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A B S T R A C T

In the Rocky Mountain and Pacific Northwest regions of the United States, forests include extensive portions of
standing dead trees. These regions showcase an intriguing phenomenon where the combined biomass of standing
dead trees surpasses that of fallen and decomposing woody debris. This stems from a suite of factors including pest
disturbances, management decisions, and a changing climate. With increasingly dry and hot conditions, dead
timber on a landscape increases the probability that a fire will occur. Identifying and characterizing the presence
of standing dead trees on a landscape helps with forest management efforts including reductions in the wildfire
hazard presented by the trees, and vulnerability of nearby park assets should the trees burn. Using forest-based
classification, exploratory data analysis, and cluster vulnerability analysis, this study characterized the occur-
rence and implications of standing dead trees within Yellowstone National Park. The findings show standing dead
trees across the entire study area with varying densities. These clusters were cross-referenced with vulnerability
parameters of distance to roads, distance to trails, distance to water, distance to buildings, and slope. These
parameters inform fire ignition, propagation, and impact. The weighted sum of these parameters was used to
determine the vulnerability incurred on the park assets by the clusters and showed the highest values nearest to
park entrances and points of interest. High vulnerability clusters warrant priority management to reduce wildfire
impact. The framework of this study can be applied to other sites and incorporate additional vulnerability var-
iables to assess forest fuel and impact. This can provide a reference for management to prioritize areas for
resource conservation and improve fire prevention and suppression efficiency.
1. Introduction

Fires are crucial components of land management and ecosystem
health as regenerative agents for plant species (Baeza et al., 2007). The
vegetation in North America has been shaped by recurring fires over
millions of years (He et al., 2019), but climate change has increased the
frequency, intensity, and extent of wildfires in the western United States
by altering temperature regimes and the availability and distribution of
water (Picos et al., 2019; Westerling et al., 2006). Evaluating woodland
ecosystem vitality relies on understanding the relationship between
forest health, climate dynamics, and management practices. Forest
integrity promises biodiversity and social, economic, and ecological re-
sources (Franklin et al., 2018). High interspecies competition or disease
and pest trauma can increase the amount of dead organic matter in a
y, University of Florida, Gainesv
tt), mozdes@nku.edu.tr (M. Ozde

November 2024; Accepted 28 N
s by Elsevier B.V. on behalf of KeA
-nd/4.0/).
forest. A forest dominated by dead organic matter also suffers in biodi-
versity, its ability to function as a resource, and its adaptive capacity to
withstand wildfire impact (Ozsahin et al., 2022; Zeppel et al., 2013).
Degraded forest conditions create environmental concerns and lead to
increased risks to nearby human communities (McWethy et al., 2019).
The National Center for Environmental Information (NCEI) Billion-Dollar
Weather and Climate Disasters dashboard shows that from 1980 to 2023,
there were 22 major wildfire events in the US exceeding one billion
dollars each in damages, resulting in a total of $142.8 billion in damages
and 534 deaths (NOAA, 2023). The increasing prevalence of wildfires has
raised interest in improvements in prevention, preparedness, and re-
covery from wildfire events impacting forest ecosystems, resources, and
human communities (Chuvieco et al., 2012).

Fire frequency, severity, extent, and onset and their driving variables
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vary regionally and temporally (Cansler et al., 2022; Pausas and Keeley,
2021; Stevens-Rumann et al., 2016; Arsanjani and V�azquez, 2020) and
have been studied using satellite imagery to observe burn scars from both
before and after wildfire events (Stavrakoudis et al., 2020). Wildfire
onset and severity are chiefly influenced by elevation, slope, aspect, land
cover, proximity to the nearest stream, and fire recurrence (Asori et al.,
2020; Fern�andez-Guisuraga et al., 2021; Noss et al., 2006). These driving
variables dictate the fuels present to burn. Standing dead trees are a
significant fuel loading component. As a potential product of disease, this
can result in large homogeneous swaths of dead trees in a forest. These
standing dead fuels are then a substantial fire hazard and can serve as a
fuel ladder to upper crown fuels or will soon be a high volume of down
woody debris. Rocky Mountain and Pacific Northwest forests have some
of the highest volume and biomass of standing dead trees (Woodall et al.,
2006). Landscape heterogeneity can either inhibit or promote wildfire
behavior (Chen et al., 2017). Therefore, regional studies characterizing
the distribution and density of standing dead trees can help with a local
assessment of their role in fire hazard and impact potential. The regional
variation in fire history, fire hazard, and fire impact heightens the need
for regional studies to translate between analysis to indices to inform
management decisions (Jones et al., 2022; Lausch et al., 2017).

Wildfire risk is the product of hazard and physical vulnerability (Scott
Fig. 1. The location of Yellowstone National Park with National Park Service fire pe
1881. Fire areas are symbolized with 30% transparency so areas with repeated burn
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et al., 2013). Hazard captures the likelihood of a fire burning in an area,
based on the fuels available and how intensely the area is likely to burn.
Vulnerability speaks to an asset's susceptibility to exposure and adverse
effects from a hazard. This study addresses the physical vulnerability of
the human-built infrastructure within Yellowstone National Park,
encompassing structures such as buildings, trails, and roads. Vulnera-
bility assessments can rise to a detailed risk assessment level if they
capture the statistical probability of a particular intensity hazard com-
bined with the level of vulnerability and type of assets. Vulnerability in
this study is generalized simply as proximity to potential wildfire fuel
(standing dead trees). Hazard posed by the likelihood of stands of dead
trees to burn is simplified to a consideration of the impact of slope and
waterway proximity.

Fire management requires extensive knowledge of an area's land-
scape, climate, and human factors. This study aims to provide a
comprehensive and nuanced understanding of wildfire vulnerability in
Yellowstone National Park to inform the development and implementa-
tion of effective and adaptive fire management strategies. By using
remote sensing data and random forest machine learning algorithm to
classify land cover and rank wildfire vulnerability of park assets with
spatial data and modeling techniques this study seeks to 1) identify the
pattern of standing dead trees in Yellowstone National Park, and 2)
rimeter history overlain to show the extent of burns across the landscape since
s appear darker.



Table 1
The data employed in the Random Forest algorithm.

Variable
name

Description Spatial
resolution (m)

Data
source

CHM Height of canopy above the
ground

1 NEON AOP

Vegetation
Cover

Derived from NEON 1 NEON AOP

DEM Digital Elevation Model 1 USGS.GOV
Slope Derived from DEM 1 USGS.GOV
NDVI Normalized Difference

Vegetation Index
10 Sentinel-2

EVI Enhanced Vegetation Index 10 Sentinel-2
PRI Photochemical Reflectance Index

(Canopy Xanthophyll)
10 Sentinel-2

SAVI Soil-Adjusted Vegetation Index 10 Sentinel-2
NDBI Normalized Difference Burn

Index
10 Sentinel-2

ARVI Atmospherically Resistant
Vegetation Index

10 Sentinel-2
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prioritize clusters of standing dead trees for management to reduce
wildfire vulnerability of park assets. Though the focus is on the Yellow-
stone region specifically, there is the opportunity to extend this study to
other sites in Rocky Mountain and Pacific Northwest forests where
standing dead tree assessments have also been completed.

2. Data and methods

2.1. Study area

The Yellowstone National Park boundary was selected to bound the
area of study (Fig. 1). This includes 2.2 million acres of land in the
northwest corner of Wyoming (Buskirk, 2016). This area has a history of
natural fires, and the National Park Service (NPS) manages the area
under a uniform strategy that has evolved over time in pace with the
evolution of understanding the role of wildfire (NPS1, 2023). The current
wildfire management strategy was adopted in 2009 (Botti and Nichols,
2021). These 2009 Wildland Fire Policy Guidelines allow fire personnel
to manage a lightning-caused fire for multiple objectives which can
include both protecting structures and allowing fire to burn for natural
benefits (DellaSala et al., 2004).

Situated in the greater Yellowstone ecosystem, Yellowstone National
Park hosts the intersection of species found both in the Rocky Mountains,
the Great Plains, and the Intermountain region (Dersam, 2019). Vege-
tation communities are spatially distributed according to the underlying
geology, water availability, elevation, soils, and the impact of distur-
bances caused by fire, floods, landslides, blowdowns, insect infestations,
and competition with nonnative plants (Stegner et al., 2019). The
vegetation communities present include higher and lower elevation
forests and their associated understory vegetation, sagebrush-steppe,
wetlands and hydrothermal.

Forest covers approximately 80% of the park (NPS1, 2023). Fire
tolerance, elevation, and substrate composition dictate the species pre-
sent in an area. As an example, rhyolitic soils do not have the nutrients to
support fire and spruce communities, but lodgepole pines are able to
sustain populations (Notaro et al., 2019). The suite of species present
across the park includes lodgepole pine (Pinus contorta), Engelmann
spruce (Picea engelmannii), subalpine fir (Abies lasiocarpa), whitebark
pine (Pinus albicaulis Engelm.), limber pine (Pinus flexilis), Douglas-fir
(Pseudotsuga menziesii) and Rocky Mountain juniper (Juniperus scopulo-
rum) (NPS1, 2023).

2.2. The Yellowstone NEON field data and classification analysis

The National Ecological Observatory Network (NEON) dataset
generated the classification map which is the foundation of this study.
The data collected by the NEON project informs research on environ-
mental impacts within mountain ecosystems. NEON technicians collect
in-situ ecological data as part of continental-scale research. Data are
collected with hand-held tools in the field, using standardized methods
adopted from the forestry community (NEON, 2023).

The study area's Woody Plant Vegetation Structure data product
(NEON data product ID: DP1.10098.001) contains the quality-controlled,
native sampling resolution data from in-situ measurements of live and
standing dead woody individuals, shrub groups, and non-herbaceous
perennial plants from all terrestrial NEON sites with qualifying woody
vegetation. The exact measurements collected per individual depend on
growth form, and these measurements are focused on enabling biomass
and productivity estimation, estimation of shrub volume and biomass,
and calibration/validation of multiple NEON airborne remote-sensing
data products. Measurements include taxonomic identification, stem
diameter, height, crown dimensions, observations of plant health and
mapped location. Among the plant health observations is a plant status
variable that captures whether an individual is live, standing dead,
removed, lost, or dead. For this study the focus centered on individuals
with a standing dead assignment: a “standing dead tree or standing dead
3

bole within a multi-bole tree, regardless of cause of death. The entire tree
or bole must be dead, and the main bole must not be broken.” (NEON,
2023).

Two methodologies were used to prepare spatial variables: 1) Remote
Sensing Feature Extraction: NEON AOP-derived images trained classi-
fiers, capturing spectral, structural, and environmental characteristics of
vegetation at the site during fieldwork (Table 1). 2) Standing Dead/
Living Tree Ratio Calculation: Computed the ratio of standing dead to
living trees at each NEON field plot (20 m � 20 m) over the period
2019–2022. A low ratio signifies a higher living tree counts while higher
ratios suggest higher standing dead tree counts.

Random Forest Classification creates models and generates pre-
dictions using the random forest algorithm based on known values pro-
vided as part of a training dataset (Breiman, 2001). The model is then
applied to a prediction dataset with the same explanatory variables as the
training dataset. Many decision trees, called an ensemble or a forest, each
consider a random subset of features against a random data sample.
While the use of a single decision tree may lead to overfitting, multiple
decision trees each using a random subset of explanatory variables via
resampled data from the training set reduces overfitting, enhances the
accuracy and stability of the model, and avoids the need for complex
assumptions about the underlying distribution of the data (Fox et al.,
2017). The outcome of the model is determined by aggregating the de-
cisions of each individual tree, where each tree “votes” for an outcome
value, and the class with the majority of votes is assigned (Sage et al.,
2020). This method was selected for this study with its ability to handle
high-dimensional data, its low sensitivity to overfitting and the number
of input variables, its intuitive interpretation of accuracy and variable
importance, and its independence from requiring many user-defined
parameters.

Through Google Earth Engine, the 544 NEON field plots served as
training samples to model the “standing dead/living” tree ratios. The
model was then applied to the prediction dataset, with independent
validation set at 30%. The four resultant categories are classified based
on standing dead tree percentage: 100%–70% standing dead, 70%–40%
standing dead, 40%–10% standing dead, and less than 10% standing
dead.

The performance of each classification model was based on internal
out-of-box error estimates and the accuracy of the independent valida-
tion set predictions. Accuracy of the classification model was summa-
rized via confusion matrices. The precision and recall, or user's and
producer's accuracy, respectively, were calculated based on the confusion
matrix. Precision is the proportion of correctly predicted instances in a
specific class out of all instances that were predicted to be in that class,
while recall is the proportion of correctly predicted instances in a specific
class out of all actual instances in that class. The F1 score is the harmonic
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mean of precision and recall, and it provides a single metric, between
zero and 1, that considers both false positives and false negatives. A F1
score of 1 indicates perfect precision and recall.

2.3. Exploratory spatial data analysis

Using ArcGIS Pro (NPS5, 2023) an Exploratory Spatial Data Analysis
(ESDA) helped describe and visualize spatial distribution and identify
areas of hot spots and cold spots within the classification results. Global
Moran's I offers a test of global clustering by classifying spatial autocor-
relation as positive, negative or none (You et al., 2017). This analysis
unveils spatial patterns or trends in feature attributes, such as clustering
or dispersion, that may not be readily apparent through visual inspection
alone. Positive spatial autocorrelation is when similar values cluster
together in a map, negative spatial autocorrelation is when dissimilar
values cluster together in a map, and no spatial autocorrelation indicates
a random distribution of features, with no discernible spatial pattern.

Following the assessment for statistically significant clustering in the
forest data, the Hot Spot Analysis tool pinpointed areas of statistically
significant high values (indicating more dead trees) and statistically
significant low values (indicating more live trees). The Optimized Hot
Spot Analysis tool identifies an appropriate scale of analysis, corrects for
both multiple testing and spatial dependence, and generates a feature
class with a calculated z-score, p-value, and a confidence level bin field.
The confidence bins are derived from the z-scores and p-values of the
data, offering insights into the confidence associated with the location of
the hot or cold spot.

2.4. Cluster vulnerability analysis

The cluster suitability analysis process can be broken into three parts:
Fig. 2. (a) Forest assessment classification dataset used to identify clusters. (b) Point
(c) Slope data used to inform fire vulnerability.
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identifying and creating cluster locations, preparing the suitability
criteria, and assigning suitability to each cluster. Suitability in this
context translates to areas of greater concern for wildfire probability and
impact, or vulnerability. The result is to identify which clusters rank
highest in concern to inform management triage.

Using the classified forest assessment data, clusters were identified as
areas with greater than 500 cells of the highest dead tree ratio value
(100%–70% standing dead trees). These clusters of points were then
converted to convex hull polygons to serve as the areas to investigate in
the vulnerability analysis. Thresholds of 250 and 1,000 cells were also
tested for viability but yielded too few or too many clusters.

The following criteria were selected to serve as the inputs for the
vulnerability analysis: roads, trails, building locations, slope, and water
sources (Fig. 2). Water source flowline data were accessed through the
WyGISC GeoHub REST service. This is the National Hydrography Dataset
that has been clipped to the state of Wyoming (NHD, 2023). Road, trail,
and building information was accessed through the National Park Service
GIS Data Services REST server (NPS2; NPS3; NPS4, 2023). Slope data was
derived from the USGS seamless 3D Elevation Program Digital Elevation
Model (DEM) dataset, 2020 vintage (USGS, 2022). The resolution is
approximately 10m in the north/south direction, with variable east/west
resolution due to the convergence of meridians with latitude.

All input criteria data sources were clipped to the Yellowstone Park
boundary prior to analysis. From these clipped data sources distance
accumulation raster data for the water source, road, trail, and building
locations were generated to show the gradients of distance from each
criterion throughout the study area.

The distance raster layers, and the slope raster were then each
rescaled to a common scale of 1–20 using functions appropriate for each
criterion. By transforming the criteria to common scales, they can be
compared and combined. Because wildfire probability is higher in areas
and vector datasets used to identify distances from fire vulnerability influences.
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of steeper slopes, the slope raster layer was rescaled using the MSLarge
function – based on the mean and standard deviation where higher
values of input raster have higher preference. Fire vulnerability is
greatest at locations closest to park assets of roads, trails and buildings, so
these criteria were rescaled using the Small function which indicates that
locations with smaller values have higher preference. Locations closest to
water typically have a lower probability of fire ignition so the water
source raster was rescaled with the Large function indicating that loca-
tions further from water sources have higher preference. With a stan-
dardized scale these criteria layers could be combined and weighted
according to impact on fire vulnerability.

Weightings were determined with a hierarchy process considering the
relative importance of each variable (You et al., 2017). The vulnerability
criteria consisted of asset proximity factors with the addition of the fire
likelihood, or hazard, factors of slope and distance to river. Using the
ArcPyweighted sum tool allows for any positive or negative decimal value
to be assigned as a weight. High slope areas are prone to fast spreading fire
behavior and are more difficult to manage so slope was given a weight of
1. Roads represent high use areas so distance to roads was given a weight
of 1.5. Trails also represent high use areas, though less than roads, so
distance to trails was given a weight of 1.1. Proximity to water has a high
impact on the probability for an area to burn so distance to water was
given a weight of 1.25. Because distance to buildings serves as a proxy for
the highest use areas it was given a weight of 1.7.

The ArcPy Zonal Statistics tool was used to summarize the value of the
combined weighted sum criteria raster within the areas of the cluster
polygons. Each cluster was assigned its average value of the combined
criteria raster. These values were then binned into three categories to
distinguish level of concern using natural breaks classification. With this,
class breaks are defined so as to best group similar values together and
maximize the differences between classes. This classification is computed
within ESRI ArcPro based on the Jenks Natural Breaks algorithm. This
final ranking serves as the recommendation of priority for forest man-
agement efforts.

3. Results

3.1. Random forest classification

The spatial results (Fig. 4) of the random forest classification capture
Table 2
Confusion matrix of the random forest classification m
categories. Values are highlighted with a gradient where
the diagonal are those of true value classifications. Note
sifications, the highest counts are on the true classificati
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the distribution of dead and live trees throughout Yellowstone National
Park. The classified map reveals distinct swaths of higher living tree ra-
tios interspersed with areas dominated by higher dead tree ratios. The
value distribution indicates that the highest count of cells was assigned to
the 40%–70% standing dead tree category, suggesting a significant
portion of the park is experiencing moderate to high levels of tree mor-
tality. This pattern will be further explored in the ESDA results section.

The performance of the random forest model can be assessed with
several evaluation metrics including an overall accuracy score. The
overall accuracy of the model, which represents the proportion of
correctly classified instances out of the total instances, was found to be
0.7665 or 76.65%. This indicates that the model correctly predicted the
dead tree percentage category for approximately 77% of the validation
samples, demonstrating a reasonable performance in capturing the
spatial patterns of tree mortality.

A confusion matrix describes the model's performance between
classes (Table 2). The matrix displays the counts of true positive, true
negative, false positive, and false negative predictions allowing an un-
derstanding of where the classifier was confused. The diagonal cells in
the matrix represent the correctly classified instances for each class,
while the off-diagonal cells indicate misclassifications.

The precision values range from 0.68 to 1.00, with an average of 0.85.
The highest precision of 1.00 was achieved for the 10% and 100%
standing dead tree ratio classes, indicating perfect precision in the
model's predictions for these extreme categories. In the confusion matrix
(Table 2), the sample size for the 100% standing dead tree percentage
category (representing plots with 0% live trees) is conspicuously small,
comprising only 2 instances. This scarcity in samples can be attributed to
the unique nature of the dataset, where each data point corresponds to a
20 m � 20 m plot. Considering the expansive study area covering
approximately 400 km2, predominantly forested, encountering patches
devoid of live trees is exceptionally rare. The classification accuracy
report (Table 3) shows performance metrics of the model. The lowest
precision of 0.68 was observed for the 50% class, suggesting some
overestimation of this category. The recall values exhibit a similar range
from 0.64 to 1.00, with an average of 0.82. The model achieved perfect
recall for the 10%, 90%, and 100% classes, while the lowest recall of 0.64
was observed for the 20% class, indicating some underestimation of this
category. The highest F1 scores of 1.0 were obtained for the 10% and
100% classes, aligning with their perfect precision and recall values. The
odel for predicting standing dead tree percentage
darker greens denote higher counts. The values on
that while the model did produce some false clas-

on diagonal.



Table 3
Classification Accuracy Report of the performance metrics. Values are highlighted with a gradient where
darker greens indicate better model performance and lighter greens indicate poorer model performance.
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lowest F1 scores of 0.72 were observed for the 40% and 50% classes,
indicating relatively lower performance for these categories compared to
others.

3.2. Exploratory spatial data analysis

This exploratory spatial data analysis summarized and inspected the
classified forest assessment data. The distribution of this data into the
four tree ratio bins can be seen in Fig. 3. A value of 4 indicates a high
count of dead trees and a value of 1 indicates a high count of live trees.
Within the study area, a tree ratio bin of 3 (40%–70% dead) was most
abundant, followed by 1 (0%–10% dead), then 4 (70%–100% dead), with
the least abundant being 2 (10%–40% dead).

A visual inspection of the results shows distinct regions dominated by
a particular tree ratio. Comparing these regions against satellite imagery
confirms that they approximate the vegetation patterns observed in the
Fig. 3. Illustrates the distribution of standing dead trees across various ratio
bins based on forest assessments. These bins are categorized as follows: Bin 1:
0–10%; Bin 2: 10%–40%; Bin 3: 40%–70%; and Bin 4: 70% and above.
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imagery (Fig. 4).
A spatial autocorrelation analysis (Global Moran's I) described the

clustering of these assigned bin values. This report indicated that the
clustering of this dataset is significant (p-value <0.001) and that there is
less than a 1% likelihood that this clustering is a result of random chance.
The Moran's Index is 0.38 indicating a tendency towards clustering.

The Optimized Hot Spot analysis then further described the clustering
of the forest assessment bin values. The spatial output of this analysis
showed regions of significant hot spots (higher dead tree counts)
appeared predominantly in the central west portion of the park. Signif-
icant cold spots (higher living tree counts) were indicated in the upper
west and central to southern east portions of the park (Fig. 5). Statistics
results show the average and majority confidence bin score to fall around
zero, indicating neither a significant hot nor cold spot.
3.3. Cluster vulnerability analysis

3.3.1. Cluster identification
A threshold of 500 dead tree cells identified 53 distinct clusters

(Fig. 6). A threshold of 250 dead tree cells yielded 87 clusters and a
threshold of 1,000 cells yielded 17 clusters. The size distribution of the
clusters showed an average of 34 km (Fig. 9). Larger clusters appear in
the northeast and southern portions of the park.

3.3.2. Vulnerability criteria
The selected vulnerability criteria included road, trail, building, and

waterway proximity, as well as slope. The outputs of the distance accu-
mulation analysis run on these point and line features are shown in Fig. 7.
The criteria values were transformed to a common scale so they could be
compared and combined. The result of this transformation of each cri-
terion and their combination into the weighted sum layer is shown in
Fig. 8.

3.3.3. Cluster ranking
The combined weighted sum criteria raster values within the cluster

polygons were averaged for each cluster. These average values were then
categorized into three levels (high, medium, low) using natural breaks
classification, which optimally groups similar values while maximizing
differences between classes, based on the Jenks Natural Breaks



Fig. 4. Results of imagery classification into four tree ratio categories overlain on satellite imagery. The inset maps on the right show detail of the rectangular region
indicated in the center of the overview map on the left. Note the alignment of the areas predicted by the model to exhibit high percentages of dead trees (shown as
red), with the portion of the satellite imagery appearing less vegetated.

Fig. 5. Optimized hot spot results. The right figure shows greater detail to the outlined area in the upper left of the overview map on the left. The upper map on the
right shows the hot spot results and the lower map on the right shows the classified tree ratio data. Note the correlation between areas classified as a high dead tree
ratio (red) with a hot spot (red), and low dead tree ratio (green), with a cold spot (blue).
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algorithm. This final ranking provides recommendations for prioritizing
forest management efforts. Cluster vulnerability analysis indicates that
the top five clusters are located in the northeastern and eastern areas of
the park and have areas exceeding 10 square kilometers. A notable
grouping of high vulnerability is visible in the central-western area.
Clusters with lower vulnerability are primarily located in the southern
and western areas of the park (Fig. 9).
7

4. Discussion

4.1. Random forest classification

Given the aridity of the Yellowstone National Park study area, the
classification results align with the expectation that the ground cover
would exhibit a patchwork of vitality trending towards more dead plant



Fig. 6. (Left) Heat map labeled with count of highest dead tree class assigned cells showing the predominance of these cells in the central west portion of the park.
(Right) Comparison of results of the number of clusters generated with different minimum threshold values.

Fig. 7. Output maps of the distance accumulation calculation from the point and line vulnerability criteria. (a) Distance to roads, (b) Distance to trails, (c) Distance to
water, (d) Distance to buildings.

C. Prescott et al. Forest Ecosystems 12 (2025) 100284
matter given environmental stressors like heat, drought, pests, foraging,
and fire. Wildfire impact on riparian areas in particular, as studied in
Yellowstone National Park by Minshall et al. (1997), was shown to
trigger significant changes that persist with time and hamper post fire
ecological regeneration.

The random forest classification model's performance metrics indicate
the success and reliability of the modeling approach. The overall model
accuracy of 76.65%, obtained from a separate validation set, indicates that
the model effectively captures the spatial patterns of standing dead tree
8

percentages across Yellowstone National Park. The confusion matrix
(Table 2) offers a detailed breakdown of the model's performance for each
standing dead tree percentage class. An inspection of the precision, ac-
curacy and F1 scores of the model (Table 3) demonstrates strong balance
between precision and recall particularly in the endmember classes of 10%
and 100% standing dead trees. These performance metrics underscore the
model's ability to accurately identify areas with varying counts of standing
dead trees, providing a reliable foundation for understanding the spatial
distribution of dead and live trees in the park. The model's success in



Fig. 8. The transformed criteria layers are set to a common vulnerability scale ranging from 1 to 20, where 1 is least vulnerable and 20 is very vulnerable. The most
vulnerable areas are in red and the least vulnerable areas are in green. These transformed criteria layers have been weighted and combined into the Weighted sum of
criteria layer (f) which serves to inform the cluster vulnerability assignment.

Fig. 9. (Left) Scatterplot illustrating the size distribution of the clusters in relation to their assigned vulnerability ranks, highlighting the relationship between cluster
size and vulnerability assessment. (Right) Map displaying the clusters and their corresponding levels of vulnerability based on the averaged combined weighted sum
criteria raster values.
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capturing these patterns can be attributed to the effective integration of
remote sensing features, such as spectral indices and canopy height met-
rics, which serve as strong predictors of tree health and mortality.
Furthermore, the random forest algorithm's ability to handle complex,
non-linear relationships and its robustness to overfitting contribute to the
model's good performance. The high accuracy and strong agreement with
9

ground truth data demonstrate the potential of the random forest classi-
fication approach for mapping and monitoring tree mortality across large,
heterogeneous landscapes like Yellowstone National Park. These findings
highlight the value of advanced machine learning techniques in extracting
meaningful insights from remote sensing data to support forest health
assessment and management decision-making.
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4.2. Exploratory data analysis

A visual inspection of the classification results showed clear regions
dominated by particular dead to live tree ratios, confirmed against sat-
ellite imagery. This aligns with expectations of vegetation distribution in
this landscape. In this arid environment, vegetation is closely linked to
water availability, leading to heterogeneity in vegetation distribution.
North aspects in this region see less cumulative sun year-round and retain
more moisture and thereby can support more vegetation. South aspects
see more sun and are consequently drier and more prone to being
sparsely vegetated (Noss et al., 2006). Spatial patterning is also influ-
enced by fire disturbance with plant species, density, patch size, aspect,
and burn severity all influencing post-fire recovery (Smith et al., 2021).
The heterogeneous plant distribution apparent in the ESDA can be un-
derstood as a response to the terrain and the history of the area.

The optimized hot spot analysis delineated regions dominated by
high dead tree counts, predominantly in the central-west sector of the
park— an area impacted by both the 1988 fires and the 2016 Maple Fire.
The latter, spanning from August 8, 2016 until late October, resulted in
the disturbance of approximately 18,383 ha of land (Szpakowski et al.,
2023). Conversely, the upper-west and central-to-southern-east portions
of the park displayed statistically significant cold spots, indicative of a
higher ratio of living trees. These areas do not have a history of large fire
incidents and are generally at higher altitudes less suitable to forest
development given thinner soils, and a reduced growing season length
(NPS1, 2023).

The spatial autocorrelation analyses of the classification results indi-
cated clustering with statistical significance. Depending on the cause of
tree mortality, the observed pattern of dead trees on a landscape can be of
varying homogeneity. According to the literature, a clustered pattern of
standing dead trees can be a product of disease, which, if widespread
enough, can result in large homogeneous swaths of dead trees in a forest
(Woodall et al., 2006). This pattern of dead trees on the landscape de-
creases canopy continuity and alters species composition which has been
shown to both inhibit and promote wildfire behavior, depending on the
circumstances. Chen et al. (2017) examines the interplay between sudden
oak death (Phytophthora ramorum) and wildfire. Using high-resolution
imagery with a physical simulation model to gauge burn severity based
on Landsat data, the study shows the impact of tree mortality on burn
severity. Contrary to conventional expectations, landscapes impacted by
the disease experience greater burn severity. This indicates that the
changes in surface fuels resultant from the disease may decrease landscape
resistance to fire, which can also worsen the impact of fires on adjacent
forest patches. Therefore, this clustering of dead trees found in this study
suggests the potential for increased fire impact.

4.3. Cluster vulnerability analysis

The spatial distribution of clusters shows larger clusters appear in the
northeast and southern portions of the park. Clusters were determined by
a threshold count of standing dead tree cells, meaning large cluster areas
are those with less dense standing dead tree occurrence. For this reason,
these clusters do not align with locations of statistically significant hot
spots identified in the Hot Spot analysis of the ESDA. Examining this
conclusion against the National Historic Land Cover data showing the
ground cover, it is evident that these larger clusters are in areas with
mixed ground cover compared to forest dominated smaller clusters
located in the central portion of the park. Therefore, it should be noted
that cluster size is inversely related to standing dead tree density.

Cluster vulnerability, having been examined based on distance to
road, trail, building, and waterway, as well as slope, shows prioritization
based on the proximity to the highest weighted vulnerability criteria: the
roads, buildings and trails. These features are most dense near park en-
trances and points of interest and cluster prioritization aligns accord-
ingly. An alternative prioritization method would be to rank according to
density of the standing dead trees within each cluster as a means to
10
identify clusters with higher likelihood to burn or higher hazard. How-
ever, as discussed previously, wildfire hazard is influenced by more than
tree density.

The impact of fire on human park use is emphasized in this study over
ecological fire impacts. This is because priority is assigned based on fire
vulnerability, or the proximity to human maintained assets that may be
impacted or destroyed. Vulnerability can be defined as low capacity to
cope with disaster. Natural ecosystem components can be resilient to, or
even regenerative alongside wildfires, but roads, trails, and buildings are
not. There are also ecosystem components that are unable to regenerate
post-fire given changes in climate since they were initially established,
such as the aforementioned impact on riparian areas (Minshall et al.,
1997), as well as the large aspen groves in Yellowstone (Romme et al.,
1995). An improvement to cluster vulnerability ranking could incorpo-
rate the resiliency of additional natural ecosystem components to wild-
fire impact to protect the native natural and human environment (You
et al., 2017).

Per the NPS's historic fire records, between 1992 and 2019 11% of
fires were attributed to human ignition with the remaining 89% of fires
linked to natural causes. Human caused fires are more likely within areas
of high traffic: along roads, trails, or near buildings (You et al., 2017).
This study examines explicitly how natural fire occurrences (89% of
historical fires) interact with identified clusters of standing dead trees
(the fuel hazard) to create varying levels of risk to park infrastructure and
sensitive natural areas based on proximity. While climate change and
multiple environmental factors influence fire probability, this prioriti-
zation study can provide Yellowstone National Park with actionable in-
sights about which clusters of standing dead trees, if ignited, cause the
greatest threat to park assets that cannot naturally recover from fire
damage.

5. Conclusion

Using forest-based classification, exploratory spatial data analysis,
and cluster vulnerability analysis granted an understanding of the pres-
ence, distribution, and implications of standing dead trees within Yel-
lowstone National Park. Standing dead trees are present across the entire
study area with varying degrees of density. Grouping zones of dead trees
into minimum count threshold clusters and ranking these clusters by
proximity to wildfire vulnerable features within the park can guide
planning efforts and reduce the risk of fire. The framework of this study
can be applied to other sites and incorporate additional vulnerability
variables. This study offers a way to assess forest fuel and provide a
reference for management to prioritize areas for resource conservation
and improve fire prevention and suppression efficiency.

The results provide new insights on fire risk and add to the existing
literature, offering valuable information for park management. However,
it is important to acknowledge some limitations. First, the prioritization
of clusters is based on proximity to human maintained park infrastruc-
ture. Incorporating a consideration of fire resiliency of natural ecosystem
components would provide a more robust understanding of the
ecosystem as a whole and its vulnerability to fire. Adding additional
details about the wildfire hazard of the clusters of standing dead and
details about the vulnerability of specific types of park infrastructure,
such as loss of tourism or recovery costs, would also strengthen this
study's conclusions. Finally, successful identification of the standing dead
trees and therefore the prioritized clusters rely on confidence in the input
data. The data used is of 2022 vintage leaving time for landcover changes
between data collection and present. It is worth updating the results of
this study as new data are available.

As noted by You et al. (2017), more studies of GIS-based forest fires
integrating natural forest features to assess forest fire risk and map risk
zones are necessary to build a better understanding of the spatial and
temporal variation in the risk of forest fires. This study of standing dead
trees within Yellowstone National Park offers both new results and a
framework for additional study.
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