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Abstract
Since the 1930s, California’s Sierra Nevada has warmed by an average of 1.2◦C. Warming directly primes forests for easier wildfire 
ignition, but the change in climate also affects vegetation species composition. Different types of vegetation support unique fire 
regimes with distinct probabilities of catastrophic wildfire, and anticipating vegetation transitions is an important but undervalued 
component of long-term wildfire management and adaptation. Vegetation transitions are more likely where the climate has become 
unsuitable but the species composition remains static. This vegetation climate mismatch (VCM) can result in vegetation conversions, 
particularly after a disturbance like wildfire. Here we produce estimates of VCM within conifer-dominated forests in the Sierra 
Nevada. Observations from the 1930s Wieslander Survey provide a foundation for characterizing the historical relationship between 
Sierra Nevada vegetation and climate before the onset of recent, rapid climate change. Based on comparing the historical climatic 
niche to the modern distribution of conifers and climate, ∼19.5% of modern Sierra Nevada coniferous forests are experiencing VCM, 
95% of which is below an elevation of 2356 m. We found that these VCM estimates carry empirical consequences: likelihood of type- 
conversion increased by 9.2% for every 10% decrease in habitat suitability. Maps of Sierra Nevada VCM can help guide long-term land 
management decisions by distinguishing areas likely to transition from those expected to remain stable in the near future. This can 
help direct limited resources to their most effective uses—whether it be protecting land or managing vegetation transitions—in the 
effort to maintain biodiversity, ecosystem services, and public health in the Sierra Nevada.
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Significance Statement

Warming climatic conditions over the last century have led to observable shifts in the spatial organization of dominant tree species in 
California’s Sierra Nevada. Little is known, however, about the extent to which these shifts have tracked the magnitude of climate 
change. This study maps Vegetation Climate Mismatch in the Sierra Nevada—areas where climate change has left trees in climatic 
conditions where they have not historically occurred. Different vegetation types support different wildfire regimes, ecosystems, and 
ecosystem services. Our maps will be useful for anticipating vegetation transitions and informing long-term wildfire and ecosystem 
management across the Sierra Nevada mountains of California.

Introduction
Warmer and drier conditions prime forests for ignition (1), but cli
mate change also directly affects the species composition of fu
ture vegetation. Climate-driven vegetation conversion is an 
understudied phenomenon in general and a potentially signifi
cant determinant of catastrophic wildfire risk that could require 
changes in management strategies (2–4).

Broadly, climate change has caused vegetation to shift pole
ward and up-slope (5–7). In long-lived ecosystems like forests, cli
mate change is occurring faster than the ability of many plants to 
shift their distributions or adapt, resulting in vegetation disequi
librium (8) or vegetation climate mismatch (VCM). Forests 

experiencing VCM are at risk of converting to alternative species 
assemblages, particularly after stand-replacing disturbances 
such as severe wildfire (4). In some cases, VCM can even make for
ests more susceptible to wildfires (9).

VCM is likely to be found in California’s transition zone be
tween low-elevation conifer-dominated forest and angiosperm- 
dominated vegetation (including mixed chaparral, oak woodland, 
and mixed broadleaf forest) (Fig. 1; elevation ∼1000–1400 m)— 
where the foothills of the Sierra Nevada end and the mountains 
of the western flank begin. These forests lie on the warm end of 
mixed conifer distributions, where canopy dominants include 
ponderosa pine, sugar pine, and Douglas-fir (10), and understories 
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are typically composed of mixed chaparral’s characteristic scrub 
oak, chaparral oak, and manzanita.

Boundaries between conifer-dominated forest and nonconifer 
vegetation at the western slope of the Sierra Nevada that were es
tablished under a previous climate regime may now be out of 
equilibrium with the current climate, especially if established 
trees continue to persist, even as climate conditions become un
suitable for seedlings and saplings of the same species. In these 
settings, stand-replacing fire—which pushes forests back to seed
ling stages—can trigger a rapid transition from one vegetation 
type to another (4, 11, 12). These transitions can potentially lead 
to the local loss of species, ecosystem services, and irrecoverable 
carbon stocks, depending on the vegetation that replaces these 
forests—and can also impact future risk of catastrophic wildfire.

Recent human population growth and large wildfires in these 
lower-elevation conifer forests punctuate the need to assess eco
logical stability, particularly as it relates to wildfire risk.

Results and discussion
Conceptually, present-day VCM in Sierra Nevada coniferous for
ests exists if the geographic shift of tree species does not keep 
pace with climate change. This mismatch between vegetation 
and climate will make regeneration after disturbance more diffi
cult. The Wieslander survey from the 1930s provides an anach
ronistically high resolution (minimum mapping unit of 16 ha) 
and expansive (176,900 km2) assessment of historical California 

vegetation (13, 14). Comparing the historical vegetation distribu
tion to modern EVeg maps (15, 16), the mean elevation of conifers 
has shifted up-slope by 34 m on average (95% CI = [25 m, 43 m]). 
Over the same time period, the characteristic temperature range 
for conifers (10) has shifted up-slope by 182 m (95% CI = [179 m, 
187 m]), based on historical and contemporary temperature and 
precipitation at 30 arc-second resolution (17) used to calculate 
19 bioclimatic variables for 1915–1955 and 2000–2020. The magni
tude of this temperature shift is approximately three to five times 
greater than the shift of the conifers (AltitudeMAT − Altitudeconifer = 
145 m; 95% CI = [135 m, 156 m]), suggesting the presence of VCM 
(Fig. 1). In calculating the altitude shifts of both conifer occur
rences and temperature variables, 10 pseudo-replicate sets were 
made by randomly introducing known measurement error (see 
methods) and bootstrapped 1000 times.

To provide a more accurate and geographically explicit assess
ment of VCM, we quantified the climatic drivers of conifer distri
bution (i.e. the climatic niche) within the Sierra Nevada, using 
the 1930s vegetation data and 800 m resolution climate data 
(1915–1955) to train a habitat suitability model (HSM) for Sierran 
conifer forests. The advantage of using these older data is that 
they come from an era when the vegetation and climate were clos
er to equilibrium, before the vast majority of human-caused 
warming (18). Using the sdm (v 1.0-89) (19) and dismo (v 1.3-3) 
(20) packages in R (v 4.1.1) (21), we trained a Generalized 
Additive Model (GAM) on 56,844 conifer presence and 26,504 coni
fer absence points and 7 bioclimatic variables, using 5-fold 

Fig. 1. Observed elevation shifts in temperature, precipitation, and conifers across the study area between 80 years. The elevation distribution of modern 
conifers (top panel, dark green; mean = 1,884 m, SD = 640 m) was 34 m higher (95% CI = [25 m, 43 m]) than the 1930s conifers (top panel, light blue). This 
average shift in elevation was far less (by 145 m; 95% CI = [135 m, 156 m]) than the up-slope shift in the nominal 7–12◦C Mean Annual Temperature 
envelope of Sierra Nevada low-elevation conifers (182 m; 95% CI = [179 m, 187 m]) (10). Note that the Mean Temperature envelope of Sierra Nevada 
low-elevation conifers would be shifted approximately 1◦C cooler, if calculated based on the vegetation distribution in the Wieslander survey. Mean 
Annual Precipitation (bottom panel) decreased between the two time periods at most elevations—more-so at higher elevations—and the average 
elevation of the MAP envelope of Sierra low-elevation conifers decreased by 37 m (95% CI = [27 m, 49 m]). Circles represent samples with measurement 
error randomly introduced, and solid lines represent the averages across 10 samples. Vertical dashed lines show the total mean for the time period.
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spatial-blocking cross-validation for model evaluation (AUCtest = 
0.94 ± 0.039, COR = 0.78 ± 0.079, AUCtrain − AUCtest = 0.027 ± 0.042). 
Mean Temperature of the Wettest Quarter (MTWQ) and Mean 
Annual Precipitation (MAP) were the strongest determinants of 
conifer distribution in the 1930s, with 52% (SD = 20.9%) and 42% 
(SD = 13.9%) relative variable importance, respectively (Fig. 2b).

We used this model to predict regions of suitable conifer habi
tat across time periods from 1960 to 2100. CMIP6 data from scen
arios SSP1-2.6 (an ambitious mitigation future) and SSP5-8.5 (a 
continued high emissions future) were used to predict future 
changes in habitat suitability. Habitat suitability (HS) was divided 
into three categories: suitable (HS ≥ 0.52), unsuitable (0.52 > HS ≥ 

Fig. 2. Estimated conifer VCM in the Sierra Nevada (2015–2020). (a) The conifer HSM projected to contemporary climate and overlayed on the modern 
conifer distribution (EVeg) reveals that up to 19.5% of modern conifer forest is in VCM, primarily along the low-elevation western slope of the Sierras. The 
total area of conifers shown is 40,495 km2, of which ∼32,500 km2 are in equilibrium with the modern climate. (b) Mean Temperature of Wettest Quarter 
and Mean Annual Precipitation were the most important predictors in the HSM (meanMTWQ = 0.518, SEMTWQ = 0.209 and meanMAP = 0.418, SEMAP = 0.139). 
Standard error bars are included in the barplot. (c) Boxplots show the difference between modern (2015–2020) and historical (1915–1955) climate within 
the conifer VCM regions. Change in climate is calculated as the number of standard deviations the modern climate differs from the historical period. 
Though the differences were statistically significant for each climate variable (p < 8.45 × 10−12, independent t-test), Precipitation of Driest Month showed 
the greatest decrease (mean = −2.41, SD = 2.84) and MTWQ the greatest increase (mean = 1.59, SD = 0.329) between the historical and modern climate. 
Mean Annual Precipitation changed the least within the VCM area (mean = 0.165, SD = 0.395). Boxplots include the median line, a box denoting the 
interquartile range, and whiskers showing values ±1.5 × the interquartile range.
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0.18), and severely unsuitable (0.18 > HS). These were determined 
based on habitat suitability thresholds above which 95% and 99% 
of the historical (Wieslander) conifers occurred (i.e. where sensi
tivity = 95% and 99%). In other words, less than 5% of historical 
conifer occurrences were in environmental conditions with HS < 
0.52, which we characterize as “unsuitable” habitat. When com
pared with contemporary (2010s) EVeg maps of conifer distribu
tions, these habitat suitability estimates reveal large, contiguous 
patches of conifer VCM in the Sierra Nevada—particularly along 
the low-elevation western slopes—that account for 19.5% of mod
ern conifer forests (∼7,500 km2) (Fig. 2a). From 1960 to 2020, the 
area of conifer VCM has increased consistently (Fig. S1). When 
projected across the remainder of the 21st century, even the low
est emissions pathway (SSP1-2.6) leads to VCM doubling by the 
end of the century, if conifer range edges stay static (Fig. 3).

Based on the model, this increase in VCM is primarily attribut
able to an increase in Mean Temperature of the Warmest 
Quarter (MTWQ) across the study area between the 1930s and 
present day (Fig. 2c). The variable response curves (Fig. S2) dem
onstrate the sensitivity of conifer habitat suitability to high val
ues of MTWQ: above a MTWQ of 0.5◦C, habitat suitability drops 
by approximately 0.1 for every 1◦C of warming. This sensitivity 
of low-elevation conifers to higher temperatures presumably re
flects a suite of physiological features that make them less com
petitive against angiosperms under warm conditions. A number 
of nonclimatic environmental features, like edaphic characteris
tics and disturbance regimes, can also be important drivers of 

conifer range limits, but there is no evidence for consistent pat
terns of these along the conifer/angiosperm boundaries in the 
Sierra Nevada (10).

Areas that transitioned from conifer-dominated in the 1930s to 
angiosperm-dominated in the 2010s generally have lower contem
porary conifer habitat suitability than areas that maintained coni
fer dominance over that time period. Logistic regression indicates 
that the odds of conifer forests persisting decreased by 9.2% (95% 
CI = [0.092, 0.093]) for every 0.1 decrease in predicted habitat suit
ability (Fig. 4b). The areas of the Sierras where conifer-dominated 
vegetation transitioned to angiosperm-dominated vegetation occur 
primarily along the lower-elevation western slopes (Fig. 4a). This 
finding affirms the empirical implications of the low habitat suit
ability predicted by our model—these areas are at greater risk of 
eventually converting to nonconifer dominated vegetation. While 
it is difficult to tease apart the relative contribution of different pos
sible drivers of vegetation transitions observed in this area, it is like
ly that decreased climatic suitability has compounded the impacts 
of other activities like logging or fire suppression.

These results are consistent with recent literature document
ing observed and expected vegetation change in the Sierra 
Nevada and climate-induced vegetation transitions more broadly. 
A number of studies document observed or expected geographic 
shifts in low-elevation conifer-dominated forests, due at least in 
part to warming temperatures. Examples come from the Alps 
(22), Rocky Mountains (11), the state of California (23), and the 
Sierra Nevada (24). In the Sierra Nevada, studies using the 

Fig. 3. Future projections of VCM for two emissions pathways. Projection of the conifer HSM to mid-century and late-century climates suggest a dramatic 
increase in VCM by the end of the century if the contemporary conifer range edges do not move. The expected growth in severe VCM area (SSP1-2.6: 2.53 
km2/yr; SSP5-8.5: 5.98 km2/yr) outpaced the more moderate VCM growth (SSP1-2.6: 1.54 km2/yr; SSP5-8.5: 2.95 km2/yr) under both emissions scenarios. 
Following the trend in projections of historical VCM (Fig. S1), VCM is expected to increase most along the western slope of the Sierra Nevada.
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Wieslander survey show that an increase in oak or hardwood 
vegetation is concomitant with a reduction in pine species preva
lence (in western El Dorado county in particular, ponderosa pine 
decreased in area by 570 km2, and montane hardwood increased 
by 498 km2) (25, 26). Fire suppression has played a notable role 
in shaping the distribution and demography of these Sierra 
Nevada forests as well, and has worked in concert with warming 
temperatures to favor hardwood species like Quercus spp. while re
ducing the dominance of less shade-tolerant species like Pinus spp. 
(27). Conifer regeneration failure is likely a major driver of these 
observed and expected patterns, and researchers such as Shive 
et al. have found that a combination of climatic shifts and disturb
ance characteristics (e.g. burn severity) significantly affect the 
likelihood of conifer regeneration (28).

Is it possible that this analysis based on vegetation maps from 
the 1930s and the 2010s artificially inflates the area of VCM? 
Effects of logging prior to the 1930s and differences in mapping cri
teria warrant evaluation. The contrast between the projected and 
actual distribution of Sierran conifer forest depends on the ro
bustness of the assumption that 1930s vegetation was in equilib
rium with the climate. It is clear that there was little warming 
before the 1930s and that most of the anthropogenic climate 
change expected to cause VCM has been within the last few deca
des (29). Is it also possible that, even in the 1930s, vegetation was 
out of equilibrium with climate as a result of logging limiting 

conifers at the warm, dry end of their distribution? Logging was 
widespread throughout the Sierras in the late 19th and early 
20th centuries. By 1945, ∼55% of nonsubalpine Sierra Nevada for
ests were second or third growth forest (30). We do not find evi
dence that logging consistently led to permanent vegetation 
conversions, and logged Sierran forests often regrow with the pre
logging dominants. Ponderosa pine forests, for example, can re
turn to dominance within 50 years of being clear-cut (31); 
Sierran mixed conifer, as few as 12 (32). We think it more unlikely 
that logging and other anthropogenic impacts would have specif
ically impacted the low-elevation edge of conifer distributions 
across the entirety of the Sierras in a way that would meaningfully 
truncate the estimated climatic niche. In the Manual of Field 
Instructions (33), Wieslander et al. write: “Except for the following, 
do not attempt to map smaller units than 40 acres of any type. (1) 
Remnant woodland and timber types in chaparral areas, or timber 
types in woodland would always be mapped if 10 acres or more” 
(pp. 39–40). The use of the word “remnant” implies that the sur
veyors were sensitive to vegetation transitions and made an effort 
to classify conifer types even after disturbance, which further mit
igates the possibility that anthropogenic vegetation conversions 
prior to 1930 affected conifer range edges.

Even so, we cannot eliminate the possibility that pre-1930s log
ging or anthropogenic disturbance led to vegetation conversions 
and some overestimation of modern VCM. We explored the 

Fig. 4. Habitat suitability of observed vegetation transitions between 1930s and 2010s. Areas that transitioned from conifer-dominated to 
angiosperm-dominated vegetation from 1930s to present tended to have lower modern conifer habitat suitability (p < 2 × 10−16). (a) All areas in the Sierra 
Nevada with complete vegetation data from the 1930s (Wieslander) and 2010s (EVeg) area shown. Most transitions from conifer-dominant vegetation are 
along the low-elevation edges of the historic conifer distribution. (b) The fitted logistic regression line indicates that the odds of conifer forests persisting 
decreased by 9.2% (95% CI = [0.092, 0.093]) for every 0.1 decrease in predicted habitat suitability. Probability density estimates for the areas of either 
transition or persistence are included.
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sensitivity of our results to the possibility that 1930s conifers were 
missing from the lower-elevation range edge as a result of human 
activity and, therefore, shifted toward the cool end of their climat
ic niche (opposite the pattern that has emerged since the 1930s). 
To do this, we trained HSMs on Wieslander data manipulated 
such that the highest elevation nonconifer samples were random
ly converted to conifer samples. Our results followed the expect
ation that the area of modern VCM decreases with an assumed 
expansion of lower-elevation historical conifer distribution (Fig. 
S6). However, even under the extreme scenario in which the 
Wieslander survey did not detect conifer vegetation over 2,700 
km2 of the lowest elevation regions that may once have contained 
conifers, total VCM is still >10% of all modern conifer forests with
in the study area.

Vegetation mapping criteria were generally similar for the 
maps from the 1930s and the 2010s, but there are subtle differen
ces in vegetation classification and minimum mapping unit 
(MMU) size (25). Under the CALVEG classification system, an 
area is classified as the taller of a set of possible vegetation types 
if the taller type (e.g. coniferous) occupies >10% of the mapping 
unit. In contrast, Wieslander VTM has a threshold of 20%. 
Because the EVeg maps lean towards classifying areas with only 
a few conifers as conifer-dominant vegetation, the modern 
maps might exaggerate conifer area at low elevations, contribut
ing to an overestimate of VCM. Likewise, the difference in MMU 
between the two maps may contribute to an overestimate of mod
ern conifer VCM. The MMU of EVeg (≤1 ha) is smaller than that of 
the Wieslander data (16 ha total; 4 ha for “timber types” (33)), so 
EVeg data are more likely to register smaller stands of conifers, 
which may be more common along the lower-elevation edge of 
conifer distributions. To compensate for this, our vegetation ag
gregation method for both the 1930s and 2010s maps is intention
ally sensitive to conifer occurrences, registering conifer presence 
if ≥5% of an 800 m (64 ha) grid cell contains conifer vegetation.

Our first-of-a-kind maps of areas experiencing VCM represent a 
new consideration when planning for forest management. These 
VCM forests are at risk of failing to regenerate after a disturbance. 
The exact mechanisms and sequences of events that lead to vege
tation change will vary across the landscape and should be a tar
get of future studies. But overall, VCM requires a move away from 
simply resisting fire and vegetation change to a more active man
agement approach that directs the changes in a way that is bene
ficial to ecosystems and the nearby communities (34, 3).

Incorporating VCM into forest management plans will require 
experimentation and a delicate balancing of constituencies and 
their interests. There will likely be tradeoffs to be negotiated 
and difficult decisions to be made. For example, the public is often 
reticent to engage in large scale thinning or prescribed burns due 
to economic and esthetic reasons. But these very interventions 
may be important for forest health and fire safety. These and oth
er interventions that move away from traditional resilience and 
towards a more “adaptive” or “transformative” resilience are likely 
to be necessary (35).

Understanding a region’s habitat suitability also influences 
management choice after a disturbance event. Most notably, in 
a VCM area, efforts to reforest after a fire or other disturbance 
with the same vegetation type as before are unlikely to be success
ful. Post-disturbance restoration needs to take into account the 
species mix and density that can currently be supported, but 
also the kinds of vegetation that future conditions are likely to 
support. This requires managers grappling with uncertainty in cli
mate projections as they plan the future of the lands they manage; 
accessible tools that can synthesize climate projections 

with species distribution modeling can facilitate this planning 
process.

Maps of vegetation-climate mismatch can also inform conser
vation priorities. Habitats that are in equilibrium today and pro
jected to remain in climate equilibrium should be prioritized for 
protection. In contrast, habitats that are out of equilibrium today 
or that are projected to go out of equilibrium could be treated to 
reduce the risk of catastrophic fires. Alternatively, transitions to 
new vegetation types could be facilitated in forests experiencing 
VCM. Schemes that incentivize ecosystem management for cli
mate mitigation, like California’s forest offset program (36), will 
need to integrate nonstationary future climate and vegetation 
risks and opportunities (37).

Conclusion
We have identified, quantified, and mapped vegetation climate 
mismatch in the Sierra Nevada: a new risk factor relevant to long- 
term management of catastrophic wildfire. Up to 19.5% of conifer 
forests are in areas that no longer have suitable climate for conifer 
regeneration. Thus, when there is a disturbance, such as a large 
fire, the conifer forest will be unlikely to reestablish. Conifer for
ests experiencing VCM may also be out-competed by vegetation 
types like mixed broad-leaf forests and chaparral that are better 
suited to the new climate and often grow more quickly than coni
fers, especially at the seedling stage.

Impending vegetation shifts across such a significant portion of 
California require a change in management strategy and a more 
long-term framing of catastrophic fire-risk in California.

Tools to prioritize treatment and protection are desperately 
needed given that more than 20% of California’s forestland would 
benefit from fuel treatments; myriad barriers, including funding, 
stand in the way (38). Our maps of conifer forest VCM provide 
new guidance on what types of management are likely to be suc
cessful and where. Investments made in better prioritizing con
servation, fuel management, and fire mitigation in high-risk 
forestlands can have compounding returns—economically, eco
logically, and in the form of human health and well-being.

Materials and methods
Vegetation data
The US Forest Service’s Wieslander Survey (1928–1940) provides 
the oldest spatially explicit, landscape-scale vegetation data in 
California. The surveyors mapped dominant vegetation (at a min
imum mapping unit of 16 ha) through a combination of plot sur
veys and remote observation from peaks and vistas (13). We 
accessed the digitized and georeferenced shapefiles of these 
maps through Berkeley’s Vegetation Type Mapping Project 
Collection (vtm.berkeley.edu), which cover an area of more than 
175,000 km2 across California (14). While digitizing the maps, 
Kelly et al. translated the vegetation classification system used 
by Wieslander to the more contemporary and widely used 
California Wildlife Habitat Relationships models (CWHR) (39). 
The geographic error of the basemaps ranges between 127 and 
462 m (mean = 232 m) (40).

The Wieslander survey also collected plot data, with ostensibly 
higher spatial and taxonomic resolution. We used the Wieslander 
vegetation maps, rather than the plot data, for 4 reasons. (1) The 
vegetation data provide a much larger sample size than the plot 
data when up-scaled to 800 m resolution (Fig. S5). Besides the 
plot data clearly being more sparse, there are also large tracts of 
land that are mapped in VTM for which there are no plots 
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available (e.g. Lake Tahoe Basin). (2) The more contiguous vegeta
tion data allowed us to estimate the percent cover of different 
vegetation types and more effectively reconcile the difference in 
resolution between the occurrence and climate data used to train 
the habitat suitability model (further details below). (3) The 
Wieslander vegetation maps appear to be the Wieslander survey’s 
primary data product, and the plots are more of an exercise in sur
veyor training/ground-truthing (33). From the Wieslander Manual 
of Field Instructions: “The plots serve as a check on the mapper’s 
field judgment and assist him in an understanding of types. They 
are used immediately in the field for this purpose” (p. 74). (4) The 
digitized Wieslander plot data do not include CWHR vegetation 
data, only species lists, and the primary goal of this study is to 
find patterns at the scale of vegetation.

We sourced recent vegetation data from the US Forest Service’s 
EVeg (Existing Vegetation) maps for the North Sierra and South 
Sierra regions (15, 16). These vector maps were produced from 
source data including NAIP and WorldView-2 using the CALVEG 
(Classification and Assessment with Landsat of Visible 
Ecological Groupings) classification system, and have a horizontal 
positioning accuracy of ∼50 m. The North Sierra data were pro
duced from satellite images from 2000 to 2014, while the South 
Sierra source data ranged from 1995 to 2016. The CALVEG vegeta
tion classes “crosswalk easily” to CWHR classes, which are pro
vided in the EVeg map product (41).

We cropped all vegetation data to the general extent of the Sierra 
Nevada mountains, which we derived from the Northwestern 
Forested Mountains ecoregion (42) east of the Central Valley and 
south of 40◦. We added a 45 arc-minute (∼70 km) buffer to 
the southern, western, and eastern extents to include vegeta
tion data from surrounding lower-elevation areas, where 
available.

Climate data
We sourced contemporary and historical monthly precipitation, 
maximum temperature, and minimum temperature data from 
Oregon State University’s PRISM (Parameter-elevation Regressions 
on Independent Slopes Model) Climate Group at 30 arc-second reso
lution (17). PRISM data are widely used and produced from the inter
polation of observations from a multitude of US meteorological 
stations using a regression model which weights grid cells by their 
physiographic similarity to the station. Mean absolute error is 1◦C 
for temperature variables and 10% for precipitation variables in 
the western US (43).

We used the biovars() function from the dismo v. 1.3-3 R package 
to convert the monthly precipitation and temperature variables to 
19 bioclimatic variables—including physiologically relevant vari
ables such as mean diurnal temperature range and precipitation 
of the driest quarter—and produced averages for the following 
time periods: 1915–1955, 1960–1980, 1980–2000, 2000–2010, 
2010–2020, 2015–2020.

The climate data for future scenarios came from the Coupled 
Model Intercomparison Project Phase 6 (CMIP6). We chose the 
Shared Socioeconomic Pathways (SSPs) SSP1-2.6 and SSP5-8.5 
for the 2041–2060 and 2081–2100 time periods from the 
CanESM5 (Canadian Centre for Climate Modelling and Analysis, 
Canada) global circulation model. We chose CANESM5 because 
its projections for future climate in California are near the middle 
of results from CMIP6 (44). We downloaded a set of 19 bioclimatic 
variables at 2.5 arc-minute resolution from the Worldclim dataset 
(http://www.worldclim.org, accessed on April 27th, 2021) (45). 
SSP1-2.6 and SSP5-8.5 represent the lowest and highest potential 

emission scenarios for the next century, and are derived from es
timates of future energy and land-use trajectories (46).

Conifer habitat suitability model
We started building the Sierra Nevada conifer habitat suitability 
model by identifying all CWHR habitat types that were conifer- 
dominated within the study area. These included Sierran Mixed 
Conifer, Subalpine Conifer, Douglas Fir, Eastside Pine, Jeffrey 
Pine, Closed-Cone Pine-Cypress, Lodgepole Pine, Pinyon-Juniper, 
Ponderosa Pine, Red fir, and White fir. The Montane Hardwood- 
Conifer type is defined as at least 33% conifer-dominated and 
33% hardwood-dominated vegetation (39), which we classified 
as 50% conifer presence and 50% conifer absence. All other expli
citly nonanthropogenic CWHR types were considered conifer 
absences within the context of the model. To mediate the large 
difference in resolution between our occurrence and climate 
data we effectively up-scaled the binary occurrence data. We cal
culated the percent-cover of conifer presence and absence poly
gons within the 30 arc-second grid cells of the climate data. If 
5% of the grid cell contained conifers, we considered it a presence. 
If the grid cell contained less than 5% conifer cover and nonconifer 
vegetation exceeded 5% then it was classified as an absence. Our 
threshold was chosen to reduce omission error so that the result
ing habitat suitability model would capture the breadth of the cli
matic niche of conifers in the Sierra Nevada.

To reduce collinearity among the 19 bioclimatic predictors with
in the extent of our study area, we calculated the Variance Inflation 
Factor (VIF) for the set using the R package usdm (47) and incremen
tally excluded collinear variables until VIF < 10, as recommended. 
The 7 remaining variables were Mean Temperature of Wettest 
Quarter, Mean Annual Precipitation, Mean Temperature of 
Driest Quarter, Precipitation Seasonality, Precipitation of 
Driest Month, Temperature Annual Range, and Isothermality. 
Reducing collinearity among predictors helps to increase model 
efficiency and mitigate uncertainty (48). When transferring mod
els across space or time, differences in predictor collinearity be
tween training data and projecting data can lead to poor 
performance. We quantified collinearity shift by comparing the 
correlation matrices of historical predictors to those of the pre
sent and future (49). Among the 7 climate variables vetted for 
collinearity, the greatest absolute shift in r was 0.183 for 
Isothermality and Mean Annual Precipitation and the average 
absolute shift in r was 0.005 (Fig. S3).

All of our habitat suitability modeling was completed using the 
sdm (v 1.0-89) (19) and dismo (v 1.3-3) (20) packages in R (v 4.1.1) 
(21). We used five different presence-absence modeling algo
rithms available from the sdm package: Random Forest, 
Multivariate Adaptive Regression Spline, Generalized Linear 
Model, Boosted Regression Tree, and BIOCLIM with default set
tings. We trained each model on historical occurrence and pre
dictor data and used 5-fold cross validation with spatial blocking 
(block size = 70 km, blockCV (v 2.1.4) package (50)) to partition 
the occurrence data into testing and training sets in order to 
evaluate model performance. k-fold cross validation works by 
splitting source data into k groups (or “folds”) and iteratively with
holding each group as a “test” set while models train on the other k 
− 1 groups. The metrics of model performance are averaged across 
all (k) iterations. We used both AUC (the area under the receiver 
characteristic operating curve) and COR (point-biserial correl
ation coefficient) as model evaluation metrics. Because model ex
trapolation was a key feature of this work, we quantified the 
extent of over-fitting in the models by subtracting the training 
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AUC from the test AUC (51). We selected the GAM model because 
GAM can perform better than other popular SDM methods when 
extrapolated to novel environments (52). Test statistics (Fig. 
S4A) and variable importance (Fig. S4B) across the different meth
ods show that each method produced models with high AUC and 
COR and the most important predictors were MAP and MTWQ. 
The relative weighting of MAP and MTWQ was the greatest differ
ence between the models, with GAM, MARS, and GLM weighting 
MTWQ relatively higher than the decision tree-based methods.

We calculated a series of thresholds for the historical conifer 
HSM to delineate the probability of presence into three categories: 
suitable habitat, unsuitable habitat, and severely unsuitable habi
tat. We defined these thresholds using model sensitivity (i.e. the 
proportion of true conifer occurrences that are classified as suit
able conifer habitat at a given threshold of habitat suitability) 
where unsuitable habitat was defined as habitat suitability values 
under which 5% of all Wieslander conifer occurrences occurred 
(i.e. sensitivity = 0.95). Similarly, severely unsuitable habitat was 
defined by the habitat suitability threshold which excluded 1% 
of Wieslander occurrences (i.e. sensitivity = 0.99).

The HSM was used to predict conifer habitat suitability at seven 
different time slices throughout the 20th and 21st centuries, sour
cing PRISM climate variables for present-day and historical time 
periods and CMIP6 for future projections. At every time slice, we 
intersected our HSM predictions with observed conifer occur
rences from EVeg, to produce maps of conifer forests that grow 
in suitable, unsuitable, or severely unsuitable climates. We down- 
scaled the future projections to 30 arc-seconds via bilinear inter
polation to match the resolution of the other time periods and 
simplify the comparison of relative area. Estimations of VCM are 
approximate for time periods outside of the present-day because 
EVeg conifer maps only reflect the modern distribution.
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