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Abstract
In recent decades, there has been a significant increase in annual area burned in California’s Sierra
Nevada mountains. This rise in fire activity has prompted the need to understand how historical
forest management practices affect fuel composition and emissions. Here we examined the total
carbon (TC) concentration and radiocarbon abundance (∆14C) of particulate matter (PM)
emitted by the KNP Complex Fire, which occurred during California’s 2021 wildfire season and
affected several groves of giant sequoia trees in the southern Sierra Nevada. During a 26 h sampling
period, we measured concentrations of fine airborne PM (PM2.5), as well as dry air mole fractions
of carbon monoxide (CO) and methane (CH4), using a ground-based mobile laboratory. We also
collected filter samples of PM2.5 for analysis of TC concentration and∆14C. High correlation
among PM2.5, CO, and CH4 time series confirmed that our PM2.5 measurements captured
variability in wildfire emissions. Using a Keeling plot approach, we determined that the mean∆14C
of PM2.5 was 111.6± 7.7‰ (n= 12), which was considerably enriched relative to atmospheric
carbon dioxide in the northern hemisphere in 2021 (−3.2± 1.4‰). Combining these∆14C data
with a steady-state one-box ecosystem model, we estimated that the mean age of fuels combusted
in the KNP Complex Fire was 40 years, with a range of 29–57 years. These results provide evidence
for emissions originating from woody biomass, larger-diameter fine fuels, and coarse woody debris
that have accumulated over multiple decades. This is consistent with independent field
observations that indicate high fire intensity contributed to widespread giant sequoia mortality.
With the expanded use of prescribed fires planned over the next decade in California to mitigate
wildfire impacts, our measurement approach has the potential to provide regionally-integrated
estimates of the effectiveness of fuel treatment programs.

1. Introduction

Wildfire activity in California, including area burned
and occurrence of large fires, has increased over
the last several decades, with intensifying impacts
on society, the economy, and ecosystems (Dennison
et al 2014, Williams et al 2019, Safford et al 2022,
Wang et al 2021). During high fire years, man-
datory evacuation orders force tens of thousands
of people to flee their homes (Safford et al 2022).
Direct costs of wildfires, including fire suppression
and property losses, have more than doubled in the

last decade (California Department of Forestry and
Wildfire Protection, 2022a). Wildfires also incur sig-
nificant indirect costs (Wang et al 2021) like envir-
onmental cleanup, lost business revenue, infrastruc-
ture repair, and health impacts. Wildfires account for
up to half of the exposure to PM2.5 (airborne par-
ticulate matter (PM) with diameter <2.5 µm) in the
western U.S. (Burke et al 2021), and smoke expos-
ure has been linked to increased respiratory-related
hospitalizations and adverse health outcomes related
to restricted activity and days of work lost (Kochi
et al 2010, Reid et al 2016). California’s ecosystems
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are also negatively affected by intensifying wildfires,
which can weaken landscape-scale carbon storage,
shift vegetation composition, reduce biodiversity, and
threaten water supplies and other ecosystem services
(Wu et al 2011, Stevens 2017a, Foster et al 2020).
These worsening impacts motivate an urgent need for
research aimed at informing and evaluating wildfire
management strategies in California and the western
U.S.

In the Sierra Nevada mountains of California,
burned area has increased by more than seven-
fold since the 1980s, mainly as a consequence of
the cumulative effects of widespread fire suppres-
sion and climate change (Taylor et al 2016, Williams
et al 2019, Gutierrez et al 2021, Hagmann et al
2021). Widespread suppression of low- to moderate-
intensity fires has allowed overgrowth of shrubs
and small trees, which compete with larger trees
for resources (e.g. water) and serve as ladder fuels
that facilitate high-intensity crown fires (McKelvey
and Busse 1996, Stephens et al 2009, Pausas and
Keeley 2019). In addition to fuel buildup, the region
has experienced warmer and drier conditions that
increase the likelihood ofmore frequent and extensive
wildfires (Williams et al 2019, Abatzoglou et al 2021,
Gutierrez et al 2021, Higuera and Abatzoglou 2021).

Although California’s coniferous trees evolved
with fire and can withstand low- to moderate-
intensity fires with a return interval of about 15 years
(Swetnam 1993, Swetnam et al 2009), they are vulner-
able to today’s high-intensity crown fires (Shive et al
2022). This is especially important to consider in old-
growth forests, such as stands of the endangered giant
sequoia (Sequoiadendron giganteum, (LINDL.) J.T.
BUCHHOLZ), which have experiencedwidespreadmor-
tality in recent higher-intensity fires (Shive et al 2022).
Specifically, fires like the Castle Fire in 2020 and KNP
Complex Fire in 2021 contributed to giant sequoia
mortality. The Castle Fire killed an estimated 10%–
14% of large (>1.2 m dbh) sequoias (Stephenson and
Brigham 2021, Shive et al 2022). Today’s fire regime
is unlike what California’s forests and communities
have experienced in the past (Stevens et al 2021),
motivating greater investments in forest and wildfire
management practices, including prescribed fire, to
reduce fire severity (Tubbesing et al 2021).

In this study, we measured the radiocarbon
abundance (∆14C; Stuvier and Polach 1977) of PM2.5

emitted by the KNP Complex Fire over a 26 h
sampling period, along with in situ trace gas dry air
mole fractions and PM2.5 concentrations, which were
used to validate the influence of wildfire emissions
on variability in observed PM2.5 concentrations. We
then used this information to constrain the ages (and
types) of combusted fuels and explore implications
for fire intensity. Radiocarbon (14C) is a radioactive
isotope of carbon that is naturally produced in the
atmosphere. Still, the ∆14C of atmospheric carbon
dioxide (CO2) has changed considerably over the past

70 years because of the Earth system’s response to the
production of ‘bomb’ 14C from aboveground nuc-
lear weapons testing during the late 1950s and early
1960s (Nydal 1963, Levin et al 2010). In past work,
∆14C measurements of fire-emitted PM have been
used to identify the depth of burning in organic duff
layers in boreal forest ecosystems (Mouteva et al 2015)
and the age of combusted peats contributing to severe
haze events in Southeast Asia (Wiggins et al 2018).
For western U.S. wildfires, ∆14C measurements can
provide information about the size classes of com-
busted fuels because larger-diameter fuels decompose
more slowly and, therefore, persist longer within eco-
systems (Harmon 2021).

Wehypothesized that fire-emitted PM2.5 would be
considerably enriched in 14C relative to current atmo-
spheric CO2 because larger-diameter fuels incorpor-
ated 14Cvia photosynthesis over several decades when
the atmosphere had more bomb 14C. Older fuels
are associated with larger fuel classes, which decom-
pose relatively slowly and build up for decades if not
removed mechanically or by fire. Several methods are
commonly used to assess fire severity, including the
composite burn index (Key and Benson 2006) and
remotely-sensed indices, like the normalized burn
ratio (Miller et al 2009a). Measuring the∆14C of fire
emissions may complement these approaches by con-
straining the age (and therefore, size distribution) of
combusted fuels. By sampling the atmosphere down-
wind of a large wildfire, our technique also provides
a means to obtain a regionally-integrated snapshot
across actively burning areas within the entire fire
perimeter.

2. Methods

2.1. Sampling location
We collected PM2.5 samples and measured in situ
trace gas and PM2.5 levels with a ground-basedmobile
laboratory in the town of Three Rivers, CA, USA
(36.453◦N, 118.873◦W, 361m above sea level) during
2–3 October 2021. We chose this sampling location
to be as close to the KNP Complex Fire as possible
without being inside a mandatory evacuation zone.
This was within a residential community approxim-
ately 0.5 km from the town’s main road. Traffic was
minimal because the area was under an evacuation
warning. Our sampling location was about 10 km
from two actively burning fire fronts that were loc-
ated to the north and east and approximately 1000 m
lower in elevation. The KNP Complex Fire resul-
ted from two lightning fires (Colony and Paradise
Fires) thatmerged into one large fire on 17 September
2021 (Stephenson and Brigham 2021). The fire was
100% contained on 16 December 2021 after reach-
ing a final size of 357 km2 (88 307 acres) (California
Department of Forestry and Fire Protection 2022b).
Over the course of the fire, it burned 18 km2 (4374
acres) of giant sequoia groves (Shive et al 2022).
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Figure 1.Map showing the location of Suomi/NPP Visible and Infrared Imaging Radiometer Suite active fire counts (red circles),
the active fire front (red line with red highlight), and fire perimeter (red shading) on 2 October 2021 derived using Fire Events
Data Suite version 1. These data are superimposed on an Aqua MODIS 250 m true color image from the same day. The location of
giant sequoia groves (tan shading) is shown using the dataset from the National Park Service. Our particulate matter sampling
location in the town of Three Rivers, CA, USA is shown with a blue circle.

Figure 1 shows our sampling location and the dis-
tribution of Suomi/NPPVisible and Infrared Imaging
Radiometer Suite active fires for the 1:30 pm overpass
on 2 October. The active fire line and outer fire peri-
meter for theKNPComplex Fire on 2October are also
mapped using information from the Fire Events Data
Suite version 1 (Chen et al 2022). This fire informa-
tion is superimposed on an Aqua MODIS 250 m true
color image displaying the spatial extent of smoke
from the KNP Complex Fire on 2 October. The loca-
tion of giant sequoia groves is also providedusing data
from theNational Park Service (National Park Service
and Sequoia and Kings Canyon National Parks 2017).
Three lines of evidence confirmed our sampling loc-
ation was downwind of the fire and its plume: (1)
elevated and covarying trace gas and PM2.5 concen-
trations (as described in Results), (2) visual inspec-
tion of the smoke cloud in figure 1 and (3) back-
trajectory analysis conducted with NOAA’s HYSPLIT
model (data not shown).

Air temperature and relative humidity repor-
ted here were measured by a compact weather
sensor (METSENS500, Campbell Scientific, Logan,
UT, USA)mounted on themobile laboratory approx-
imately 3 m above ground level. The air temperature
was 32.0 ◦C at the beginning of the sampling period
at 3:00 pm on 2 October and declined through the
evening and night, reaching a minimum of 17.4 ◦C at

7:45 am on 3 October. The temperature rose through
the morning and afternoon on 3 October, reach-
ing a maximum of 27.2 ◦C at 2:25 pm. Relative
humidity varied from 14% to 26% over the sampling
period, within the minimum observed at 3:00 pm on
2 October and the maximum at 26% at 10:30 am on
3 October.

2.2. PM2.5measurement and collection
We measured in situ PM2.5 mass concentrations (µg
PM2.5 m−3 air) using a PurpleAir PA-II air qual-
ity sensor with laser particle counting (PurpleAir,
Draper, UT, USA) at a sampling height of approxim-
ately 1.2 m above ground. We analyzed the PurpleAir
Channel A data, which is appropriate for outdoor
conditions and has a 2 min resolution.

Filter samples of PM2.5 were collected at an
inlet height of 1.2 m above ground level using a
low-volume aerosol sampler (MiniVol Tactical Air
Sampler, AirMetrics, Springfield, OR, USA) with a
PM2.5 impactor (#202-100) over periods of 0.5–6.0 h.
Sampling duration was determined according to con-
current PM2.5 concentration (i.e., sampling duration
was inversely related to concurrent PM2.5 concen-
tration). To maintain a uniform volume flow, we
used ambient temperature and pressure to adjust the
sampler’s flow rate between 4.50 and 4.75 l min−1.
Samples were collected on 47 mm diameter quartz
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fiber filters (GEHealthcare Life Sciences, #1851-047).
Before sampling, filters were pre-combusted at 500 ◦C
for 3 h, wrapped individually in aluminum foil, and
stored in plastic bags. Blank filters were mounted
on the inside of the sampler housing with no active
airflow and collected concurrently with 2 of the 12
PM2.5 samples (#253740 and 253744). After collec-
tion, filters were wrapped in aluminum foil, sealed in
plastic bags, and stored at−20 ◦C. A total of 12 PM2.5

samples and 2 blanks were collected.

2.3. Elemental and isotopic analyses of PM2.5

2.3.1. Measurement of TC and radiocarbon
Filter samples of PM2.5 were analyzed for TC con-
centration (µg C m−3) and ∆14C at the W. M.
Keck Carbon Cycle Accelerator Mass Spectrometry
(KCCAMS) laboratory at the University of California,
Irvine. We focused our analysis on the ∆14C of
PM2.5 because it is a criteria pollutant for the U.S.
Environmental Protection Agency (EPA) and is asso-
ciated with a wide range of particles generated dur-
ing combustion (Andreae 2019). Examining fuel age,
PM2.5 presents various practical advantages: it is
conveniently sampled in the field and in wildfire
smoke, and its relatively high signal-to-noise ratio
enables a clear differentiation from the background
atmosphere.

For each sample, a portion of or the entire fil-
ter (depending on estimated TC concentration) was
sealed with cupric oxide in pre-combusted 6 mmOD
quartz tubes and oxidized to CO2 at 900 ◦C for 3 h.
This TC-derived CO2 was then extracted and quan-
tified manometrically on a vacuum line, reduced to
graphite using a modified sealed-tube zinc reduc-
tion method (Walker and Xu 2019), and its ∆14C
was measured via accelerator mass spectrometry

alongside graphitization standards and blanks. The
units of∆14C are per mille (‰), and the relationship
between ∆14C and the widely-used fraction modern
(F) measurement is shown in equation (1), where y is
the year of 14C sampling (2021); F is the 14C/12C ratio
of the sample divided by 95% of the 14C/12C ratio of
the oxalic acid I (OX-I) standard measured in 1950
(14C/12COX1 = 1.176 ± 0.010 × 10−12) corrected for
mass-dependent fractionation; 8267 years is themean
lifetime of 14C; and 1950 is the reference year,

∆14C=
(
F× e

1950−y
8267 − 1

)
× 1000. (1)

The 14Cdata are normalized to a common δ13C so
that differences in ∆14C do not reflect isotopic frac-
tionation processes (Stuvier and Polach 1977).

TC and ∆14C measurements for our PM2.5

samples are reported in table 1. Error in TC was
computed assuming 3% error in sampler flow rate,
0.5% error in sampling duration, and 6% error in
our measurement of the filter area. The measured
∆14C of each sample (∆14Cmeas) was corrected for
contamination by extraneous carbon associated with
handling the filters during field and laboratory work
using blank filters and a simple isotopic mass balance
equation (equation (2)):

∆14Csample =
∆14Cmeas ×TCmeas −∆14Cblank ×TCblank

TCmeas −TCblank
(2)

where ‘sample’ refers to the sampled filter and ‘blank’
refers to the blank filter. The mean blank TC con-
centration was 0.1 µg C cm−2, and the blank mean
∆14C was −278.6 ± 14.3‰. The error (err) in
∆14Csample was calculated according to equation (3):

err in∆14Csample =

√(
TCmeas

TCsample
× err in∆14Cmeas

)2

−
(

TCblank

TCsample
× err in∆14Cblank

)2

. (3)

2.3.2. Keeling plot analysis
A Keeling plot regression analysis (Keeling 1958,
Pataki et al 2003) allows us to estimate the ∆14C of
the wildfire PM2.5 end member, separating it from
PM2.5 in the background atmosphere (Mouteva et al
2015, Wiggins et al 2018). Application of the Keeling
plot equation (equation (4)) draws upon the linear
relationship between ∆14Csample and 1/TCsample and
allows for identification of the wildfire ∆14C end
member from the regression intercept:

∆14Csample = TCbackground

×
(
∆14Cbackground −∆14Cwildfire

)
× 1

TCsample
+∆14Cwildfire. (4)

The 12 sampled filter measurements of 1/TC and
∆14C were fit using a geometric mean regression,
which accounts for errors in both TC and ∆14C
measurements. The regression was calculated using
the ‘lsqfitgm’ function in Matlab developed by E.
T. Peltzer at the Monterey Bay Aquarium Research
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Table 1. Summary of total carbon (TC) concentration and∆14C of PM2.5 collected within the smoke plume of the KNP Complex Fire in
Three Rivers, CA, USA. Error in TCsample and∆14Csample represent the propagated uncertainty in the collection of these measurements.

Start (PDT) End (PDT) TCsample (µg C m−3) ∆14Csample (‰)

Date Time Time TCsample (µg C cm−2) Mean Error Mean Error UCI AMS #

2 October 2021 15:10 15:40 1.5 130.6 ± 8.7 −16.8 ± 6.9 253731
2 October 2021 16:09 17:39 3.3 97.5 ± 6.5 −83.6 ± 5.6 253734
2 October 2021 17:53 19:23 3.8 111.7 ± 7.5 −33.7 ± 4.9 253735
2 October 2021 19:38 21:38 8.4 185.9 ± 12.6 34.5 ± 3.0 253736
2 October 2021 21:49 23:49 18.7 392.4 ± 26.6 68.9 ± 1.9 253737
3 October 2021 00:12 04:12 40.8 427.3 ± 28.7 81.0 ± 3.1 253738
3 October 2021 04:24 07:24 29.0 405.4 ± 27.5 78.2 ± 1.9 253739
3 October 2021 07:38 09:38 21.0 439.8 ± 29.6 76.5 ± 1.9 253740
3 October 2021 09:46 12:16 28.4 475.7 ± 32.1 79.9 ± 3.8 253743
3 October 2021 12:28 14:28 25.2 556.4 ± 37.6 72.8 ± 1.9 253744
3 October 2021 14:43 16:13 16.9 497.1 ± 33.5 66.8 ± 2.0 253745
3 October 2021 16:18 17:48 18.3 539.8 ± 36.7 43.4 ± 2.1 253746

Institute4. The standard deviation (SD) of wildfire
∆14C is the SD of the y-intercept calculated by
the regression function. The Keeling plot approach
assumes the composition of the wildfire end member
and background atmosphere remain constant over
the sampling duration.

2.3.3. Estimation of combusted fuel mean age
The mean age of the combusted fuel was determ-
ined using a steady-state one-box ecosystem model
forced with ∆14C of the historical atmosphere using
observations by Hua et al (2022) and X Xu5. Given
a user-prescribed mean age of the carbon pool, the
model simulates the evolving ∆14C of the pool from
10 000 years before present to 2021 with inputs from
photosynthesis and losses from decomposition and
radioactive decay each year. We ran the model for
a range of mean ages (between 5 and 75 years) to
simulate the ∆14C of the terrestrial carbon pool in
2021. We then matched the mean ∆14C of combus-
ted fuel end member from the Keeling plot approach
described above (section 2.3.2) to the mean age from
the model corresponding to the closest matching
∆14C value. We estimated a 1σ uncertainty range for
the fuel mean ages by identifying where the measured
wildfire ∆14C end member value minus 1σ intersec-
ted the curve of ecosystem model predictions. This
approach generated an asymmetric uncertainty range
for the fuel age.

2.4. Trace gas measurements
Carbon monoxide (CO) and methane (CH4) dry air
mole fractions were measured using a wavelength-
scanned cavity ring-down spectrometer (G2401,
Picarro, Santa Clara, CA, USA) at an inlet height
of approximately 3 m above ground at approximately
1 s resolution. We calibrated measurements before

4 lsqfitgm function by E. T. Peltzer, Monterey Bay Aquarium
Research Institute.
5 X. Xu, personal communication 2022.

and after the sampling period using two NOAA-
certified air standards in compressed gas cylinders
with known mole fractions of CO and CH4 that
spanned the range of observed values. Standards were
measured for approximately 5 min during the calib-
ration period. Using the linear relationship between
known values and values measured during the calib-
ration period, we applied a two-point correction to
the CO and CH4 data obtained during the sampling
period (Hopkins et al 2016, Yañez et al 2022). Outliers
in the data (values more than three scaled median
absolute deviations from the median) were replaced
with linear interpolation of neighboring, non-outlier
values using the ‘filloutliers’ function in Matlab6.
Measurements collected when cavity pressure or
temperature in the instrument was unstable (pres-
sure/temperature change betweenmeasurements>0)
were removed. Calibrated data with outliers removed
were then averaged to a 1 min resolution.

3. Results

Throughout the 26 h sampling period, CO, CH4,
and PM2.5 measurements varied synchronously and
were elevated relative to expected background levels
(figure 2). CO near the beginning of the sampling
period at 5:10 pm on 2 October was approximately
1330 ppb. CO increased rapidly at first and then
more gradually, reaching a level of 6000 ppb around
4:30 am on 3 October (figure 2(a)). CO levels var-
ied between 6000 and 5630 ppb from 4:00 am to
11:00 am on 3 October before increasing again in the
early afternoon, reaching a maximum of 7890 ppb
by 3:10 pm. CH4 measurements followed a similar
temporal pattern with a minimum initial dry air
mole fraction of 2090 ppb at 5:10 pm on 2 October
and then increasing to a maximum of 2870 ppb at
3:10 pm on 3 October (figure 2(b)). PM2.5 concen-
trations increased during the evening of 2 October

6 filloutliers function Copyright 2016–2021 The MathWorks, Inc.
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Figure 2. Composition of the smoke plume of the KNP Complex Fire on 2–3 October 2021 in Three Rivers, CA, USA. Dry air
mole fractions of (a) CO and (b) CH4 in ppb averaged to one-minute resolution. (c) PM2.5 mass concentration (µg m−3)
averaged to one-minute resolution on the left axis (blue) and total carbon (TC) mass concentration (µg C m−3) measured for
samples on the right axis (red) with sample length represented by the length of each line along the x-axis. (d)∆14C (‰) of PM2.5.

with similar timing to CO and CH4. PM2.5 remained
relatively constant from midnight to 6:15 am on 3
October (figure 2(c)). A minimum in PM2.5 con-
centration of 277 µg m−3 was observed at 7:20 pm
on 2 October and a maximum of 1330 µg m−3 was
observed at 12:25 pm on 3 October. Compared to
CO and CH4, PM2.5 had a much less pronounced
rise in the early afternoon on 3 October. The Pearson

correlation coefficients for the different trace gas and
PM2.5 time series were relatively high: 0.99 for CO
and CH4, 0.91 for CO and PM2.5, and 0.90 for CH4

and PM2.5. The simultaneous buildup of fire-emitted
PM2.5 and trace gases during the evening and night
of 2 October is consistent with a collapsing plan-
etary boundary layer and downslope flow from the
fire to our lower elevation sampling location, which

6
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Figure 3. Keeling plot showing the∆14C of PM2.5 as a function of its inverse total carbon (TC) concentration. The y-intercept of
the regression represents the mean observed∆14C of the combusted fuel in the KNP Complex Fire (111.6‰). The standard
deviation of the y-axis is 7.7‰. The regression coefficient for the linear fit was 0.96.

is typical of a diurnal circulation pattern in moun-
tain regions (Kuwagata and Kondo 1989, Geerts et al
2008).

The trace gas and PM2.5 time series downwind of
the KNP Complex Fire were also considerably elev-
ated relative to expected levels in the background
atmosphere. For CO, initial measurements at our
sampling site (1330 ppb) were more than 13 times
higher than the monthly average ‘clean air’ level of
98 ppb measured at Cape Kumukahi, HI, USA in
October 2021 by the Global Monitoring Laboratory
of NOAA’s Earth SystemResearch Laboratory (Petron
et al 2022). For CH4, our initial measurement of
2090 ppb was 7% higher than the October 2021
average of 1945 ppb at Cape Kumukahi (Lan et al
2022). Initial PM2.5 concentrations of 460 µg m−3 far
exceeded the limits deemed safe (35µgm−3) and even
hazardous (250 µg m−3) by the U.S. EPA (Aguilera
et al 2021). The high correlation among the different
tracers and the elevated atmospheric concentrations
relative to expected background levels (Akagi et al
2011, Andreae 2019) provided evidence that wild-
fire emissions were the dominant driver of the vari-
ations in atmospheric composition observed during
our sampling campaign.

The TC concentration of our filter samples closely
tracked the in-situ optical estimates of PM2.5 concen-
tration and varied between 97.5 and 556.4 µg C m−3

(figure 2(c)). The ∆14C of TC was negative near
the beginning of the sampling period (figure 2(d)),
which is consistent with a substantial contribution
from fossil emissions in the background atmosphere
(Mouteva et al 2015, 2017). During the evening on
2 October, ∆14C increased concurrently with the
rise in trace gas mole fractions and PM2.5 concen-
trations, reaching a maximum of 81.0 ± 3.1‰ for
the sample collected between midnight and 4:00 am
on 3 October. From 4:00 am to mid-afternoon on 3
October, ∆14C values were relatively constant, vary-
ing between 66.8 ± 2.0‰ and 83.6 ± 5.6‰ before
declining to 43.4 ± 2.1‰ during the last sampling
interval. The ∆14C of TC increased at higher PM2.5

concentrations, suggesting that fire-emitted PM2.5,
which we expect to be enriched in 14C, drove variab-
ility in emissions.

Using the Keeling plot approach described in
section 2.3.2, we estimated that the mean∆14C of the
wildfire end member was 111.6 ± 7.7‰ (figure 3).
The ∆14C of emissions was enriched relative to the
northern hemisphere atmospheric CO2 background
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Figure 4. Analysis of fuel age using a steady-state one-box ecosystem model. (a) Atmospheric∆14C (black line) and modeled
∆14C of combusted fuel (colored lines) over time from 1940 to 2021. Combusted fuel∆14C is modeled here given mean ages
ranging from 5 to 75 years, visualized every 1 year. The black filled circle represents the modeled combusted fuel∆14C for a mean
age of 40 years, estimated by the model to correspond to the mean observed∆14C of 111.6± 7.7‰. (b) Expected∆14C of
combusted fuel given mean ages ranging from 5 to 75 years. The red shading corresponds to potential mean ages that are
consistent with a 1σ uncertainty on the∆14C of fire-emitted PM2.5.

in 2021 of −3.2 ± 1.4‰, indicating the combusted
fuels likely accumulated over a period of many dec-
ades, during a time when the atmosphere was more
enriched in bomb 14C (figure 4(a)).

To further constrain the age range of the wild-
fire PM2.5 emissions, we used the steady-state one-box

ecosystem model described in section 2.3.3, in which
the mean transit time of the carbon is equal to its
mean age.With the uncertainty range of our observed
combusted fuel∆14C (111.6 ± 7.7‰), we attained a
best-fit for fuel age of 40 years, with an asymmetrical
uncertainty range of 29–57 years, corresponding to

8
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1σ uncertainty of the mean ∆14C (figure 4(b)). In
2021, a fuel class with a relatively young mean age
(5 years) would have a ∆14C of 9.5‰, which is only
slightly enriched relative to the contemporary atmo-
sphere in 2021 (figure 4(a)). Needles and leaf lit-
ter may be examples of materials in this fuel class.
Since these materials decompose relatively quickly,
very little retain the high degree of bomb labeling
from the 1950s and 1960s. As the age of fuels increases
from 5 to 40 years, the predicted∆14C of combusted
fuel from the model rises to approximately 110.0‰.
Fuels with a 40 year mean age may encompass larger-
diameter woody detritus and other woody biomass
like live shrubs and small trees.

4. Discussion

The diameter of woody fuels influences the length
of time required for decomposition in forest ecosys-
tems. Fine fuels (i.e., needles, leaf litter, and small-
diameter woody detritus) decompose relatively rap-
idly over several years. In contrast, fuels with a larger
diameter decompose relatively slowly and can remain
in the understory and on the forest floor for dec-
ades (Harmon 2021). Lower-intensity fires, includ-
ing prescribed fires, typically consume only fine fuel
classes because larger-diameter fuels generally have a
higher moisture content and require more energy to
ignite and support high-intensity fires (Chuvieco et al
2002, Gorte 2009). High rates of energy release from
the consumption of large-diameter fuels, in turn, can
contribute to longer flame lengths and increase prob-
ability that ground fires will jump into the over-
story and develop into crown fires (Stephens et al
2022). High-intensity crown fires are amajor concern
with respect to preservation of giant sequoias because
thick bark near the base of tree makes sequoias nearly
impervious to ground fires, yet scorch in the upper
canopy can damage foliage and more vulnerable vas-
cular tissues (Shive et al 2022).

Our ∆14C measurements provide evidence that
the KNP Complex Fire burned through larger-
diameter fuels, likely with a considerably higher
intensity than what would be expected for surface
fires. It is also possible that the combustion of deeper
organic soil (Pellegrini et al 2021), which has a sim-
ilar mean age to the woody detritus in some forests
(Mouteva et al 2015), also contributed to emissions.
However, our study does not include depth of burn
measurements, which would allow us to apportion
the relative contributions from woody detritus and
soil. Still, our measurements are broadly consistent
with previous studies documenting how the accu-
mulation of fuel in California’s coniferous forests
(including the buildup of shrubs, small trees, and
woody detritus on multi-decadal timescales) con-
tributes to high fire intensity (Miller et al 2009b,
Safford and Stevens 2017, Stevens et al 2017b).
Notably, the KNP Complex Fire led to the mortality

of about 5900 giant sequoias, meaning that 3%–5%
of all giant sequoias in the Sierra Nevada moun-
tains were killed or are expected to die within 5 years
(Stephenson and Brigham 2021). This compounds
giant sequoia mortality from the 2020 Castle Fire,
which killed an estimated 10%–14% of large giant
sequoias (Stephenson and Brigham 2021). The native
range of giant sequoias does not extend beyond the
western slope of the Sierra Nevada, therefore a loss of
approximately 15% in such a short period is a major
threat to this endangered species.

Fuel treatments, including mechanical thinning
and prescribed fire, have historically been used to
decrease fuel loads in forests. Legislation was recently
passed in California that will expand the use of pre-
scribed fire across the state with a goal of one million
acres treated per year by 2025 (CaliforniaWildfire and
Forest Resilience Task Force 2022). If they are suc-
cessful, we expect fuel treatments to gradually reduce
the mean age of combusted fuels because under-
story vegetation and larger-diameter woody detritus
should be removed (Harmon 2021). Regional PM
sampling during periods with prescribed fire might
be an effective way to monitor the success of this pro-
gram. Specifically, after a sustained effort, the∆14Cof
combusted fuel should more closely match the con-
temporary atmosphere because finer fuel classes have
younger mean ages. Eventually, wildfires would also
be expected to have lower intensities andmore closely
track the∆14C of atmospheric CO2.

Apart from evaluating the effectiveness of pre-
scribed burning, PM ∆14C monitoring in California
may be helpful for understanding the role of wildfire
in influencing air quality across the state. For instance,
the San Joaquin Valley of California is a serious non-
attainment area for PM2.5 and other pollutants with
adverse health effects. It often exceeds both state and
national air quality standards for harmful pollutants
(Huang et al 2021). Pollution in the San Joaquin
Valley is primarily anthropogenic due to both local
emissions and those transported from surrounding
urban areas, but wildfires play a variable and often
significant role in elevated pollutant levels (Schweizer
andCisneros 2017, Burke et al 2021, Frausto-Vicencio
et al 2023). Disentangling contributions to observed
PM2.5 levels from prescribed fire, wildfire, and urban
sources will be critical for creating effective policy to
improve air quality in the San JoaquinValley and sim-
ultaneouslymeet the State’s forestmanagement goals.

Future directions for this work include building
a longer time series of observations from multiple
fires, which will provide information about a broader
range of burning conditions. The length of our time
series was constrained by rapidly changing conditions
and challenges securing a safe sampling location that
was both near the smoke and outside of the man-
datory evacuation zone. Future analyses should be
conducted over longer sampling intervals on a vari-
ety of wildland fire types, including grass and shrub
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fires and prescribed fire, to more broadly understand
the effects of climate, fuel, and fuel treatments on
the composition of PM emissions across California
and other fire-prone forests. Fire emissions contain
many carbonaceous components (Olsen et al 2020),
so another important research direction is to simul-
taneouslymeasure the∆14C of elemental and organic
carbon (EC and OC) PM2.5 fractions and carbon-
containing trace gases (CO and CO2) to understand
better the linkages between fuel age (and type), flam-
ing and smoldering combustion, and the composi-
tion of fire emissions. In past work, for example, fire-
emitted EC has been shown to have higher levels of
∆14C than OC, likely due to a different mixture of
fuels (Mouteva et al 2015).

5. Conclusions

In this study, we measured the ∆14C of PM2.5 from
the KNP Complex Fire and used these observa-
tions to infer that fuel buildup over multiple dec-
ades was a dominant contributor to PM2.5 emissions
in smoke. Our analysis is consistent with past work
showing that cessation of Indigenous burning prac-
tices and implementation of fire suppression in the
Sierra Nevada mountains are important contribut-
ors to recent increases in fire intensity. We also pro-
pose that our measurement techniques can be used
to assess the efficacy of prescribed fire and other fuel
treatments planned for California in the near future
and to identify fire impacts on air quality in remote
urban areas. Altogether, fuel management and an
enhanced understanding of emissions associated with
California’s wildfires can help mitigate their social,
economic, and ecosystem impacts.
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