962	
LS132	Leaching Plant	243	243	
LS141	Leaching Plant	1,450	1,854	
LS158	Machine Shop	224	224	
LS159	Machine Shop	101	101	
LS180	Power Plant	113	113	
LS189	Power Plant	1,190	1,365	
BPS5	Power Plant			
BPS6	Power Plant			
BPS10	Power Plant			
BPS11	Power Plant			
BPS12	Power Plant			
BPS13	Power Plant			
LS211	Mill	1,100	1,197	
LS212	Mill	71	71	
LS242	Mill	1,010	1,027	

Lead in mg/kg

Lab

465

557

96

87

96

109

116

10,816

5,595

Table 3 - Lead in Soil Measurements

LS249

BPS4

LS260

LS261

LS262 LS281

LS299

LS349

Mill

Mill

Recreation Hall

Recreation Hall

Recreation Hall

Schoolhouse

Refrigeration Plant

Middle Bunkhouse

Middle Bunkhouse LS350 ND ND LS379 General Manager's Office 2,200 3,265 2,500 BPS3 General Manager's Office 1,170 BPS7 General Manager's Office 161 BPS8 General Manager's Office 123 General Manager's Office BPS9 56 LS402 Railroad Depot 398 398 ^(a) Samples with BPS prefix collected and analyzed by America

96

87

96

109

6,218

3,440

116

North/EMCON in 1992 using laboratory analysis. Samples with prefix LS measured by Hart Crowser in 2001 using a Niton XRF. Sample LS379 also analyzed for lead as reported in the lab column.

^(b) XRF = Lead concentrations as field measured by X-ray flourescence analyzer. Many of the lead in soil measurements were multiple shots of the same sample. The XRF values in this table and on the figures present representative soil lead measurements that approximate the average values for the

^(c) XRF measurements adjusted using calibration formula calculated on Figure D-2. When adjustment resulted in a value less than zero, the actual XRF measurement was retained.

Table 4 - Lead TCLP Samples and Analytical Results

Debris Pile ID	Lead in mg/L
T1	24.00
T2	1.30
Т3	2.00
T4	0.60
T5	0.40
Т6	0.80

Building	Sample Number	Location	Matrix	Color	Lead ^(a)	units
Assay Office	L383	Outside	Paint	Red		mg/cm ²
	L384	Outside	Paint	White		mg/cm ²
Fire Protection Building-1	L406 and L408	Outside	Paint	Red	0.02 to 0.07	mg/cm ²
	L409	Outside	Paint	White		mg/cm ²
	L425	Outside	Paint	Red		mg/cm ²
	L407 and 424	Outside	Paint	White		mg/cm ²
General Manager's Office	LWS367 and LWS372	Interior	Dust/Floor		8,069 to 12,216	ug/ft ²
	L358	Interior	Paint	Brown	0.03	mg/cm ²
	L357	Interior	Paint	White		mg/cm ²
	L359	Interior	Paint	Gray		mg/cm ²
	L360	Outside	Paint	Red		mg/cm ²
	L361	Outside	Paint	White		mg/cm ²
	L379	Outside	Soil		3,265	mg/kg
	BPS3, BPS7, BPS8, and BPS9(b)	Outside	Soil		56 to 1,170	mg/kg
Leaching Plant	LWS 138	Interior	Dust/Floor		2,549	ug/ft ²
	L123, L124, L126, L127, L128, and L129	Outside	Paint	Red	0.03 to 0.41	mg/cm ²
	L125	Outside	Paint	White	24.42	mg/cm ²
	LS131, LS132, and LS141	Outside	Soil		243 to 1,854	
Machine Shop	LWS167 and LWS172	Interior	Dust/Floor		3,293 to 3,849	ug/ft ²
	L151, L152, L155, and L156	Outside	Paint	Red	0 to 0.14	
	L153 and 154	Outside	Paint	White	26.27 to 38.04	mg/cm ²
	L161	Porch	Paint	White		mg/cm ²
	LS158 and LS159	Outside	Soil		101 to 224	mg/kg
Middle Bunkhouse	LWS342 and LWS347	Interior	Dust/Floor		13,721 to 15,748	ug/ft ²
	L352	Outside	Paint	Red	0.07	mg/cm ²
	L353	Outside	Paint	White		mg/cm ²
	LS349 and LS350	Outside	Soil		ND to 116	mg/kg

Table 5 - Summary of Lead Measurements by Building and Paint Color

Building	Sample Number	Location	Matrix	Color	Lead ^(a)	units
Mill	LWS225, LWS230, LWS235, and LWS240	Interior	Dust/Floor		1,381 to 3,493	ug/ft ²
	L385	Ore chute (metal)	Paint	Red	0.04	mg/cm ²
	L204, L205, L206, L207, L208, and L209	Outside	Paint	Red	0.01 to 5.1	mg/cm ²
	L216, L218, and L219	Interior	Paint	Gray	5.1 to 20.4	mg/cm ²
	L217	Interior	Paint	Red	0.02	mg/cm ²
	LS211, LS212, LS242, and LS249	Outside	Soil		71 to 1,197	
	BPS4(b)	Outside	Soil			mg/kg
Old School	LWS114 and LWS119	Interior	Dust/Floor		1,933 to 4,009	
	L100 and L101	Interior	Paint	White	5.1 to 30.64	mg/cm ²
	L102	Outside	Paint	Red	5.1	mg/cm ²
	L103 and L104	Outside	Paint	White	2.38 to 5.1	mg/cm ²
	LS106 and LS107	Outside	Soil		123 to 152	
Power Plant	LWS195 and LWS200	Interior	Dust/Floor		7,652 to 8,614	ug/ft ²
	L178	Interior	Paint	White	0	mg/cm ²
	L174 and L177	Outside	Paint	Red	0.02 to 0.1	mg/cm ²
	L175 and L176	Outside	Paint	White	5.1 to 17.91	
	LS180 and LS189	Outside	Soil		113 to 1,365	mg/kg
	BPS5, BPS6, BPS10, BPS11, BPS12, and BPS13(b)	Outside	Soil		183 to 3,040	mg/kg
Railroad Depot	LWS400	Interior	Dust/Floor		2,797	ug/ft ²
	L393	Interior	Paint	Pink		mg/cm ²
	L389 and L392	Outside	Paint	Red	0.1 to 0.17	
	L390 and L391	Outside	Paint	White	5.1 to 8.91	
	LS402	Outside	Soil			mg/kg

Building	Sample Number	Location	Matrix	Color	Lead ^(a)	units
Recreation Hall	LWS268 and LWS273	Interior	Dust/Floor		3,764 to 6,141	ug/ft ²
	L254	Interior	Paint	Green		mg/cm ²
	L253	Interior	Paint	White		mg/cm ²
	L255	Interior	Paint	Red		mg/cm ²
	L256 and L258	Outside	Paint	Red	0.64 to 1.43	
	L257	Outside	Paint	White		mg/cm ²
	LS260, LS261, and LS262	Outside	Soil		87 to 109	mg/kg
Refrigeration Plant	LWS287 and LWS292	Interior	Dust/Floor		3,713 to 3,948	ug/ft ²
	L275	Interior	Paint	Green	2.32	mg/cm ²
	L276	Interior	Paint	White	5.1	mg/cm ²
	L277 and L279	Outside	Paint	Red	0.07 to 0.25	mg/cm ²
	L278	Outside	Paint	White		mg/cm ²
	LS281	Outside	Soil		10,816	mg/kg
Schoolhouse	LWS305 and LWS310	Interior	Dust/Floor		10,814 to 18,921	ug/ft ²
	L294	Interior	Paint	Gray	5.1	mg/cm ²
	L295	Interior	Paint	Tan	25.68	mg/cm ²
	L296	Outside	Paint	Red	0.45	mg/cm ²
	L297	Porch	Paint	White		mg/cm ²
	LS299	Outside	Soil			mg/kg
Store and Warehouse	LWS91, LWS415, and LWS420	Interior	Dust/Floor		2,610 to 11,590	ug/ft ²
	L80	Retail	Paint	Brown	0.02	mg/cm ²
	L84	Interior	Paint	Green		mg/cm ²
	L81, L82, L83, L85, and L95		Paint	White	5.1 to 25.42	
	L96	Steward's Office	Paint	Yellow		mg/cm ²
	L64 and L65	Outside	Paint	Red	0.05 to 0.21	
	LS68, LS69, and LS76	Outside	Soil		1,949 to 4,747	
	BPS1(b)	Outside	Soil		465	mg/kg

Building	Sample Number	Location	Matrix	Color	Lead ^(a)	units
West Bunkhouse	LWS46, LWS432, LWS437, and LWS442	Interior	Dust/Floor		5,015 to 33,572	ug/ft ²
	L23 and L28	Interior	Paint	Brown	5.1 to 28.42	mg/cm ²
	L27	Interior	Paint	Gray	1.01	mg/cm ²
	L24, L25, L26, L29, L30, and L31	Interior	Paint	White	2.33 to 5.1	mg/cm ²
	L33 and L34	Outside	Paint	Red	0.8 to 0.87	mg/cm ²
	LS53 and LS60	Outside	Soil		7,550 to 8,302	mg/kg

^(a) Lead values presented for dust and soil samples in this table are adjusted. See Tables 2 and 3 for field measurements and explanation of adjustment procedure.

^(b) Samples with BPS prefix collected and analyzed by American North/EMCON in 1992 using laboratory analysis.

Sample ID	Building	Material and Location	Asbestos Type and Percent
AS-01	Recreation Hall	Felt behind main ext. walls	ND
AS-02	Recreation Hall	Black paper behind all exterior	ND
		walls	
AS-03	Recreation Hall	Silver screen material	ND
AS-04	Schoolhouse	Black cloth wiring insulation	ND
AS-05	West Bunkhouse	Window putty	ND
AS-06	West Bunkhouse	Black cloth wiring insulation	ND
AS-07	West Bunkhouse	Pipe insulation (black cloth	Chrysotile 10%; Amosite 25%
		over hard white material)	
AS-08	Refrigeration Bldg	Butchers Table Top	ND
AS-09	Power Plant	Soil/Debris from beneath	Chrysotile 5%
		building	
AS-10	Power Plant	Soil/Debris in trench of	Chrysotile 5%
		Generator Pit area	
AS-11	Leaching Plant	Gravel tailings below pipes	ND
		previously abated	
AS-12	West Bunkhouse	Soil from beneath building	ND
AS-13	Machine Shop	Soil from beneath building	Chrysotile <1%
		under suspended pipes	
AS-14	Recreation Hall	Soil from crawl space beneath	ND
		building under suspended	
		pipes	
AS-15	Debris Pile T2	Silver painted asphaltic	ND
		material in debris pile	
AS-16	Debris Pile T3	Pebbled asphaltic roofing	ND
		materials in debris pile	
AS-17	Debris Pile T4	Silver painted asphaltic	ND
		material in debris pile	

Table 6 - Suspect ACM Samples and Analytical Results

ND = Not detected

Appendix C-6 – Arsenic Employee Exposure Assessment, Former Kennecott Mine Town, Wrangell St. Elias National Park & Preserve, Kennicott, Alaska.

to ore residues as these may contain relatively high lead and arsenic concentrations. However, the ore residues do not appear to be very friable and may not be likely to release lead or arsenic into the air. Further study is needed to evaluate these concerns.

Table 1 **Air Sampling Results Kennecott Mill Facility** June 23-24, 2003

Sample ID	Name; Occupation	Building	Task	Time Weighted Average Lead (ug/m ³)	Time Weighted Average Arsenic (ug/m ³)
SHA62301	James Sill; Carpenter	School	Repair/Rebuld Windows/ Doors- Manual Scraping/ Sanding	<19	<6
SHA62401	James Sill; Carpenter	School	Repair/Rebuld Windows/Doors- Interior: Power Sander- No Exhaust	56	<4
STA62301	Marge Gohtley; Resources	Store	Inventorying Artifacts	<21	<43*
STA62402	Susan Sura; Resources	Store	Inventorying Artifacts	<6	<87*

Notes:

The Permissible Exposure Limit (PEL) for Lead for 10-hour shifts is 40 ug/m³. The PEL for Arsenic for 10-hour shifts is 8 1) ug/m³.

2) Note: Results preceded by '<' indicate that no lead or arsenic was detected. The listed number is the detection limit.

*The detection limit exceeded the PEL for these short-term (apx. 2 hour) samples. This does not indicate that the concentrations exceeded the PEL, rather there was insufficient air volume to adequately evaluate the exposure for arsenic.

June 2-24, 2003							
Sample ID	Building	Location	Sample Result Lead (ug/ft ²)	Sample Result Arsenic (ug/ft ²)			
BRW62401	Maintenance Break Rm.	Center Table Top	<45.5	<45.5			
BRW62402	Maintenance Break Rm.	Dresser Top	5.70	<5.0			
BRW62403	Maintenance Break Rm.	Coffee Table Top	<5.00	<5.0			
KIW62401	Resource Kitchen	Counter at Sink	<5.00	<5.0			
KIW62402	Resource Kitchen	Kitchen Table Top	6.40	<5.0			
MBW62401	Conc. Mill	Handrail- Level 4	1,050	<40.0			
MBW62402	Conc. Mill	Handrail-Level 6C	32,779	<40.0			
BKW62401	Background (Glacier Lodge)	Exterior Stairway	<45.5	<45.5			
LV62501	Shower Bldg.	S. Lavatory Seat Lid	<6.70	<6.7			
LV62502	Shower Bldg.	N. Lavatory Seat Cover	<5.00	<5			
DC62501	Shower Bldg.	Decon-Clean Side Dresser Top	43.6	<5			
DC62502	Shower Bldg.	Decon-Clean Side Floor	10.2	<5			
LPW62401	Leaching Plant	Handrail- Level 2	13,004	<40			

Table 2 Wipe Sampling Results Kennecott Mill Facility June 2-24, 2003

Note: Results preceded by '<' indicate that no lead or arsenic was detected. The listed number is the detection limit. The recommended OSHA guideline for break rooms and hygiene facilities is 200 ug/ft².

The difference in the detection limits is related to the area sampled. Sample areas that were dusty or had limited access (e.g., handrails) were limited to approximately 4×4 inches, resulting in a detection limit of around 40 ug/ft^2 . Other areas were sampled at 12×12 inches, resulting in a detection limit of 5 ug/ft^2 .

Table 3 Bulk Sampling Results Kennecott Mill Facility June 23 & 24, 2003

Sample ID	Building	Location	Sample Result Lead (mg/kg)	Sample Result Arsenic (mg/kg)
STB62301	Store	Stairway Tread	<47	<20
STB62302	Store	Shelf- Floor 1 West Side	2,100	150
STB62303	Store	Floor- Floor 1 West Wing	2,000	110
MBB62401	Conc. Mill	Floor- Level 2	3,800	3,500
MBB62402	Conc. Mill	Hopper- Level 6C	110	3,070
MBB62403	Conc. Mill	Ore Dust- Level 2 Table	2,100	660
MBB62404	Conc. Mill	Floor- Level 6C	9,000	2,820
LPB62401	Leach Plant	Trough Residue- Floor 2	60	1,510
LPB62402	Leach Plant	White Residue- Floor 2, Northeast side	<50	<20

Note: Results preceded by '<' indicate that no lead (or arsenic) was detected. The listed number is the detection limit.

NPS Kennecott Mill Lead and Arsenic Exposure Assessment August 11, 2003

Table 4 Soil Sampling Results Kennecott Mill Facility June 24, 2003

Sample ID	Building	Location	Sample Result Lead (mg/kg)	Sample Result Arsenic (mg/kg)
BKS62401	Background	Upgradient Store	<50	<50
RBS62401	Refrigeration Bldg.	Drip Line 18" from Bldg.	1,780	<50
RBS62402	Refrigeration Bldg.	48" from Bldg.	2,169	<50
RBS62403	Refrigeration Bldg.	84" from Bldg.	1,066	<50
WBS62401	West Bunkhouse	Drip Line 18" from Bldg.	1,610	<50
WBS62402	West Bunkhouse	48" from Bldg.	179	<50
WBS62403	West Bunkhouse	84" from Bldg.	59	<50
WBS62404	West Bunkhouse	120" from Bldg.	286	<50

Note: Results preceded by '<' indicate that no lead (or arsenic) was detected. The listed number is the detection limit.

Appendix C-7 – Data from Federal Occupational Health. 2005. Asbestos and Lead in Soil Survey, Kennecott Mining Town, Kennecott, Alaska.

Kennecott Mill Site, Wrangell-St. Elias National Park and Preserve March 29, 2017

TABLE 1ASUMMARY OF ASBESTOS BULK SAMPLE RESULTS

Sample No.	Sample Location	Material Description	Results
Ammonia Leach	ing Plant (building identification numb	er 15)	
WRST-15-AS-001	Level four-north, exterior, east side	Window glazing (putty)	ND
WRST-15-AS-002	Level one-north, exterior, north side	Window glazing (putty)	ND
WRST-15-AS-003	Level one-north, exterior, west side	Window glazing (putty)	ND
WRST-15-AS-004	level five-north, exterior, south side window	Window glazing (putty)	ND
WRST-15-AS-005	Level four-north, by north wall	Electrical wire insulation (yellow)	ND
WRST-15-AS-006	Level four-north, by north wall	Electrical wire insulation (black)	ND
WRST-15-AS-007	Level four-north	Electrical wire insulation (white)	85% Ch
WRST-15-AS-008	Level five-north, west side	Wall paper barrier (red)	ND
WRST-15-AS-009	Level four-north, west side	Wall paper barrier (red)	ND
WRST-15-AS-010	Level four-north, west side	Wall paper barrier (light brown)	ND
WRST-15-AS-011	Level four-north, west side	Wall paper barrier (light brown)	ND
WRST-15-AS-012	Level four-north on northern most tank hatch	Tank hatch gasket	ND
WRST-15-AS-013	Level one-north, on tank hatch	Tank hatch gasket	ND
WRST-15-AS-014	Level one-south, east side	Pipe valve gasket (red)	ND
WRST-15-AS-015	Level three-north, on floor	Pipe valve gasket (red)	ND
WRST-15-AS-016	Level one-south, east side on flange	Pipe valve gasket (red)	ND
WRST-15-AS-017	Level one-north, exterior, north side	Window glazing (putty) repair material	ND
WRST-15-AS-018	Level one-north, exterior, north side	Siding vapor barrier	ND
WRST-15-AS-019	Level one-north, exterior, west side	Window vapor barrier	Trace Ch
WRST-15-AS-020	Level one-north, exterior, west side	Roofing felt	ND
WRST-15-AS-021	Level one-north, exterior, west side	Siding vapor barrier	ND
WRST-15-AS-022	Level one-south, exterior, west side	Roofing felt	ND
WRST-15-AS-023	Level one-north, exterior, west side	Water pipe (wood) wire coating	ND
WRST-15-AS-024	Level four-north, east side on north wall	Siding vapor barrier	ND
WRST-15-AS-025	Level three-north	Bulletin board paper	ND
WRST-15-AS-026	Level three-north, east wall	Electrical panel backing	15% Ch

Sample No.	Sample Location	Material Description	Results
WRST-15-AS-027	Level four-north, at top of exterior entry stair	Wall remnant paper (poster or bulletin	ND
	landing	board)	
WRST-15-AS-028	Level one-south at east wall	Electrical wire insulation	ND
WRST-15-AS-029	Level one-south	Insulation debris on wood framing	ND
WRST-15-AS-030	Level one-south	Insulation debris in gravel on floor	20% Ch
WRST-15-AS-031	Level one-south	Plaster debris in gravel on floor	Trace Ch Trace Am
WRST-15-AS-032	Level one-south, at tank on west wall	Insulation remnant on tank	80% Ch
WRST-15-AS-033	Level one-south, at tank on west wall, north side	White debris in gravel (assumed insulation)	ND
WRST-15-AS-034	Level one-north, west side under outhouse	White debris in gravel	ND
WRST-15-AS-035	Level one-north, west side at trough	White debris in gravel	ND
WRST-15-AS-036	Level one-north, west side	White debris in gravel	ND
WRST-15-AS-037	Level one-north, between 3 and 4 tank	Debris at tank base	Trace Ch
WRST-15-AS-038	Level one-north, on west wall catwalk	Gasket material on flange	80% Ch
WRST-15-AS-039	Level one-south, tank at east wall	Gasket door material on tank	ND
Assay Office (build	ling identification number 8)		
WRST-8-AS-040	Exterior, west side	Window glazing (putty)	ND
WRST-8-AS-041	Exterior, north side	Window glazing (putty)	ND
WRST-8-AS-042	Exterior, northeast corner	Roofing (rolled composition)	ND
WRST-8-AS-043	Exterior, south side	Roofing (rolled composition)	ND
WRST-8-AS-044	Interior, south side	Electrical wire	40% Ch
WRST-8-AS-045	Exterior, south side	Siding vapor barrier	ND
WRST-8-AS-046	Exterior, south side	Siding vapor barrier	ND
WRST-8-AS-047	Interior, north side at center of room	Gasket at ceiling vent penetration	ND
WRST-8-AS-048	Interior, south side	Weld cloth stuffed in wall penetration	95% Ch

Sample No.	Sample Location	Material Description	Results
Transformer Bu	ilding (building identification number 3	37)	
WRST-37-AS-049	Exterior, underneath building	Pipe insulation	65% Ch
WRST-37-AS-050	Exterior, underneath building	Pipe insulation	65% Ch
WRST-37-AS-051	Exterior, underneath building	Pipe insulation	65% Ch
WRST-37-AS-052	Transformer room east end of building	White electrical wire	ND
WRST-37-AS-053	Second floor west end	Black electrical wire	ND
WRST-37-AS-054	Second floor west end	Black electrical wire	ND
WRST-37-AS-055	Transformer room east end of building	Dark color electrical wire	ND
WRST-37-AS-056	Second floor	Equipment box electrical wire	ND
WRST-37-AS-057	Second floor	Insulation on transformer cover	65% Ch
WRST-37-AS-058	Second floor	Electrical switch cover gasket	ND
WRST-37-AS-059	Second floor	Gasket on transformer cover	65% Ch
WRST-37-AS-060	Exterior, south side	Window glazing (putty)	ND
WRST-37-AS-061	Exterior, north side	Window glazing (putty)	ND
WRST-37-AS-062	Stair way landing to the second floor	Vapor barrier	ND
WRST-37-AS-063	Exterior, south side	Vapor barrier	ND
WRST-37-AS-064	Exterior, west side	Bulletin board backing	ND
WRST-37-AS-065	Second floor, north wall	2-strand twisted electrical wire	ND
WRST-37-AS-066	Transformer room on east end of building	Gasket on transformer lid	ND
WRST-37-AS-067	Transformer room on east end of building	Insulation debris on floor	ND
WRST-37-AS-068	Second floor	Coil insulation	ND
WRST-37-AS-069	Second floor	Coil braid string	ND
WRST-37-AS-070	Second floor	Insulator ring	ND
WRST-37-AS-071	Second floor	Insulation debris	70% Ch
WRST-37-AS-072	Second floor	Light cover insulation	75% Ch
WRST-37-AS-073	Second floor	Fuse box cementitious material	65% Ch
WRST-37-AS-074	Second floor	Gasket material	ND
WRST-37-AS-075	Second floor	Cloth covered conduit	ND
WRST-37-AS-076	Transformer room on east end of building	White debris on floor	ND
WRST-37-AS-077	First floor, south side on shelves	Blue gasket material	65% Ch

Sample No.	Sample Location	Material Description	Results
WRST-37-AS-078	Second floor	White powder in box	ND
WRST-37-AS-079	First floor, south side	White debris on floor	ND
WRST-37-AS-080	First floor, south side	White debris on floor	ND
WRST-37-AS-081	First floor, west exterior wall	Fuse box insulation board (back side)	70% Ch
WRST-37-AS-082	First floor, south side	Stove insulation	65% Ch
WRST-37-AS-083	First floor, southeast corner	Cementitious switch gear panel	ND
WRST-37-AS-084	First floor, north side	Stove insulation	35% Ch
WRST-37-AS-085	First floor underneath stairs	Brake pad on equipment	40% Ch
Machine Shop (building identification number 36)		
WRST-36-AS-086	Exterior, north side	Window glazing (putty)	ND
WRST-36-AS-087	Exterior, west side	Window glazing (putty)	ND
WRST-36-AS-088	Exterior, east side	Window glazing (putty)	Trace Ch
WRST-36-AS-089	Exterior, south side	Window glazing (putty)	ND
WRST-36-AS-090	Interior, east wall on north end	Electrical wire (black)	ND
WRST-36-AS-091	Interior, east side at exterior wall electrical box	Electrical wire (black)	ND
WRST-36-AS-092	Interior, southwest room on north wall	Vapor barrier	ND
WRST-36-AS-093	Interior, southwest room on north wall	Vapor barrier	ND
WRST-36-AS-094	Interior, east side on exterior wall	White debris in wall shelf	40% Ch
WRST-36-AS-095	Interior, southwest room	White debris on floor	ND
WRST-36-AS-096	Interior, west side of main shop area	White debris on parts pile	70% Ch
WRST-36-AS-097	Deck on exterior, west side	Gasket on valve flange	50% Ch
WRST-36-AS-098	Deck on exterior, west side	Remnant roofing tar paper	ND
WRST-36-AS-099	Deck on exterior, west side	Remnant fibrous insulation	70% Ch
WRST-36-AS-100	Deck on exterior, west side	White remnant material in box	ND
WRST-36-AS-101	Deck on exterior, west side	Melting pot fire brick	ND
WRST-36-AS-102	Exterior, under building by storage	White insulation debris	65% Ch
WRST-36-AS-103	Exterior west side	White debris on ground	ND
WRST-36-AS-104	Exterior, west side	Roofing debris on ground	ND

Sample No.	Sample Location	Material Description	Results
Power Plant (bu	uilding identification number 9)		
WRST-9-AS-105	Exterior, north side	Window glazing (putty)	ND
WRST-9-AS-106	Exterior, south side	Window glazing (putty)	ND
WRST-9-AS-107	Exterior, east side	Window glazing (putty)	ND
WRST-9-AS-108	Exterior, west side	Window glazing (putty)	ND
WRST-9-AS-109	Interior, northwest exterior wall	Electrical wire (black)	ND
WRST-9-AS-110	Interior, southwest	Electrical wire (black)	ND
WRST-9-AS-111	Interior, west side of boilers	Brick floor	ND
WRST-9-AS-112	Interior, west side of boilers	Brick floor	ND
WRST-9-AS-113	Interior, west side of boilers	Brick floor	ND
WRST-9-AS-114	Interior, southwest	Electrical wire (white)	ND
WRST-9-AS-115	Interior, southwest	Electrical wire (white)	ND
WRST-9-AS-116	Interior, east exterior wall – north end	White debris on floor	50% Ch
WRST-9-AS-117	Interior, east exterior wall – north end	White debris on wall wood framing	ND
WRST-9-AS-118	Interior, east side – north end	White debris on floor	ND
WRST-9-AS-119	Exterior, northwest side	Debris pile – roofing felts	ND
WRST-9-AS-120	Exterior, northwest side	Debris pile – woven cloth	ND
WRST-9-AS-121	Exterior, northwest side	Debris pile – fiber board	ND
WRST-9-AS-122	Interior, east side under mezzanine deck	White debris on pipe	70% Ch
WRST-9-AS-123	Interior, southwest under mezzanine	White debris on pipe	30% Ch
WRST-9-AS-124	Interior, center west of boiler (no date)	White debris on pipe	35% Ch
WRST-9-AS-125	Interior, north of boiler 1917	Floor dust sample	Trace Ch
WRST-9-AS-126	Interior, south of boiler (no date)	Floor dust sample	Trace Ch
WRST-9-AS-127	Interior, southwest side of building	Floor dust sample	ND
WRST-9-AS-128	Interior, pipe on west exterior wall	Fibrous insulation on pipe	ND
WRST-9-AS-129	Interior, pipe on west exterior wall	Fibrous insulation on pipe	ND
WRST-9-AS-130	Interior, pipe on west exterior wall	Fibrous insulation on pipe	ND
WRST-9-AS-131	Interior, east exterior wall on south end	Wall box paper lining	ND
WRST-9-AS-132	Exterior, under piping between power plant	Insulation debris	65% Ch
	and leaching plant at end of trough		

Sample No.	Sample Location	Material Description	Results
WRST-9-AS-133	Exterior, under piping between power plant and leaching plant at beginning of trough	Insulation debris	65% Ch
WRST-9-AS-134	Exterior, under piping between power plant and leaching plant at middle of trough	Insulation debris	65% Ch
WRST-9-AS-135	Exterior, west side	Cloth debris	ND
WRST-9-AS-136	Interior, north generator pit, south end of building	Dirt debris	3% Ch
WRST-9-AS-137	Interior, large trench southwest side	Dirt debris	5% Ch
WRST-9-AS-138	Interior of building from boiler interior	Fly ash debris, boiler 1916	ND
WRST-9-AS-139	Interior of building from boiler interior	Fire brick, boiler 1916	ND
WRST-9-AS-140	Interior of building from boiler interior	Insulation behind fire brick, boiler 1916	8% Ch
WRST-9-AS-141	Interior of building from boiler interior	Fire brick mortar, boiler 1916	ND
Residence 32C	(building identification number 32C)		•
WRST-32C-AS-142	Exterior, north side	Window glazing (putty)	ND
WRST-32C-AS-143	Exterior, south side	Window glazing (putty)	ND
WRST-32C-AS-144	Exterior, south side	Window glazing (putty) – repair material	ND
WRST-32C-AS-145	Interior, dining room west wall	Wall board	ND
WRST-32C-AS-146	Interior, under stairs	Wall board	ND
WRST-32C-AS-147	Interior, living room at west wall	Ceiling wall board	ND
WRST-32C-AS-148	Storage building interior floor	Sheet vinyl flooring	ND
WRST-32C-AS-149	Behind sauna on east side	White debris on ground	ND

Sample No.	Sample Location	Material Description	Results
West Bunkhous	e (building identification number 20)		
WRST-20-AS-150	Exterior, south side	Window glazing (putty)	ND
WRST-20-AS-151	Exterior, west side	Window glazing (putty)	ND
WRST-20-AS-152	Exterior, north side	Window glazing (putty)	ND
WRST-20-AS-153	Exterior, east side	Window glazing (putty) – repair material	ND
WRST-20-AS-154	Interior, first floor	Electrical wire (white)	ND
WRST-20-AS-155	Interior, first floor	Electrical wire (black)	ND
WRST-20-AS-156	Interior, third floor	Electrical wire (braided white)	ND
WRST-20-AS-157	Interior, second floor kitchen	Oven fire brick insulation	15% Ch
WRST-20-AS-158	Interior, second floor kitchen	Oven fire brick	ND
WRST-20-AS-159	Interior, second floor kitchen	Oven fire brick mortar	ND
WRST-20-AS-160	Interior, second floor kitchen	Oven lining	15% Ch
WRST-20-AS-161	Interior, second floor kitchen	Oven insulation liner	30% Ch
WRST-20-AS-162	Interior, second floor dining room	Table top cloth	ND
Store and Ware	house (building identification numbe	er 19)	
WRST-19-AS-163	Exterior windows stored on 3 rd floor	Window glazing (putty)	ND
WRST-19-AS-164	Exterior windows stored on 3 rd floor	Window glazing (putty)	ND
WRST-19-AS-165	Interior, main floor	Electrical wire	ND
WRST-19-AS-166	Interior, 2 nd floor storage area at stairs	Electrical wire	ND
WRST-19-AS-167	Interior, 2 nd floor office	Hardwood floor slip sheeting	ND
WRST-19-AS-168	Interior, 3 rd floor storage area	Hardwood floor slip sheeting	ND
WRST-19-AS-169	Interior, west side storage area	Ceiling sheeting	ND
WRST-19-AS-170	Interior, west side storage area	Ceiling sheeting	ND
WRST-19-AS-171	Interior, north end in storage area	Wall covering	ND
WRST-19-AS-172	Interior, north end in storage area	Bulletin board material	ND
WRST-19-AS-173	Interior, display area at front of store	Counter top sheeting	ND
WRST-19-AS-174	Interior, store office	Vapor barrier behind wall sheeting	ND
WRST-19-AS-175	Interior, store office	Wall sheeting	ND

ND = none detected, CH = Chrysotile asbestos, AM = Amosite asbestos

A more detailed lead based paint survey was conducted in 1995, and the results were reported in the "*Kennicott (sic) Pre-Acquisition Environmental Site Assessment Report*" (December 1996). An additional survey of the buildings was conducted by Hart Crowser, as reported in the document titled "*Limited Hazardous Materials Survey of the Kennecott Mill*" in May 2002. These reports document consistent application of red paint to sidings and a white paint on the trim, with the last reported painting in the 1930's. The white paint contains the highest levels of lead (up to 52% lead) while the red paint typical of the exterior walls is iron oxide based and has low levels (generally under 1%) of lead. Elevated lead levels were also detected in the yellow paint used in limited areas inside the buildings.

Lead in Painted Surfaces

Paint samples were collected from the Assay Office to verify lead levels and from select areas of the Power Plant where previous sampling had not been performed (mostly equipment paint). Analytical results are provided in Table 3 below.

Sample No.	Sample Location	Substrate	Color	Results ¹ (% weight)
Assay Office (build	ing identification number 8)			
WRST-8-PbB-001	Exterior on north side	Wood	Red	0.239
WRST-8-PbB-002	Exterior on north side	Wood	White	9.38
WRST-8-PbB-003	Interior, north side on ceiling	Wood	White	8.72
Power Plant (buildi	ng identification number 9)			
WRST-9-PbB-004	Mezzanine tank	Metal	Red	9.76
WRST-9-PbB-005	Mezzanine storage tank	Metal	Black	0.207
WRST-9-PbB-006	Boiler 1917	Metal	Black	0.088
WRST-9-PbB-007	Mezzanine post	Wood	Gray	4.47
WRST-9-PbB-008	North generator sump	Soil	Not applicable	26,700 mg/k ²
WRST-9-PbB-009	South generator sump	Soil	Not applicable	<50.0 mg/k
WRST-9-PbB-010	Southwest exterior wall	Wood	White	6.05
WRST-9-PbB-011	Generator pad	Concrete	Gray	8.14

Table 3. Summary of Bulk Paint Chip Sampling

¹ EPA defines lead-based paint as any paint with greater than 5,000 parts per million or 0.5% by weight. OSHA defines a lead material as any item with a measurable level of lead, see 29 CFR 1926.62. One percent is equal to 10,000 parts per million (ppm).

 $^{^{\}rm 2}$ These two samples included paint chips and debris and were reported in amount let found, not % weight.

Lead in surface dust

Limited lead dust sampling had been performed in three of the previous surveys and in one case included arsenic analysis. The results of the previous surveys indicated some level of lead contamination in areas sampled. For wipe samples, "Ghost Wipe" brand wipes was used with a one-foot square template. The wipes conform to American Standards for Testing Materials E1792-96A, *Standard Specification for Wipe Sampling Materials for Lead in Surface Dust.* The wipe samples were placed in labeled plastic Ziplock bags. Wipe samples were analyzed for lead.

Table 4 on the next page lists lead wipe surface sample results collected during this survey. A figure indicating sampling locations is provided in Appendix D.

Sample No.	Sample Location	Surface	Results ³ (ug/ft ²)
Ammonia Leaching I	Plant (building identification number	r 15)	
WRST-15-PbW-001	Level 3 on main floor	Floor	775
WRST-15-PbW-002	Level 3 on tank	Tank wall	21.7
WRST-15-PbW-003	Level 3 on wall by stairs	Wall	25.1
WRST-15-PbW-004	Level 4 in sacking shed	Floor	2.50
WRST-15-PbW-005	Level 4 on L4 catwalk	Floor	3910
WRST-15-PbW-006	Level 5 on L5 catwalk	Floor	855
WRST-15-PbW-007	Level 5 on L5 catwalk	Floor	398
Assay Office (buildir	ig identification number 8)		
WRST-8-PbW-008	Interior shelving on north wall	Shelving	15400
Transformer Building	g (building identification number 37)		
WRST-37-PbW-009	Second floor	Floor	1990
WRST-37-PbW-010	First floor	Floor	855
Machine Shop (build	ing identification number 36)		
WRST-36-PbW-011	Main entry on east side	Floor	245
WRST-36-PbW-012	Interior on northwest entrance	Hearth duct/floor	170
WRST-36-PbW-013	Interior on east wall	Shelving	895
WRST-36-PbW-014	Interior east room	Floor	675
WRST-36-PbW-015	Interior east room on north end	Shelving	1140
WRST-36-PbW-016	Interior, northwest end	Work bench surface	373

Table 4. Summary of Lead Wipe Sampling Results

³ EPA regulates lead dust in residential structures at 40 ug/ft² for floors, 250 ug/ft² for window sills, and 400 ug/ft² for window wells. OSHA does not have a minimum level of lead in dust for compliance purposes. However, in compliance directive CPL 02-02-058, "OSHA recommends the use of HUD's recommended level for acceptable decontamination of 200 ug/ft² for floors in evaluating cleanliness of change areas, storage facilities, and lunchrooms/eating areas. OSHA would not expect that surfaces should be any cleaner than this level."

Sample No.	Sample Location	Surface	Results ³ (ug/ft ²)
Power Plant (building	identification number 9)		
WRST-9-PbW-017	Boiler	Concrete	630
WRST-9-PbW-018	Mezzanine, northwest	Wood	3100
WRST-9-PbW-019	Under mezzanine on floor	Brick	1010
WRST-9-PbW-020	Generator area	Concrete	1400
WRST-9-PbW-021	Sump area	Concrete	2270
WRST-9-PbW-022	Southwest mezzanine floor	Wood	780
WRST-9-PbW-023	West side of boilers 1915/1916 on floor	Concrete	1360
WRST-9-PbW-024	West side of boiler 1916 on floor	Concrete	402
Residence Building 3	2C		
WRST-32C-PbW-025	Living room	Floor	118
WRST-32C-PbW-026	Dining room	Floor	25.3
WRST-32C-PbW-027	Living room, southwest window	Sill	3730
WRST-32C-PbW-028	Kitchen, cabinet interior west end	Cupboard door	97.5
WRST-32C-PbW-029	Kitchen counter on east end	Counter top	1420
WRST-32C-PbW-030	Rear entry room	Floor	497
WRST-32C-PbW-031	Stairs to second floor (3 rd stair from bottom)	Stair tread	249
WRST-32C-PbW-032	Second floor hallway (stair landing)	Floor	214
WRST-32C-PbW-033	Second floor east bedroom, west wall	Wall	24.6
WRST-32C-PbW-034	Second floor east bedroom, west wall window	Sill	44.1
West Bunkhouse (bui	Iding identification number 20)		
WRST-20-PbW-035	Dining area	Floor	26.7
WRST-20-PbW-036	Kitchen	Floor	860
WRST-20-PbW-037	Kitchen pantry	Shelving	1440
WRST-20-PbW-038	2 nd floor hall by room 8	Floor	2860
WRST-20-PbW-039	Dining area	Column	57.0
Store and Warehouse	e (building identification number 19)		
WRST-19-PbW-040	General store area on south side	Shelving	2080
WRST-19-PbW-041	General store area on counter, @ entry north side	Counter top	930
WRST-19-PbW-042	General store area at entry	Floor	560
WRST-19-PbW-043	Post office area	Mailbox interior	1190
WRST-19-PbW-044	Store office, north wall on tin wainscot	Wall	875
WRST-19-PbW-045	Tool room, north end	Shelving	439
WRST-19-PbW-046	Tool room, north end	Floor	755
WRST-19-PbW-047	Control sample	n/a	40.5
WRST-19-PbW-048	Control sample	n/a	55.5

Lead in Soil

Soil samples were collected from bare soil and rock (some locations the fill was mine tailings) using a Sterileware[®] sampling spoon pushed into the soil/rock approximately 1-inch at each location. Subsurface samples were excavated with a shovel to undisturbed soil/rock for sample collection. Each sample was then placed into sealed plastic bottles and sent to the laboratory for lead analysis. Table 5 below provides soil sample lead analytical results.

Sample No.	Sample Location	Depth	Results ⁴ (mg/kg)
Ammonia Leaching	Plant (building identification number 1	5)	
WRST-15-PbS-001	West exterior at wall foundation	Surface	4040
WRST-15-PbS-002	West exterior at 3-foot from foundation	Surface	643
WRST-15-PbS-003	West exterior at 6-foot from foundation	Surface	1440
WRST-15-PbS-004	West exterior at wall foundation	Subsurface <6-inch>	224
WRST-15-PbS-005	West exterior at 3-foot from foundation	Subsurface <6-inch>	208
WRST-15-PbS-006	West exterior at 6-foot from foundation	Subsurface <6-inch>	387
WRST-15-PbS-007	North exterior at wall foundation	Surface	348
WRST-15-PbS-008	North exterior at 3-foot from foundation	Surface	328
WRST-15-PbS-009	North exterior at wall foundation	Subsurface <6-inch>	278
WRST-15-PbS-010	North exterior at 3-foot from foundation	Subsurface <6-inch>	198
WRST-15-PbS-011	East exterior at wall foundation	Surface	361
WRST-15-PbS-012	East exterior at 3-foot from foundation	Surface	986
WRST-15-PbS-013	East exterior at 6-foot from foundation	Surface	549
WRST-15-PbS-014	East exterior at wall foundation	Subsurface <6-inch>	757
WRST-15-PbS-015	East exterior at 3-foot from foundation	Subsurface <6-inch>	389
WRST-15-PbS-016	East exterior at 6-foot from foundation	Subsurface <6-inch>	248
Assay Office (build	ing identification number 8)		
WRST-8-PbS-017	West exterior at wall foundation	Surface	34600
WRST-8-PbS-018	West exterior at 3-foot from foundation	Surface	296
WRST-8-PbS-019	West exterior at 6-foot from foundation	Surface	576
WRST-8-PbS-020	West exterior at 3-foot from foundation	Subsurface <6-inch>	<50.0
WRST-8-PbS-021	North exterior at wall foundation	Surface	8480
WRST-8-PbS-022	North exterior at 3-foot from foundation	Surface	265
WRST-8-PbS-023	North exterior at 6-foot from foundation	Surface	<50.0

Table 5. Summary of Soil Sampling Results

⁴ At 400-2,000 ppm EPA recommends risk reduction activities when children are present. 2,000 – 5,000 ppm EPA recommends additional risk reduction, even if children are present infrequently. Over 5,000 ppm considers soil removal or permanent cover. According to ADEC Technical Memorandum -01-003, for commercial or industrial land use, the cleanup level is set at 1,000 mg/kg.

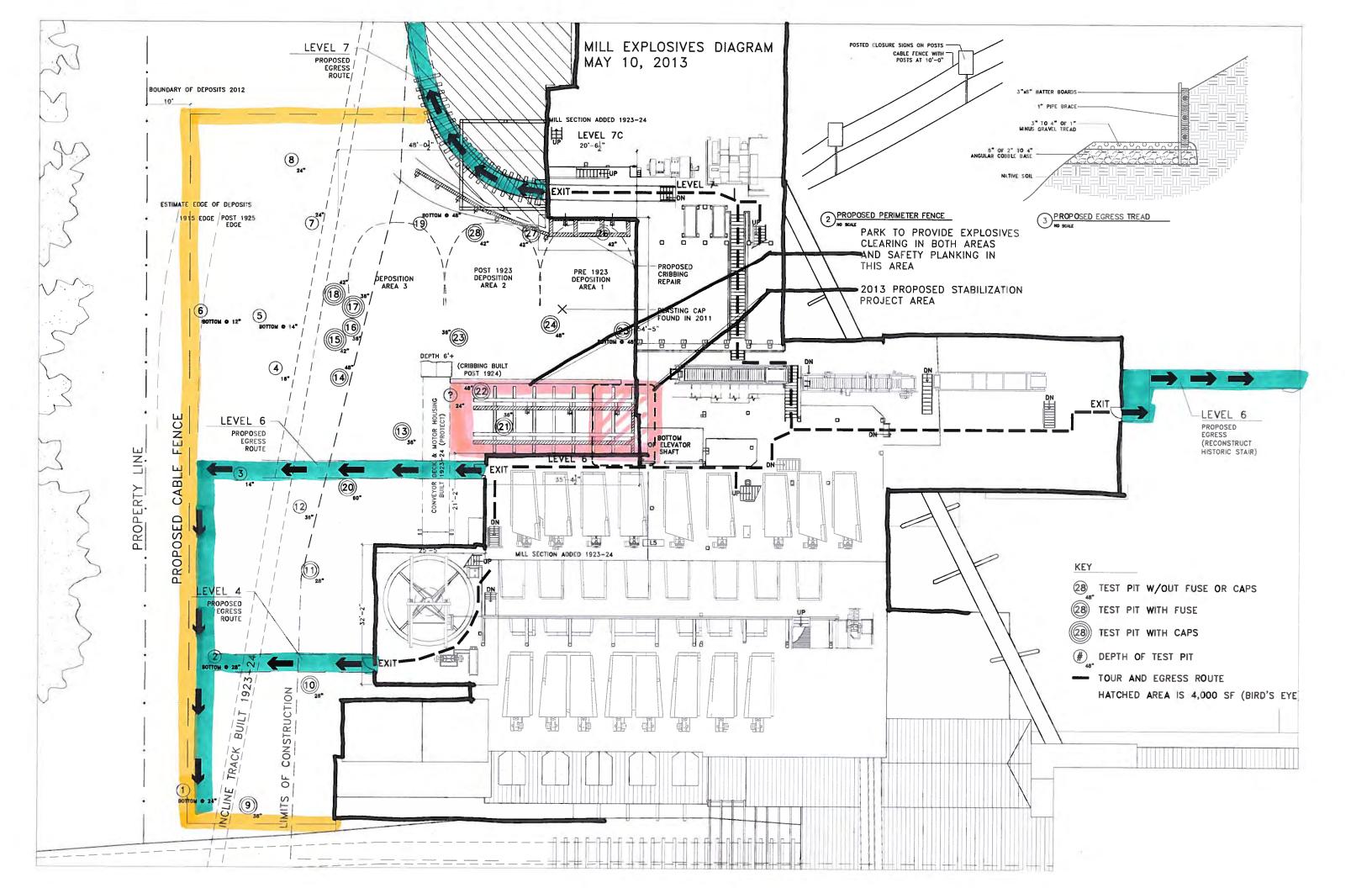
Sample No.	Sample Location	Depth	Results ⁴ (mg/kg)
· · · · · · · · · · · · · · · · · · ·	g (building identification number 37)		
WRST-37-PbS-024	West exterior at wall foundation	Surface	<50.0
WRST-37-PbS-025	West exterior at 3-foot from foundation	Surface	<50.0
WRST-37-PbS-026	West exterior at 6-foot from foundation	Surface	<50.0
WRST-37-PbS-027	West exterior at wall foundation	Subsurface <6-inch>	<50.0
WRST-37-PbS-028	West exterior at 3-foot from foundation	Subsurface <6-inch>	<50.0
WRST-37-PbS-029	West exterior at 6-foot from foundation	Subsurface <6-inch>	<50.0
WRST-37-PbS-030	North exterior at wall foundation	Surface	<50.0
WRST-37-PbS-031	North exterior at 3-foot from foundation	Surface	<50.0
WRST-37-PbS-032	North exterior at 6-foot from foundation	Surface	<50.0
WRST-37-PbS-033	North exterior at wall foundation	Subsurface <6-inch>	<50.0
WRST-37-PbS-034	North exterior at 3-foot from foundation	Subsurface <6-inch>	<50.0
WRST-37-PbS-035	North exterior at 6-foot from foundation	Subsurface <6-inch>	<50.0
Machine Shop (build	ling identification number 36)		
WRST-36-PbS-036	South exterior at wall foundation	Surface	3880
WRST-36-PbS-037	South exterior at 3-foot from foundation	Surface	1030
WRST-36-PbS-038	South exterior at 6-foot from foundation	Surface	5590
WRST-36-PbS-039	South exterior at wall foundation	Subsurface <6-inch>	377
WRST-36-PbS-040	South exterior at 3-foot from foundation	Subsurface <6-inch>	411
WRST-36-PbS-041	South exterior at 6-foot from foundation	Subsurface <6-inch>	374
WRST-36-PbS-042	West exterior at wall foundation	Surface	2480
WRST-36-PbS-043	West exterior at 3-foot from foundation	Surface	829
WRST-36-PbS-044	West exterior at 6-foot from foundation	Surface	654
WRST-36-PbS-045	West exterior at wall foundation	Subsurface <6-inch>	432
WRST-36-PbS-046	West exterior at 3-foot from foundation	Subsurface <6-inch>	208
WRST-36-PbS-047	West exterior at 6-foot from foundation	Subsurface <6-inch>	529
Power Plant (buildin	g identification number 9)		
WRST-9-PbS-048	North exterior at wall foundation	Surface	<50.0
WRST-9-PbS-049	North exterior at 3-foot from foundation	Surface	<50.0
WRST-9-PbS-050	North exterior at 6-foot from foundation	Surface	<50.0
WRST-9-PbS-051	North exterior at 3-foot from foundation	Subsurface <6-inch>	<50.0
WRST-9-PbS-052	North exterior at 6-foot from foundation	Subsurface <6-inch>	<50.0
WRST-9-PbS-053	South exterior at wall foundation	Surface	3000
WRST-9-PbS-054	South exterior at 3-foot from foundation	Surface	2450
WRST-9-PbS-055	South exterior at 6-foot from foundation	Surface	1570
WRST-9-PbS-056	South exterior at wall foundation	Subsurface <6-inch>	388
WRST-9-PbS-057	South exterior at 3-foot from foundation	Subsurface <6-inch>	214
WRST-9-PbS-058	South exterior at 6-foot from foundation	Subsurface <6-inch>	1300
Residence Building	32C		
WRST-32C-PbS-059	North exterior at wall foundation	Surface	75.0
WRST-32C-PbS-060	North exterior at 3-foot from foundation	Surface	138
WRST-32C-PbS-061	North exterior at 6-foot from foundation	Surface	354
WRST-32C-PbS-062	North exterior at wall foundation	Subsurface <6-inch>	157

Sample No.	Sample Location	Depth	Results ⁴ (mg/kg)
WRST-32C-PbS-063	North exterior at 3-foot from foundation	Subsurface <6-inch>	517
WRST-32C-PbS-064	North exterior at 6-foot from foundation	Subsurface <6-inch>	2840
WRST-32C-PbS-065	South exterior at wall foundation	Surface	<50.0
WRST-32C-PbS-066	South exterior at 3-foot from foundation	Surface	<50.0
WRST-32C-PbS-067	South exterior at 6-foot from foundation	Surface	167
WRST-32C-PbS-068	South exterior at wall foundation	Subsurface <6-inch>	<50.0
WRST-32C-PbS-069	South exterior at 3-foot from foundation	Subsurface <6-inch>	<50.0
WRST-32C-PbS-070	South exterior at 6-foot from foundation	Subsurface <6-inch>	<50.0

Sample results with less than the limit of detection were taken within areas recently excavated and backfilled by NPS personnel. The exception is the transformer building that had continuous water running through the north and south areas of the building. All other areas had substantial levels of lead in the soil, at the surface and below with the highest results generally at the building foundation where deteriorating paint tends to collect.

Sample results indicate widespread lead contamination around the base of the buildings as suspected in previous surveys which is clearly the result of deteriorating painted surfaces (significant lead content was not identified in mine tailings). Areas where excavation and back filling have not been performed likely are contaminated, although, not all sides of buildings were included in the sampling activities.

Appendix C-8 – Data from SGS North America, Inc. 2010. Laboratory Analysis Report, Work Order 1101090, 1010 East Bunkhouse.


White Environmental Consultants Inc.	al Consultant	ts Inc.					150	For Lab Use Only:	nly:	Ŭ	onditions on Re	Conditions on Receipt (Name and Da		1101000	C
Anchorage AK 99501	- 5						Pro	Project #		- indexes		111 march 112 ma		2001	>
Phone - (907) 258-8661	-							Due Date:							_
FAX - (907) 258-8662							Sai	Samples Received Chilled?	ved Chilled?	X	YES	Q			
Client Information:							Sai	Sample Tvpe ¹	Media Tvne ²	<u> </u>	untainler	Precentatives.°			3
Wrangell-St. Elias National Park and Preserve	Vational Park	and Preser	ve				4-1		1-Charcoal		and the second second			And-the Discovery	
106.8 Richardson Hwy	łwy						2-V	2-Water	2-XAD	5				Alialysis Kedi	Delsar
P.O. Box 439							. <u>-</u> е		3-Matched	biok		D-12304			
Copper Center, Alaska 99573	ska 99573	ana a a la companya a c		1979 - 1970 - 19			-4-S		4-Preweighed		V-VOC	D-NaOH			
		······································					2-A		5-Other						
Attn: Jim Baker, 907-822-7228, FAX - 907-822-7216	7-822-7228,	FAX - 907-	822-7216				8-9		P						
(At Kennecott NHL - Ken - 259-7226, Jim - 259-7228)	iL - Ken - 25	9-7226, Jim	- 259-7228)											~1	
J.D.	Tvpe ¹ Media ²		Collected		Samole		Air			Water	0.000	- - - -		พุพ	
			Time	ت. 	Location					(itere)		Lau I.U. #	0A3	٢	
	2	,					╇]]]	
0/1/	n	3-11	100001	Łas/	Bunkhouse	1	١	1	l		(A(I)	>	>	
			•	-											
Adenov	DOL NDC		1 TOOM		=							-			
Agency Relinctrished by:		Location	NTSI-1	WKSI - Kennecott NHL		11.1	ē	FOIS#	14.20	NIV	ł	Task order number#	(
Received by:		2 2	HICKA	- 5	Date:	Date: 2-// Date: 3-/)	0/.	Time	10:30 3 PA	UMU	Turn Arc	Turn Around Time	Routine	ine 24 hour	ŭr
COMMENTS(Instruction, sample hazards):	ction, sample	e hazards):	24 hour tui	n around, re	24 hour turn around, results to be faxed (907) 822-7216, invoices to be paid by credit card	07) 822-72	216, invoid	ces to be po	aid by credit	card					
NVAI III	201	70V	07 10	10:54	ONN ()	weit	3/11	A D							

		1101090
SGS	SAMPLE RECEIPT FORM	SGS WO#:
Yes No NA	Are samples RUSH , priority or <i>w/in 72 hrs</i> of hold time ? If yes, have you done <i>e-mail ALERT notification</i> ? Are samples <i>within 24 hrs.</i> of hold time or due date ? If yes, have you also <i>spoken with</i> supervisor? Archiving bottles: Are lids marked w/ red "X" ? Were samples collected with proper preservative? Any problems (ID, cond'n , HT, etc)? Explain:	TAT (circle one): Standard -or- Rush Received Date: 3/15/10 Received Time: 17.00 Cooler ID Temperature Measured w/ MML AMD °C °C °C °C °C °C °C °C
	If this is for PWS, provide PWSID : Payment received: \$by Check or Credit Card Will courier charges apply? Data package required? (Level: 1 / 2 / 3 / 4) <i>Notes</i> : Is this a DoD project? (USACE, Navy, AFCEE)	Note: Temperature readings include thermometer correction factors Delivery method (circle all that apply): Client Alert Courier / Lynden / SGS UPS / FedEx / USPS / DHL / Carlile AkAir Goldstreak / NAC / ERA / PenAir Other: Additional Sample Remarks: Extra Sample Volume?
Yes No	must be filled out for DoD projects (USACE, Navy, AFCEE): Yes N/A Is received temperature ≤6°C? Was pH verified upon receipt? Were containers ice-free? Notify PM immediately of any ice in samples. If some cooler temperatures are non-compliant, see form FS-0029 (attached) for samples/analyses affected. Was there an airbill? (If "yes," see attached.) Was cooler sealed with custody seals & were they intact? # / where: Was there a COC with cooler? Was there a COC filled out properly? Did labels correspond? Did the COC indicate USACE / Navy / AFCEE project? Samples were packed to prevent breakage with (circle one): Bubble Wrap Vermiculite Other (specify): Were all samples sealed in separate plastic bags? Were all VOCs free of headspace and/or MeOH preserved? Were correct container / sample sizes submitted? Was the PM notified of arrival so they can send Sample Receipt Acknowledgement to client? Cooler Temp °C Cooler ID Cooler Temp °C	Limited Sample Volume? Multi-Incremental Samples? Lab-filtered for dissolved Ref Lab required for Foreign Soil? This section must be completed if problems are noted. Was client notified of problems? Yes / No By (SGS PM): Individual contacted: Via: Phone / Fax / E-mail (circle one) Date/Time: Reason for contact: Change Order Required? Yes / No
Notes: Anyla:	ISUE Pate 3/16/10 sis is lead and Cadmium in	Point ale
Completed by (s Login proof:	ign): <u>Amy Aml</u> (print): <u>Ay</u> Self-check completed Peer-reviewer's In itial	ny ArWl s FAT

0			Notes	*	<u> </u>	1			T		T	ľ	1	T	T	<u> </u>	1	1	T	1	T	T			F042r02 Revised 9/8/2009
õ 📃)ther:		+		-			+					+						-			\bigcirc	9/6
ö				_			+		┼──			. <u> </u>				 		ļ		 	-		1	-	ed.
-		ive	4scorbic Acid Ascorbic Acid															<u> </u>	ļ	 	-		(5	e <u>či</u> š
		rvat	HOB HOB	-			+									<u> </u>	<u> </u>	 	ļ	 			çeva	3	<u>к</u>
1101090		Preservative	HSSO4							┼──											-			11	12r0
		Pre	· · · · · · · · · · · · · · · · · · ·	-										_	<u> </u>	<u> </u>		ļ	ļ			106		Date:	F04
	#		HNO3 HCI													 		 		ļ	4	#d(Ď	
	Š		anol			+							<u> </u>			<u> </u>				ļ	4	S.			
	SGS WO#				-											<u> </u>					4	pe			
		a)ther:	1					 							 	 	ļ	ļ			Ited			
		٦ ک	septa						 		ļ				ļ	ļ	ļ			ļ	4	mer			
		er	Valgene Joli				<u> </u>	 	 							<u> </u>	_	ļ	ļ		-	ocu			
	_	tain						 	 	ļ					ļ	ļ	ļ		ļ		4	e Ģ	<	7	
	kin	Container Type	HDbE	-					 				ļ	ļ	ļ	ļ	ļ				1	st b	ŕ	ung (inul	
	rac	9	00				ļ	<u> </u>		ļ					<u> </u>	ļ	ļ	<u></u>	ļ	ļ	1	nm	(Z	
	e T		JC Dr	-		<u> </u>									ļ		<u> </u>				 	eipt		54	Э
	ott		Difier: Ziplock		<u> </u>		<u> </u>	ļ			<u> </u>	ļ	ļ	ļ	ļ		ļ					e e		K .	
	<u>ш</u>	Ĕ	Jm0t	7																	ŀ	LOC	<	3	
	M	히	JmOg																		Γ	5			
	R	ē	125mL or 402			1							1									atio		d by	
	SAMPLE RECEIPT FORM - Bottle Tracking	Container Volume	208 to JmO22		1	1			1	1	†											serv		Completed by:_	
	Ш Ш	ပ်	Jm005	;																		l pre		duuc	
	Щ	ľ	וד								1	1								<u> </u>		lica		ŭ	
	Ę		LB			+				+-	+	+									S	hen			
	SAN		ŚС	,	1																Bottle Totals	[] C]			
											1										ŧ	iona			
				E	1																Bot	dditi			
				ē	5																	e (a			
																						luire			
			st	9																		Per la			
			Test	.5																		ich			
				10																		ž			
				S																		ners			
				Wad, Cadium																		itair			
				00																		Co C			
		ľ	XittaM																		1	* Note: Containers which require (additional) chemical preservation upon receipt must be documented per SOP#106			
<u> </u>			at inimuco	1	1					<u> </u>												Z *			
Ses			Container ID	A																					
U.			#	Antonia																					

Appendix C-9 – Data from Shields, Mike. 2013. Blasting Caps Diagram.

Appendix C-10 – Data from SH Alaska. 2015. Report of Records and Data Review – National Park Service, Wrangell-St. Elias National Park and Preserve, Historic Kennecott Mine Town Site.

Appendix C-11 – Data from White Environmental Consultants, Inc. 2015. Final Report: Kennecott National Historic Landmark Soil Sampling Supplemental Services.

Sample #	Location	Concentration (µg/16 in ²)
413-Hg-1	Level 1 – Helmet donning area – shelf	100
413-Hg-2	Level 2 – East of dorr thickener – surface of crib	40
413-Hg-3	Level 3 – Shaker table – north side	9.7
413-Hg-4	Level 3A – North side of dorr thickener – top of crib	6.4
413-Hg-5	Level 4 – North shaker table – surface	5.2
413-Hg-6	Level 5 – High grade collection box – south	5.9
413-Hg-7	Level 6 – Mill support of south shaker table	5.7
413-Hg-8	Level 6A – Hancock jig cross member	3.1
413-Hg-9	Level 7 – North roller crusher	16
413-Hg-10	Level 8 – East ore tipple	1.1
413-Hg-11	Level 9 – Elevator dump site – south side	4.5
413-Hg-12	Level 10 – South elevator – horizontal support	0.82
413-Hg-13	Upper deck – Casing packing tool	4.0
413-Hg-14	Main ore bin – Wood siding	0.26
413-Hg-15	Base of north jaw crusher foundation	92
	NJ DHHS Guidance	< 1

Table 1 – Summary of Mercury Wipe Samples – July 22, 2015

Metal	Sample # / Location of Highest Concentration	Highest Concentration (mg/kg)	AK Cleanup Level (mg/kg)
Antimony	#5 – West side cover over tram- North side	84	33
Arsenic	#8 – Main ore bin	10,000	3.7
Barium	#3 – West end ore bin- South side	260	16,600
Cadmium	#11 – East of Hancock addition	480	65
Chromium	#3 – West end ore bin- South side #16 – Road at Scalehouse	21	250
Lead	#11 – East of Hancock addition	1500	400
Mercury	#8 – Main ore bin	64	25
Selenium		Not Detected	410
Silver	#11 – East of Hancock addition	110	410

Table 2 – Summary of Soil Results – July 22, 2015

Sample #	Date Sampled Lead Result Arsenic Result		Arsenic Result	Mercury Result
		Total µg	Total μg	Total µg
MW #1	7/15/15	1370	4080	
MW #2	7/15/15	2060	1230	
MW #3	7/15/15	5140	1820	
MW #4	7/15/15	7180	3900	
MW #5	7/15/15	3260	1040	
MW #6	7/15/15	7710	2040	
MW #7	7/15/15	4690	920	
MW #8	7/15/15	1280	1070	
MW #9	7/15/15	1950	2300	
MW #10	7/15/15	2090	2140	
MW #11	7/15/15	3520	235	
MW #12	7/15/15	41400	184	
MW #13	7/15/15	178	176	
MW #14	7/15/15	84	83.5	
MW #15	7/15/15	51.8	351	
MW #16	7/15/15	88.9	483	
MW #17	7/15/15	1270	129	
MS #18	7/15/15	1320	1460	
MS #19	7/15/15			1.4
MS #20	7/15/15	183	211	
MS #21	7/15/15			21.8
MW #22	7/15/15	992	1550	
ME #23	7/15/15	13.2	29.4	
NW #24	7/15/15	130	45.6	
BP-1	7/30/15	33.2	33.2	
BP-2	7/30/15	76	40.1	
BP-3	7/30/15			0.56
REGULATION or STANDARD		HUD- Window Troughs 400 µg/ft ²	EPA COPC Committee 36 μg/ft²	NJDHSS < 1 μg/16 in ² < 9 μg/ft ²

Table 3 – NPS Wipes – Lead, Arsenic, Mercury

Sample #	Date Sampled	Lead Results (mg/m ³)	Arsenic Results (mg/m³)	Mercury Results (mg/m³)
EBW-01-015	6/25/15	0.005	< 0.00019	
MS-01-015	7/1/15	0.0032	< 0.002	
ML-01-15	6/11/15			< 0.000070
EBW-02-015	7/12/15	0.0026	< 0.00024	
OC-01-015	7/9/15	0.00031	< 0.00024	
MW-02-015	7/16/15	< 0.0013	< 0.001	
EBW-03-015	7/14/15			< 0.000028
OC-02-015	7/9/15			< 0.000049
MW-01-015	7/16/15			< 0.00011
EB-03-015	7/27/15	0.013	< 0.00048	
EB-04-015	7/28/15	0.014	< 0.00025	
ML7-01-015	7/23/15	0.00055	< 0.00022	
ML5-02-015	7/23/15	0.00074	< 0.00025	
CIH-02-015	7/22/15	< 0.002		
REGULATION		OSHA 8 Hour PEL 0.05 mg/m ³	OSHA 8 Hour PEL 0.01 mg/m ³	AKOSH 8 Hour PEL 0.05 mg/m ³

Table 4 – NPS Airs – Lead, Arsenic, Mercury